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Abstract: In our previous work, we demonstrated that hierarchical (taxonomical) trees can be 
used to depict hypotheses in a Bayesian object recognition and identification process using 
Figaro, an open source probabilistic programming language. We assume in this work that we 
have appropriately defined a satellite taxonomy that allows us to place a given space object 
(RSO) into a particular class of object without any ambiguity. Such a taxonomy allows one to 
assess the probability of assignment to a particular class by determining how well the object 
satisfies the unique criteria of belonging to that class. Furthermore, tree-based taxonomies 
delineate unique signatures by defining the minimum amount of information required to 
positively identify a RSO. Because of these properties of taxonomic trees, we can now explore 
the implications of RSO taxonomic trees for model distance metrics and sensor tasking. In 
particular, we seek to exploit the fact that taxonomic trees provide a model “neighborhood” that 
can be used to initiate a Monte Carlo or Multiple Hypothesis algorithm. We contend this feature 
of taxonomies will provide a quantifiable metric for model distances and the explicit number of 
models that should be considered, both of which currently do not exist. Additionally, the 
discriminating characteristics of taxonomic classes can be used to determine the kind of data 
and the associated sensor that needs to be tasked to acquire that data. We also discuss the 
concept of multiple interacting hierarchies that provide deeper insight into how object interact 
with one another. 
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1. Introduction 
 
Our work in this paper is motivated by a series of rhetorical questions arising out of common 
problems faced by the Space Situational Awareness (SSA) community. In general, we face 
situations where we have sparse data of varying quality from a variety of sensor types that all 
provide small pieces of the SSA puzzle. The SSA community has often attempted to assemble 
those puzzle pieces using filters that rely upon a choice of dynamic, environment, and sensor 
models to perform orbit determination (OD) and space object identification (SOI), sometimes 
known as positive object identification (POI). For each and every batch of data that needs to be 
processed, it is up to the user of the filter to choose the models and other associated input  
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bject (RSO) the data represents. But how do you know what hypothesis to choose in order to 
initialize a particular OD algorithm? Should you choose multiple hypotheses to cover all of the 
possibilities as is commonly done in the multiple hypothesis approach depicted in Figure 1? How 
do you know if your choices are an appropriately complete set of all possible hypotheses or just a 
random sampling? Can these initial hypotheses be chosen in a statistically rigorous algorithmic 
manner rather than relying on any one individual user’s opinion (expert or otherwise)? 
 
In our previous work, we demonstrated that hierarchical (taxonomical) trees can be used to 
depict hypotheses in a Bayesian object recognition and identification process using Figaro, an 
open source probabilistic programming language. [1] Provided that we have appropriately 
defined a satellite taxonomy that allows us to place a given RSO into a particular class of object 
without any ambiguity, one can assess the probability of assignment to a particular class by 
determining how well the object satisfies the unique criteria of belonging to that class. 
Ultimately, tree-based taxonomies delineate unique signatures by defining the minimum amount 
of information required to positively identify a RSO.  
 
Let us take the rhetorical questions one step further. Before you go collect observational data in 
the first place, how do you know what sensor to task in order to increase the likelihood of 
positive object identification? How do you know what observational data are the missing pieces 
of the POI puzzle? Can sensor tasking be automated in a statistically rigorous algorithmic 
manner for POI and track custody of RSOs? This work will discuss how hierarchies, otherwise 

 
 
Figure 1: Multiple hypothesis approach to determine the most likely set of models and 
input parameters that best match the observed data. 
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known as taxonomies, can help address the issues that we have posited. Our hope is that the 
reader will gain an appreciated for the benefits of organizing information in a hierarchical 
manner to tackle some of the most pressing issues facing the SSA community. 
 
