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Abstract: In this paper two Hamiltonian intermediaries H{ν ,φ} and Hν for the gravity-gradient
attitude dynamics of a generic triaxial satellite are formulated using Andoyer variables. Assuming
the satellite in a circular orbit, both models allow to analyze the coupling between the orbital mean
motion and rotational variables and the role played by the moments of inertia in the different types
of relative equilibria (families of periodic orbits) defined by each intermediary. The first model
H{ν ,φ} shows that for slow rotation the precession of the angular momentum plane may librate or
circulate, connected to a pitchfork bifurcation. Moreover the behavior of the body frame, portrayed
by the classic Euler equations, experiences now a switch of stability due to the perturbation defining
the model. The study of the second intermediary Hν leads to similar expressions, although more
cases ought to be discussed due to the fact that two integrals are involved, meanwhile the dynamics
features of the angle φ are given by a time dependent harmonic oscillator. Our analysis concludes
with the comparison of both models taking different moments of inertia and inclinations as initial
conditions. The complete integration of these intermediaries and their associates action-angle
variables by means of Legendre elliptic integrals are provided elsewhere.

Keywords: Attitude dynamics, gravity-gradient, intermediary, relative equilibria, action-angle
variables

1. Introduction

In this paper, the attitude dynamics of a generic triaxial spacecraft in a central gravitational field
in Hamiltonian formalism is approached making use of the classic concept of intermediaries in
Astrodynamics [1]. The gravity-gradient problem expands since the early days of space dynamics
[2] up to the very recent research of spacecraft around asteroids [3]. It covers aspects such as
determination, propagation and control, that continue to be areas of research [4, 5]. The problem
is formulated in Polar-Nodal and Andoyer variables [1, 6] and we restrict to a satellite in circular
orbit. The McCullagh approximation of the potential is assumed and the equations are referred to a
rotating system. Following Poincaré and Arnold, we split the Hamiltonian H = H0 +H1 where
H0 is an intermediary, i.e. a Hamiltonian function defining a non-degenerate integrable 1-DOF
system, which includes the free rigid-body as a particular case. Our approach relies on three main
aspects: (i) we abandon the free rigid-body model as the unperturbed system; (ii) we carry out
the analysis of the relative equilibria and their bifurcations as functions of the angular momentum
which is an integral; (iii) we consider the full set of initial conditions from slow to fast rotations and
any inclination among the instantaneous angular momentum plane and the spacial and body frames.

The non-unique way of defining H0 for the gravity-gradient problem is what asks for a study of
the pros and cons of the several possibilities which arise. Indeed, when Andoyer variables are
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used, some candidates may be considered as intermediaries under the prescription given above;
and we do not claim we have made the complete list of them. More precisely, continuing our work
on intermediary models [7, 8], after proposing a new one Hφ , we present and compare the main
features of two of them.

We study first the flow defined by the intermediary Hamiltonian H{ν ,φ}. Taking advantage of
the cyclic character of the Andoyer’s variable µ , each value of the angular momentum M leads
us to the reduced phase space given by S2

M×S2
M. Apart from integable, this intermediary is also

separable in two subsystems: (ν ,N) giving an Euler-type dynamics and (φ ,Φ), where one of the
most remarkable feature is that the node of the angular momentum plane may librate or circulate,
connected to a pitchfork bifurcation given for slow rotational motions.

With respect to the second intermediary Hν , it has received some attention in the past, but in
averaged variables and only partially [9, 10]. A first analysis of this intermediary was presented
in [8] and the full analysis of relative equilibria (periodic orbits) and their bifurcations will be
published elsewhere [11]. One of the main features of this model is that it is endowed with a second
axial symmetry related to the angle φ . Nevertheless, we do not address the second reduction of this
model in order to carry out the comparison of both models at the same level. Moreover, in the case
of slow motion, we identify conditions under which the classical unstable equilibria of the free rigid
body model switch positions with respect to the principal directions, scenario of great interest in
relation to stabilization purposes. Moreover several relative equilibria (or frozen rotations at critical
inclinations) are found where the integration reduces to elementary functions.

Both models allow to analyze the coupling between the orbital mean motion and rotational variables,
as well as the role played by the moments of inertia in the different types of relative equilibria
defined by both intermediaries. Our analysis concludes with the comparison of both models taking
different moments of inertia and inclinations as initial conditions. The complete reduction may be
carried out by using the Hamilton-Jacobi equation, which gives the action-angle variables defined by
each model. The case of Hν is an extension of the Sadov’s classic set of variables already presented
in [8], while the case of H{ν ,φ} is still in progress. A further analysis is underway in order to look
for a scheme, either successive approximations or Lie transforms, with the aim of a compact first
order perturbed solutions of the problem.

