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Abstract: The error budget analysis is presented which quantifies the effects of different error 
sources in the Earth-based orbit determination process when the orbit estimation filter is used to 
reduce radio metric data. The estimator strategy differs from more traditional filtering methods 
in the nearly all of the principal ground system calibration errors affecting the data are 
represented as filter parameters. This article reviews the fundamental concepts of reduced-order 
filtering theory, which are essential for sensitivity analysis and error budget development. 
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1. Introduction 
 
Development of improved navigation techniques which utilize radiometric ( Ranging and 
Doppler ) data acquired from the interplanetary tracking station have received considerable study 
in several years, as these data types are routinely collected in tracking, telemetry, and command 
operations. A sequential data filtering strategy currently under study is the orbit estimator, in 
which most if not all of the major systematic ground system calibration error sources are treated 
as estimated parameters, along with the spacecraft trajectory parameters. This strategy differs 
from current practice, in which the ground system calibration error sources are represented as 
unestimated bias parameters, accounted for only when computing the error covariance of the 
filter ( estimator ) parameters. 
This article reviews the fundamental concepts of reduced-order filtering theory, which are 
essential for sensitivity analysis and error budget development. The theory is then applied to the 
development of an error budget for an interplanetary mission cruise scenario in which enhanced 
orbit estimation is used to reduce X-band Doppler and ranging data. The filter model is described 
and error budgets are given for two different strategies: X-band Doppler only, X-band Doppler 
plus ranging. 
For this study, the filter model is assumed to be correct representation of the physical world. 
 
2. Reduced-order filter 
 
In some navigation applications, it is not practical to implement a full-order or the optimal filter 
when system model, with all major error and noise sources, is of high order. 
Use of reduced-order filter allows the analyst to obtain estimates of key parameters of interest, 
with reduced computational burden and with moderate complexity in the filter model. Thus, 
reduced-order, or , suboptimal, filters are results of design trade-offs in which sources of error 
are most critical to over all system performance. Nevertheless, there are reasons for not always 
using a full-order optimal filter for spacecraft orbit estimation. 
Some of reasons includes : (1) there may be a lack of adequate models for an actual physical 
effect; (2) certain parameters, such as the station location, may be held fixed in order to define 
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reference frame and/or length scale; (3) if estimated, the computed uncertainty in model 
parameters would be reduced far below the level warrandted by model accuracy.  
 
2.1. Estimation evaluation 

 
There are a number of error analysis methods which can be used to evaluate estimator ( filter ) 
models and predict filter performance. Reduced-order error analysis techniques enable an analyst 
to study the effects of using incorrect a priori statistics, data-noise/data-weight assumptions, or 
process noise model on the filter design. 
If the filter is optimal, then the filter and truth models coincide. If the filter is suboptimal, then 
the filter model is of equal or lower order (i.e., reduced-order) than the truth model and possibly 
represents a subset of the states of the truth model. In practice, a fully detailed truth model may 
be difficult to develop and thus one typically evaluates a range of ‘reasonable’ truth models to 
assess whether the filter results are especially sensitive to a particular elements of the filtering 
strategy being used. The objective is to design a filter model to achieve the best possible 
accuracy, but which is also robust, so that its performance will not be adversely affected by the 
use of slightly incorrect filter parameters. 
 In a special case of reduced-order error analysis, various systematic error sources are treated as 
unmodeled parameters which are not estimated, but whose effects are accounted for in 
computing the error covariance of the estimated parameters. In a consider state analysis, the 
sensitivity of the estimated parameter set to various unmodeled consider parameters can be 
computed via partial derivatives of the state estimate with respect to the consider parameters set. 
The filter has no knowledge about the contribution the unmodeled parameters to the uncertainty 
in the state estimate since the modified covariance, which includes effects from both the 
estimated and consider parameters, is not fed back to the filter.  
 