2. Hierarchy (Taxonomy) Fundamentals 
 
Hierarchical structures can be found in many domains, such as social networks. [2] In vision 
tasks, hierarchical models such as latent Dirichlet allocation (LDA) [3] are frequently used to 
model the hierarchical generation of features, regions, or objects in an image [4] [5]. Once 
learned, the hierarchy can be used to classify an object into labels with specific semantic 
meaning, or general labels if such specificity is not possible [6] [7]. This type of hierarchical 
reasoning and classification can be found in other domains as well, such as text [8] or audio [9] 
classification. The best example of a taxonomy that enjoys almost universal scientific acceptance 
is the classical Linnaean biological taxonomy. [10] A strength of Linnaean taxonomy is that it 
can be used to organize the different kinds of living organisms, simply and practically. Every 
species can be given a unique binomial name based upon a set of defining characteristics and 
features. This uniqueness and stability are a result of the acceptance by biologists specializing in 
taxonomy, not merely of the binomial names themselves. We seek to provide a similar formal 
nomenclature system through a defined tree-based taxonomy structure for RSOs. 
 
As depicted in Figure 2, each categorization, beginning with the most general or inclusive root of 
the hierarchical tree, at any level is called a taxon. Each taxon will have a set of uniquely 
distinguishing features that will allow one to place a given object into a specific group without 
any ambiguity. When a new object does not fall into a specific taxon that is already defined, the 
entire tree structure will need to be evaluated to determine if a new taxon should be created. Each 
taxon can have one or more children that are called siblings and have characteristics that are 
more refined than its parent. That taxon at the end of a particular branch of the hierarchical tree 

 
 

Figure 2: Taxonomy fundamentals 
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(sometimes called the leaf taxon) represents an individual space object. If one can assign an 
object to a leaf taxon, then one has accomplished the process of positive object identification. 
The collection of characteristics from the root taxon down to the bottom of a branch of the 
taxonomical tree creates a unique signature. One can assess the probability of assignment to a 
particular taxon by determining how well the object satisfies the unique criteria of belonging to 
that taxon and its associated parent taxa. Therefore, we can use taxonomic trees in a Bayesian 
process to assign prior probabilities to each of our object recognition and identification 
hypotheses.  
 
3. Hierarchical Reasoning Tool 
 
Probabilistic programming has recently developed as a potential solution to the problems 
associated with the creation of large and complex hierarchical models. [11]  Models created with 
these languages tend to be highly modular, reusable, and can be reasoned with using a built in 
suite of algorithms that work on any model created in the language. Using the probabilistic 
programming library (PPL) Figaro™ by Charles River Analytics (CRA) [12], we have embarked 
upon a new approach to data correlation and aggregation using a space object taxonomy for 
automatically recognizing and classifying a space object called the Hierarchical Reasoning Tool 
(HRT). The Figaro™ PPL provides a uniform holistic language for building probabilistic models 
and asking queries about space objects rather than a stove pipe set of dynamic and sensor models 
for specific classes of objects. If you want to represent a new aspect of the domain, you don’t 
have to create a model from scratch. Simply use existing constructs of the Figaro™ language and 
automatically apply the reasoning algorithms. This approach provides the ability to perform orbit 
determination using a variety of methods including particle filtering, which is a general method 
that applies to a wide range of situations that would guarantee the preservation of the orbit error 
characteristics in highly non-linear, stochastic, dynamical environments.  
 

 
 

Figure 3: HRT rudimentary hierarchy for proof of concept 
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In the current proof-of-concept, we utilize a very rudimentary hierarchy that is broken up into 
three major taxa: payloads, rocket bodies, and debris fragments. Each of these taxa have 
characteristics defining object shape (intact or fragment) along with a set of possible attitude 
states (sun pointing, nadir pointing, spin stabilized, and uncontrolled). Objects that are 
uncontrolled are also deemed passive while objects with a controlled attitude were deemed 
active. This hierarchy is graphically depicted in Figure 3. Using a multiple model adaptive 
estimator (MMAE) similar to the one depicted in Figure 1, simulated right ascension and 
declination angles along with light curve observations were processed by the MMAE and the 
instantaneous likelihoods generated by the MMAE were fed into our Hierarchical Reasoning 
Tool (HRT). Initial hypotheses were chosen to match the various combinations of characteristics 
depicted by the hierarchy in Figure 3. We provide without proof the results of the MMAE in 
Figure 4 as a starting point to discuss the HRT. 
 