2. Hamiltonian formulation and intermediaries

We are interested in the roto-translatory dynamics of two bodies, under gravity-gradient interaction,
when the main body is assumed to be an sphere; in other words we focus on the dynamics of
the second body, being an asteroid, satellite, etc. Moreover, the distance between both bodies is
supposed to be such that the potential expansion can be truncated considering the MacCullagh
approximation. Then, denoting by TO, TR the orbital and rotational kinetic energies and P the
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potential, the Hamiltonian function is given by

H = TO +TR +P

= TO +TR−
G M⊙

r
+V

= HK +HR +V, (1)

in other words, the potential is usually split in two parts: a term which depends only on 1/r and V ,
called the perturbing potential, depending on the rest of the variables of the problem. As a result of
this, we have that HK = TO−G M⊙/r is the Keplerian part of the system and HR = TR is referred
as the Euler system (or the free rigid body). Using polar-nodal variables [1] and Andoyer (see Fig.
1) variables [12] we have

HK =
1
2

(
R2 +

Ξ2

r2

)
− G M⊙

r
, HR =

1
2

(
sin2

ν

A
+

cos2 ν

B

)
(M2−N2)+

1
2C

N2. (2)

where G is the gravitational constant, M⊙ is the mass of the disturbing body, r is the distance
between the centers of mass of both bodies and {A,B,C} are the three principal moments of inertia
with A < B <C.
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Figure 1. Definition of the variables. (a) Polar-nodal variables. (b) Andoyer variables: space S ,
body B and nodal N frames and the angles relating them. Note that the vectors b2 and n×ℓb of
the body and nodal frames are not shown in the figure.

2.1. The MacCullagh gravity-gradient disturbing potential

In order to formulate the perturbing potential, we assume that the dimensions of the rigid body are
small when compared with the distance to the perturbing body, which allow us to truncate V to the
MacCullagh’s term [13] given by

V =−G M⊙
2r3 (A+B+C−3D) , (3)
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where
D = Aγ

2
1 +Bγ

2
2 +C γ

2
3 (4)

is the moment of inertia of the rigid body with respect to an axis in the direction of the line joining
its center of mass with the perturber, of direction cosines γ1, γ2, and γ3.

By replacing Eq. (4) in Eq. (3) and taking into account that γ2
1 + γ2

2 + γ2
3 = 1, we get

V =−G M⊙
2r3

[
(C−B)(1−3γ

2
3 )− (B−A)(1−3γ

2
1
)
]. (5)

If the orbital plane is chosen as the inertial reference frame, then the orbital reference frame is
related to the body frame by the following composition of the rotations:⎛⎝ γ1

γ2
γ3

⎞⎠= R3(ν)R1(J)R3(µ)R1(I)R3(φ)

⎛⎝ 1
0
0

⎞⎠ (6)

where φ = λ −ϑ and ϑ is the usual polar coordinate of the orbital motion.

Then, by replacing γ1 and γ3 as given by Eq. (6) in the disturbing potential (5), after some calculations
we get that,

V =−G M⊙
32r3

[
(2C−B−A)V1 +

3
2
(B−A)V2

]
. (7)

Thus, this potential V is made of V1, the “axisymmetric part” given by

V1 = (4−6s2
J)
(
2−3s2

I +3s2
I C2,0,0

)
−12sJcJsI [(1− cI)C−2,1,0 +2cI C0,1,0− (1+ cI)C2,1,0]

+3s2
J
[
(1− cI)

2C−2,2,0 +2s2
I C0,2,0 +(1+ cI)

2C2,2,0
] (8)

which is independent of ν , and V2, the “tri-axiality part” given by

V2 = 6s2
I s2

J (C2,0,−2 +C2,0,2)−4(1−3c2
I )s

2
J C0,0,2

+(1+ cJ)
2 [(1− cI)

2C−2,2,2 +2s2
I C0,2,2 +(1+ cI)

2C2,2,2
]

+(1− cJ)
2 [(1− cI)

2C−2,2,−2 +2s2
I C0,2,−2 +(1+ cI)

2C2,2,−2
]

+4sIsJ (1+ cJ) [(1− cI)C−2,1,2 +2cI C0,1,2− (1+ cI)C2,1,2]