2.2. Optimal and suboptimal estimator 
 
Restricting the discussion to the filter measurement up-date equations, the mathematical model 
presented here is the estimator form of the measurement up-date. 
Let  )x  represent the state estimate and P represent the error covariance matrix. Using the 
convention that ‘(-)’ denotes a pre-observation up-date value and ‘(+)’ denotes a post-
observation up-date value, the filter observation up-date equations for Extended Kalman type’s 
estimator are given by 
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where zk  is the observation vector defined by the measurement model, Hxk is observation matrix 
of measurement partial derivatives, I is simply the unit matrix, and ! k = HxkPk

(" )Hxk
T +Wk

"1  is the 
innovation covariance. Wk  represents the weighting matrix, the inverse of which is taken to be 
the diagonal observation covariance Vk ; thus for  i = 1,K,m  observations, 

 
Wk

!1 " Vk = diag v1,LL, vm[ ] for observation variances vi . The filter equations described by Eqs. (1) 
through (3) can be employed without loss of generality, since whitening procedures can be used 
to statistically decouple the measurements in the presence of correlated observation noise and 
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obtain a diagonalVk . The gain matrix Kk  is used to up-date estimates of the filter parameters as 
each measurement is processed. And denote that Eq.(2) is valid only for the optimal gain  

)
Kk  

The use of Eq.(2) to compute the error covariance matrix has historically been suspect due to 
finit computer word length limitations. As a result, a utilized alternative is the stabilized form of 
the up-date, expressed as 

               Pk(+ ) = (I ! KkHxk )Pk
(! ) (I ! KkHxk )

T + KkWk
!1Kk

T                                             (4) 
Although this form of the covariance observation up-date is more stable numerically than Eq.(2), 
it requires a greater number of computations; however, a further advantage is that it is valid for 
arbitary gain matrices; therefore, Kk in Eq.(4) need not be optimal. 
In some cases, the observation up-date equation may also be deficient numerically. As a result, 
factorization methods have been developed to help alleviate the numerical deficiencies of the up-
date algorithms. The details of the factorization procedures will not be discussed here; however, 
an important observation from the literature and critical to the general evaluation mode of the 
filter is the observation that Eq.(4) can be written in an equivalent form as 

 Pk(+ ) = (I ! KkHxk )Pk
(! ) +" k (Kk ! K̂k )(Kk ! K̂k )

T                                            (5) 
where Kk  is an suboptimal gain matrix and K̂k is the optimal gain matrix. This equation of the 
error covariance observation up-date is referred to as the suboptimal observation up-date since it 
includes a correlation based on the gain difference between the filter evaluation run and the 
original estimation run. In the general evaluation mode, the estimator uses suboptimal gains 
saved in an evaluation filter from an earlier filter which is run purposely with what is believed to 
be an incorrect model, in order to generate suboptimal gains. It is this strategy of the suboptimal 
observation up-date which will be critical to the error described in the following section. It is 
important to note that the time in the filter evaluation mode takes the same style as the original 
estimator time up-date, except that in the presence of process noise modeling parameters, the 
original estimator stochastic time constants and process noise (system noise) uncertainties are 
replaced with evaluation mode time constants and process noise terms. 
 
3. Observation strategy and the estimator 
 
3.1. Observation strategy 

 
The planetary is assumed to Venus. Observation data acquisition plan is assumed, containing 
several passes of two-way Doppler and ranging data per week. And also, the data schedule 
consisted of about 6 hours tracking pass of two-way Doppler and of about 2 hours tracking pass 
of two-way range from USUDA station basis from VE (Venus encounter) – 30 days to VE-10 
days. 
To account for observation noise, an assumed one-sigma random measurement uncertainty of 
0.02 mm/sec was chosen for two-way Doppler, and for two-way ranging, the one-sigma random 
measurement uncertainty was assumed to be about 5 m. It should be noted that the data weights 
quoted here are for the round trip range-rate and range, respectively. Both data types were 
collected at a rate of one point every 10 min., and the noise variances were adjusted by an 
elevation-dependent function for USUDA station, to reduce the weight of the low elevation data; 
furthermore, no data were acquired at elevations of less than 13 deg. 
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3.2. The estimator 