The HRT results presented in Figure 4 represent the instantaneous best guess for the object type 
based upon the priors and the evidence provided by the MMAE. In these examples, there is no 
feedback from the HRT to the MMAE. We start from a condition where you assume no 
knowledge of what type of object you are tracking. As a consequence, the HRT assumes an 
initial probabilistic distribution of the object types equivalent to the real population distribution 
as shown in Table 1.  We have found that the MMAE must assume a uniform initial distribution. 
This may be due to underlying stiff dynamics preventing the MMAE from adapting to an initial 
distribution that places too much emphasis on an incorrect object type. If the initial MMAE 
probabilities are too far off from uniform or the true hypothesis, then the MMAE will converge 
to an incorrect hypothesis. This results in incorrect evidence being asserted to the HRT causing it 
to believe an incorrect hypothesis. This highlights the importance of future work to incorporate 
confidence metrics and trustworthiness of evidence. 
 
The initial MMAE result from the very first observation is that there is a very low probability for 
non-payload objects.  Thus, such objects are ruled out nearly immediately by the MMAE.  Sun, 
spin, and uncontrolled payloads are not discriminated yet, and still have significant probabilities. 
The HRT conclusion from first MMAE result is that non-payload objects are discriminated. With 

 
 

Figure 4: Hierarchical Reasoning Tool demonstration scenario results 

 

MMAE Output HRT Output



DISTRIBUTION STATEMENT A. Approved for public release. 
6 

the remaining payload objects being non-discriminated, the most likely object is an uncontrolled 
payload with probability = ~0.9 strictly based upon population data. As the MMAE continues to 
process observational data, sun pointing objects are eliminated. We note that sun pointed 
payloads are a minority in space, which combined with lower probability MMAE results, the 
HRT discriminates sun payloads early. 
 
As the MMAE slowly begins to discriminate the remaining two objects, uncontrolled and nadir 
objects, the HRT continues to collect probability evidence. The MMAE has difficulty deciding 
between the active and passive state. This is reflected in the HRT taking time to decide between 
those two states. Note that the active/passive decision is “the final straw” for the HRT. Once the 
building evidence shifts the HRT’s prior likelihoods from uncontrolled/passive to active, there is 
already enough evidence to choose the nadir pointing hypothesis (the correct solution). Note that 
the uncontrolled payload initially has a high probability since the HRT realizes that there are 
many more uncontrolled-payloads than nadir-pointing payloads.  The MMAE must present 
discriminating evidence to show that the correct result is actually nadir-pointing.  This evidence 
is presented slowly, as even the simulation completes the MMAE is still showing a 60/40 split 
between nadir and uncontrolled payloads. This shows how the HRT can tolerate and react to 
changing MMAE evidence. We have found that the HRT can consistently come to a conclusion 
regarding which hypothesis is the correct hypothesis even when the MMAE cannot make a firm 
decision based upon the dynamical models, environment models, and sensor models alone. 
 
 
 
 

Table 1. Initial RSO Population Statistics 

  Probability of Occurrence 

Characteristic Value RSO Payload Rocket 
Body 

Debris 
Fragment 

Shape 

Regular / Intact 0.34 1 0 0 

Rocket Body / Intact 0.08 0 1 0 

Debris / Fragment 0.58 0 0 1 

Attitude 
Control 

Active 0.07 0.21 0 0 

Passive 0.93 0.79 1 1 

Spin State 

Uncontrolled 0.93 0.79 1 1 

Spin Stabilized 0.024 0.14 0 0 

Nadir Pointing 0.023 0.035 0 0 

Sun Pointing 0.023 0.035 0 0 
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3. A More Complete Hierarchy of RSOs 
 