−4sIsJ (1− cJ) [(1− cI)C−2,1,−2 +2cI C0,1,−2− (1+ cI)C2,1,−2] ,

(9)

which carries the ν contribution to the perturbation. Note that Ci, j,k ≡ cos(iφ + jµ + kν) and the
notation has been abbreviated by writing cI ≡ cos I, sI ≡ sin I, cJ ≡ cosJ, and sJ ≡ sinJ.
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2.2. On the intermediaries

The concept of intermediary is a classic one in astrodynamics (see [1]). In the case of gravity-
gradient the basic idea related with them is the definition of an integrable system, that includes
part of the potential where the roto-orbital coupling is present. Thus we obtain some advantages,
versus the use of the Kepler and free rigid body models, when the perturbation approach is built.
In the case the primary is considered to be a sphere, one of the authors has recently proposed a
natural intermediary [7]. Here, we continue our work studying some common intermediaries we
have identify recently [8]. We have reported on them but for the benefit of the reader, we bring them
here again, adding a new one to the previous list.

Note we have listed five intermediaries, but a close look shows they belong to three categories.
Indeed, meanwhile the Hamiltonian Hν and H{ν ,φ} relate to the generic triaxial case, the other
pair Hφ and Hµ fit the almost symmetric bodies; for both pairs we are assuming the satellite in
circular orbit and referred to the moving frame. Finally, the one listed first Hν ,r, it seems to be the
only integrable case able to give a good approximation when the satellite moves in an elliptic orbit.
Details on the dynamical features defined by Hν ,r are given elsewhere [14].

∙ Intermediary 1: H{ν ,r}. We consider as a first intermediary the system defined by the following
Hamiltonian function

H{ν ,r} = HK +HR +V

where the perturbing potential Vr is a function of the radial distance and two of the rotational
momenta. More precisely we have

V ≡Vr =−
G M⊙
8r3 (2C−B−A)

(
1−3

Λ2

M2

)
. (10)

Some readers might argue that it is still integrable the previous Hamiltonian if we add a new term
defined by the contribution of 2φ , namely

V ≡V{r,φ} =−
G M⊙
8r3 (2C−B−A)[2−3s2

I (1− cos2φ)]. (11)

For details on the dynamics of these systems, see [15].

In many applications we may assume the orbit to be circular; then, the radius is constant r = a. As
a consequence we simplify the previous expressions introducing n, the mean orbital motion, and we
will write

G M⊙ = n2a3. (12)

As a consequence we will drop from the Hamiltonian the Keplerian term and we will not consider
the equations of the system related to the orbital part.

∙ Intermediary 2: H{ν ,φ}. Assuming a circular orbit for the satellite, we consider as another
intermediary the system whose rotational dynamics defined by the following Hamiltonian function

H{ν ,φ} = HR +V{ν ,φ}(φ ,−,ν ,Φ,M,N) (13)
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where the potential V{ν ,φ} is now a function of the variables ν and φ together with the three rotational
moments. We will see below that Φ = Λ. More precisely

V{ν ,φ} =−
n2

8

{
(2C−B−A)[(2−3s2

I +3s2
I cos2φ)−3s2

J ]−
3
2
(B−A)s2

J cos2ν

}
(14)

and n is again the constant orbital mean motion given in (12). We devote Section 4. to this
intermediary. For further details see Crespo[14].

∙ Intermediary 3: Hν . Assuming again a circular orbit for the satellite, we consider now as a third
intermediary (studied in [8]) the system defined by the following Hamiltonian function

Hν = HR +Vν(−,−,ν ,Φ,M,N), (15)

where the potential Vν is a function of the variable ν and three rotational moments, namely

Vν =−n2

32

{
(2C−B−A)(4−6s2

J)(2−3s2
I )+

3
2
(B−A)[−4(1−3c2

I )s
2
J cos2ν ]

}
. (16)

Note that, with respect to Vν , the perturbation V{ν ,φ} does not include the secular term 18(2C−
B−A)s2

I s2
J coming from the axisymmetric part of the potential, which is one of the most important

differences between these two intermediaries.

On the other hand, considering quasi-symmetric bodies, as an alternative to the classic expression
of the rotational kinetic energy, since the time of Andoyer the function HR used to be rearranged as
follows

HR =
1
4

(
1
A
+

1
B

)
(M2−N2)+

1
2C

N2− 1
4

(
1
A
− 1

B

)
(M2−N2)cos2ν , (17)

including the last term as part of the perturbation.

With this in mind, we may consider again a reordering of the gravity-gradient perturbation (7)
leading to two intermediaries for quasi symmetric bodies:

∙ Intermediary 4: Hφ .