 
Tab. 1 summarizes the parameters which make up the filter model, along with a priori statistics, 
steady state uncertainties for the Gauss-Markov parameters, and noise densities for the random-
walk parameters. All of the parameters were treated as filter ( estimator ) parameters and grouped 
into three categories: spacecraft epoch state, spacecraft nongravitational force model, and ground 
system error model. Effects of uncertainty in the ephemeris and mass of Venus were believed to 
be relatively small in this scenario. 
The simplified spacecraft nongravitational force model was used. There were filter parameters 
representing solar radiation pressure (SRP) forces as well as small anomalous forces due to gas 
leaks and attitude control thruster misalignments, and so on. 
For processing the two-way range data, the filter model included a stochastic bias parameter 
associated with each ranging pass from the station, in order to approximate the slowly varying, 
nongeometric delays in ranging observations that are caused principally by station delay 
calibration errors and uncalibrated solar-plasma effects.  
 

Table 1. Estimation parameters (Assumed) 

 
 
 
The station location covariance represents the uncertainty in the station location. 
 
 
 
 

Estimate parameter Uncertainty (one-sigma)
State vector

Position element
Velocity element 1 km/s

Nongaravitational force
SRP 10%

Anoumalous accelerations
Range biase 5 m

Station location (USUDA)
Spin radious 0.05 m

Z-hight 0.05 m
Longitudu

 

1!107    km

1!10"12 !!!km/sec2

3!10"9 !!!deg
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4. The error values 
 
The purpose of developing an error budget is to determine the contribution of individual error 
sources, or groups of error sources, to the total navigational uncertainty. In general, an error 
budget is a catalog of the contributions of the error sources which contribute to errors in the filter 
estimate at a particular point in time, whether explicitly modeled in the filter or not. For the first 
analysis, it is assumed that filter is optimal, that estimator model is an accurate representation of 
the physical world. 
In order to establish an error budget, it is necessary to compute a time history of the filter gain 
matrix for the complete filter and to subsequently use these gains in the sensitivity calculations 
( Eq.(4) ) during repeated filter evaluation mode runs, in which only selected error sources or 
groups of error sources are ‘turned on’ in each particular run. In this way, the individual 
contributions of each error sources or group of error sources to the total statistics uncertainty 
obtained for all of the filter parameters for given radiometric data set can be established. 
Using the reduced observation data schedule and the filter model derived for Venus mission 
scenario, orbit estimation error statistics were computed for Doppler-only and Doppler-plus-
ranging observation data sets. The orbit estimation were propagated to the nominal time of 
Venus encounter and expressed as dispersions in a Venus centered aiming plane, or B-plane, 
coordinate system; specifically, the one-sigma magnitude uncertainty of the miss vector, 
resolved into respective miss components B ! T (parallel to planetary equatorial plane) and 
B !R (normal to planetary equatorial plane. This plane definite Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ellipse (1σ) 

SMAA axis 

SMIA axis 

ｇγ 
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Figure 1. Definition of B-plane ellipse 

In the B-plane ellipse, there are semimejor (SMAA) axis and semiminor (SMIA) axis. Where !  
is the orientation angle of semimajor axis measured positive clockwise from T  to R . 
Additional, the one-sigma uncertainty on the linaerized time of flight (LTF). The LTF defines the 
time from encounter ( point of closest approach ) and specifies what the time of flight to 
encounter would be if the magnitude of the miss vector were zero. In the case, the errors were 
expressed as dispersion ellipses in the B-plane to graphically significant groups of error sources. 
 

4.1. In the case of 2-way Doppler only 

 
With the reduced-filter, the 2-way Dopppler data allowed determination of the B ! T  component 
of the miss vector to about 50 km and the B !R component of miss vector to about 25 km, with 
the LTF determined approximately 8 sec. These results summarized in Fig.2, which gives the 
magnitude of the B-plane error ellipse around the nominal aim point for the groups of the filter 
model error sources to the total statistical uncertainty, in a root-sum-square. The most dominant 
error source groups were the random nongravitational acceleration, followed by solar radiation 
pressure coefficient uncertainty, and ground system calibration error. For this encounter phase, 
the direction of the Earth-spacecraft range is closely aligned with semmimajor (SMMA) axis  of 
the B-plane error ellipse. The Doppler data alone were able to determine this component of the 
solution to only about 55 km. 