In our previous work, we formally described the process of how we decided to construct a 
resident space object taxonomy. [1] Alternate concepts for constructing an RSO hierarchy exist 
but do not directly lend themselves to the type of analysis. [13] [14] While we did not originally 
explore in great detail the distinctiveness of particular satellite busses [15] [16] [17] [18] [19], we 
now seek to explore the utility of such details for the notion of model distance metrics and sensor 
tasking requirements.  As we previously mentioned, each taxon provides a set of distinct 
characteristics that allows one to assign an object to that class without ambiguity. The ancestral 
nodes of a given taxon provide more general criteria. For example, a generic GEO satellite class 
might be represented by a simple box-wing shape model. However, a sub-class for 
communication satellites might include one or more antenna shape features.  
 
In order to construct a more robust taxonomy, we utilized the active payload database from the 
Union of Concerned Scientists (UCS). [20] The UCS Satellite Database is a listing of the more 
than 1000 operational satellites currently in orbit around Earth. This database conveniently 
categorizes each payload according to country of origin, owner operator, orbit class, mission 
class, and manufacturer using open-source information. Figure 7 represents the resulting 
hierarchy in terms of the broad categorizations down to the manufacturer level. If one populates 
this hierarchy with actual values, one quickly generates a large and unwieldy hierarchy as 
depicted in Figure 6. These graphical depictions do not extend to the leaf taxa of individual 
objects because there would need to be 20,000 to 30,000 taxa at the bottom of the tree. 
 

 
Figure 5: Proposed RSO taxonomy 
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4. Implications of Hierarchies for Model Neighborhoods 
 
Referring back to our rhetorical questions, how do you know what hypothesis to choose in order 
to initialize a particular OD algorithm? Should you choose multiple hypotheses to cover all of 
the possibilities as is commonly done in the multiple hypothesis approach depicted in Figure 1? 
How do you know if your choices are an appropriately complete set of all possible hypotheses or 
just a random sampling? Consider Taxon D depicted in Figure 5, which has child taxa E, F, G, 
and H. If one has enough observational evidence to assign an object to Taxon D, or what we term 
object ID level 1, then the child nodes automatically becomes your model neighborhood. Each 
taxon in that model neighborhood represents a hypothesis. Each characteristic or feature of that 
taxon may have a stochastic representation which can also be parametrically varied. If one 
gathers additional observational evidence and is now able to assign an RSO to Taxon H, then 
taxa I, J, and K become the new model neighborhood that should be considered. 
 
Instead of relying on experience or intuition to initiate a Monte Carlo or Multiple Hypothesis 
method, we now have a rigorous method to select neighboring models for consideration. We 
contend that this will significantly reduce the computational burden of multiple hypothesis 
methods because one will only consider a realistic set of variations. Furthermore, using the 
taxonomic tree branches, we can express a model distance metric that is rigorous and 
quantifiable. A model distance metric would be useful for optimal search strategies to aid in 
decision making. This is an open question of which various techniques can be proposed. 
Examples of model distance metrics could be the difference in probabilistic assignment to a 
hierarchical class, the statistics of individual model characteristics can describe the spread of 
classes, and using the count of branches and number of different levels between classes could all 
be considered. Future work will quantitatively explore these model distance metrics. 
 
 
 

 
 

Figure 7: Hypothesis and model neighborhoods 
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5. Implications of Hierarchies for Sensor Tasking 
 
Hierarchies also present a method for sensor tasking. Consider the individual characteristic and 
feature variations between taxonomic classes. Recall again that these classes have been 
rigorously defined in such a way that one can always place an RSO into a class without 
ambiguity. If one has assigned an RSO to Taxon D in Figure 5 as before, instead of generating 
and enumerating multiple hypotheses, one could seek to obtain additional observational evidence 
to make the determination of which more specific child taxon (i.e. E, F, G, H) to which the 
object belongs. In order to accomplish this, one simply must examine the characteristic 
variations between taxa as they tell you exactly the kind of data required to make the 
determination. Instead of falling back on traditional methodologies where we try and make do 
with the data at hand, we now have a method to state unequivocally that specific additional data 
is required to appropriately classify an object. We contend that this sensor tasking metric does 
not exist in a rigorous form today. As such, we contend that hierarchies have obvious benefits for 
Space Object Identification (SOI) tasking. However, it is still an open question whether these 
types of hierarchies will be necessary and sufficient for both SOI and traditional metric tasking. 
Future work will explore this notion of sensor tasking using hierarchies in a quantifiable way. 
 
6. Implications of Multiple Interacting Hierarchies 
 
While we have described some significant benefits of utilizing hierarchical taxonomies to 
organize resident space objects, we must also consider some potential consequences of this 
approach. From our initial work, we embedded the RSO central body and orbit regime as a 
discriminating categorization at the most general level of the taxonomy. This allowed us to use 
the detectability of an RSO by a sensor as a discriminator. That is to say, sensors are typically 
designed to detect RSOs in a particular orbit regime thus the mere fact you are examining data 
from a particular sensor says something about the allowable orbit regimes. However, this type of 
construct can lead to a taxonomical hierarchy that is very large and deep, which poses 
computational challenges while searching complex tree structures for characteristic matches.  
 
Furthermore, by the nature of the satellite business where new space vehicles are launched on 
almost a daily basis, whatever hierarchy one chooses can and should be evolving to account for 
new characteristics and features of these objects. Additional complications arise when one 
considers closely spaced objects that are each represented by large and deep hierarchical 
depictions. In order to disambiguate these objects rigorously, there may be interactions between 
these hierarchies that need to be properly accounted for. 
 
Another approach to the problem of characterizing RSOs using a taxonomy is to acknowledge 
that there may be multiple instances of an RSO hierarchy (i.e. multiple detections) that can be 
said to interact with a terrain hierarchy (i.e. the sensor field of view). Instead of one large 
hierarchy that incorporates both orbit regimes and RSO characteristics, we will employ a 
separate taxonomy for each. Consider a simple thought example where we have a vehicle 
hierarchy that includes a taxon representing a car and a truck along with a terrain hierarchy with 
taxa representing highways, freeways, and residential roads.  If one detects multiple trucks on a 
highway, one could assess the probability that those trucks belong to a convoy instead of acting 
independently of each other. If one happens to be looking at an airport freeway and detect 
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multiple yellow cars, one might come to the conclusion that they are simply a line of taxi cabs 
rather than assume they are part of a convoy. This is the advantage of multiple interacting 
hierarchies. Utilizing this concept we can consider some larger concepts of how RSOs might be 
interacting with one another. 
 
6. Summary and Conclusions 
 
In this work, we showed that taxonomic hierarchies provide a unique and minimal RSO 
signature.  Using these hierarchies, we can model the appearance of objects as well as reason 
with observations in a Bayesian construct. As a proof-of-concept, we demonstrated how even a 
rudimentary hierarchy can aid in space object identification using our Hierarchical Reasoning 
Tool (HRT). We went on to describe a more complete and robust RSO hierarchy that organizes 
sensor data, dynamic model choices, as well as the physical characteristics of the RSOs. By 
virtue of organizing information in a hierarchical manner, we discussed how one can generate 
hypotheses over neighborhoods of the model space as described by the parent-child relationships 
in the taxonomy. These hypotheses can be ranked according to their probabilistic confidence 
level based upon the priors and asserted evidence. Furthermore, hierarchies present a capability 
to efficiently task sensors for optimal information gain because we now know what the missing 
pieces of the SOI puzzle are before we task a sensor. We are no longer bound to a sensor tasking 
modality that says high priority objects must be observed by the first sensor that can detect the 
object. Instead, we can intelligently decide to collect observational data from only those sensors 
that will increase the probability of assignment to a more detailed taxon. We also discussed how 
multiple interacting hierarchies can potentially reduce the computational burden associated with 
large hierarchies and provide a deeper insight into how objects interact with one another. 
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