 
 

Figure 2 The error ellipse on the B-plane for X-band 2-way Doppler only  
at closest approach 
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4.2. In the case of 2-way Doppler plus ranging 

 
More one case in which both the 2-way Doppler plus ranging data were used, the B !T  
component of the miss vector was determined to about 6 km and the B !R component to about 5 
km, with the LTF determined approximately 5 sec. 
Similar to the results for the Doppler-only data strategies (See 4.2), random nongravitational 
accelerations were the dominant error source group. 
In additional ranging data to Doppler data, the dispersion is reduced compare with only Doppler 
observation strategy. B-plane error ellipse are also provided ( see Fig. 3), illustrating the 
contributions of the major source groups to the total root-sum-square error and the orientation of 
the ellipses in the aiming plane. In this case, the accuracy with which the Earth-spacecraft range 
component at encounter  was determined was roughly 12 km. 
 

Figure 3 The error ellipse on the B-plane for X-band 2-way Doppler plus ranging 
at closest approach 

 
5. Sensitivity analysis 
 
The results of the linearity assumptions used to develop error budgets is that sensitivity values 
can readily bee generated. These values graphically illustrate the effects of using different 
prescribed values of the error source statistics on the estimation errors, with the assumption that 
the reduced-order filter.  
The procedure for sensitivity values development is repeated here for completeness:  

(1) Subtract the contribution of the error source under     consideration from total mean-square 
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navigation  error. 
(2) To compute the effect of changing the error source by a preset scale factor, multiply its 

contributions to the mean-square errors by the square of the scale factor value. 
(3) Replace the original contribution to mean-square       error by the one computed in the 

previous step. 
(4) Take the square root of the newly computed mean-square error to obtain the total root-sum 

square navigation error. 
Several cases were used to generate sensitivity curves for the major groups of error sources in the 
filter ( estimator ). Fig. 4 and Fig 5. Give the sensitivity curves for the random nongarvitational 
accelerations and illustrate the sensitivity of this error source group to various scale factor values. 
Random nongravitationnal acceleration dominated the error budget in two data strategy cases 
considered.  

 
Figure 4 Sensitivity of he estimation error to perturbation 

of random nongravitational accelerations 
(X-band two-way Doppler only) 
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  As seen from the figures, a quadratic growth in the sensitivity is evident for scale factor values 
ranging from 1 to 3, and a nearly linear growth is exhibited for scale factor values ranging from 4 
to 10. On average, for two data strategies considered, an order of magnitude increase in the 
preset scale factor resulted in about a factor of three to six increase in the root-mean-square 
estimation errors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Sensitivity of he estimation error to perturbation 
of random nongravitational accelerations 
(X-band two-way Doppler plus ranging) 

 
In the case of two-way Doppler plus ranging, it is illustrated one-sigma uncertainty in the 
linearized time of flight (LTF) (see Fig. 6) 
 
6. Conclusions 
 
A sensitivity analysis was conducted for a reduced-order filter referred to as the enhanced orbit 
estimation filter. In practice, the enhanced filter attempts to represent all or nearly all of the 
principal ground system error sources affecting radiometric data types as filter parameters. A 
reduced-order filter technique were reviewed and utilized to perform the sensitivity analysis, and, 
in particular, to develop navigation error budgets for two different data acquisition strategies.  
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  Error budget performed for the assumed mission strategy revealed that the most significant 
error source for two data-acquisition strategies studied was spacecraft random nongravitational 
accelerations, indicating that, for the reference error model, the enhanced filter is most sensitive 
to mismodeling of small anomalous forces affecting spacecraft. These results suggest that if 
high-precision navigation performance is to be achieved, the error sources requiring the most 
accurate modeling are spacecraft nongravitational accelerations error. 
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