Hφ =
1
4

(
1
A
+

1
B

)
(M2−N2)+

1
2C

N2 (18)

−n2

16
(2C−B−A)[(4−6s2

J)
(
2−3s2

I +3s2
I cos2φ

)
].

∙ Intermediary 5: Hµ .

Hµ =
1
4

(
1
A
+

1
B

)
(M2−N2)+

1
2C

N2 (19)

−n2

16
(2C−B−A)[(2−3s2

J)(2−3s2
I )−12sJcJsIcI cos µ +3s2

Js2
I cos2µ].

A similar study to the one done in this paper for the previous quasi-axial intermediaries is in progress.
We devote the rest of this paper to the intermediaries (14) and (16).
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3. Methodology. Dealing with a Poisson system in a rotating frame

In this paper we pick two of the above intermediaries in order to compare them. Therefore, it is
necessary to tackle both studies with the same methodology, here we present to the reader two
technical considerations to apply to each intermediary, with the aim that they become ready for the
study.

3.1. Rotating frame

Due to the consideration of a circular orbit, the polar coordinate of the orbital motion is given by
ϑ = ϑ0 +nt which involves the time in the Hamiltonian formulation. Nevertheless, the explicit
appearance of the time can be avoided by moving to a rotating frame at the same rotation rate as the
orbital motion. Because of that, the new variable φ = λ −nt (with ϑ0 = 0) has been introduced,
which is the argument of the ascending node of the angular momentum plane with respect to the
inertial plane, in a rotating frame with orbital rate dϑ/d t = n. Indeed, note that as

dφ

dt
=

dλ

dt
−n =

∂H

∂Λ
−n =

∂

∂Λ
(H −nΛ), (20)

the change of reference frame requires the introduction of the Coriolis term−nΛ in the Hamiltonian.
The result is a new conservative Hamiltonian H with Φ≡ Λ is now the conjugate momenta of φ .

3.2. Poisson reduction

Systems having integrals admit simplifications that allow a better understanding of the qualitative
description of dynamics. It is, such a system may be expressed in a new set of variables that
incorporates the named integrals. This technique is materialized by means of a transformation of
the phase space. Symplectic transformations lead to symplectic reduction and the more general case
of a Poisson transformation leave us with a Poisson reduction of the system. The use of symmetries
and conservation laws leads to reductions, this technique is part of a very active area of research
in the branch of the geometric mechanics, which has a long history going back to the founders of
classical mechanics, (see [16, 17]). The reader interested in a deeper insight on the subject would
find very helpful the book of Ortega and Ratiu [18], where the authors present the state of the art in
reduction, treating the regular, optimal and singular case in detail. What the reader will find below
is just some practical applications of those concepts.

It is a known fact that Andoyer’s variables are not well defined for the whole set of positions of
the body plane with respect to the rotational angular momentum plane. For instance, the analysis
of ‘polar positions’ (N = M or Φ = M) is excluded in Andoyer’s variables with the previous
formulation; in other words, a second Andoyer chart is needed. This is one of the reasons why we
find convenient to study the equilibria of our model in the reduced phase space which, for each
value of M, is given by S2

M×S2
M, i.e. a cross product of two spheres with the same radius M.

Thus, considering the non-symplectic transformation TM : (φ ,ν ,Φ,N)→ (M1,M2,M3,G1,G2,G3)
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given by

M1 =
√

M2−N2 sinν , G1 =
√

M2−Φ2 sinφ ,

M2 =
√

M2−N2 cosν , G2 =
√

M2−Φ2 cosφ , (21)

M3 = N, G3 = Φ,

where
M2

1 +M2
2 +M2

3 = M2, G2
1 +G2

2 +G2
3 = M2. (22)

Then, the system of differential equations associated to H (Mi,Gi) is a Poisson’s map

ẋi =
6∑

j=1

{xi,x j}
∂H

∂x j
(23)

where x = (x1,x2, . . . ,x6) = (M1,M2,M3,G1,G2,G3) and the Poisson’s bracket are given by

{x1,x2}=−x3, {x1,x3}= x2, {x3,x2}= x1,

{x4,x5}=−x6, {x4,x6}= x5, {x6,x5}= x4,

and {xi,x j}= 0 for any other pair of indices i, j.

3.3. An axial symmetry. A second reduction?

The intermediaries that we study in this paper admit the same Poisson reduction, i.e., the same
Poisson map (21), applied to the corresponding phase space leading to a new reduced system.
Nevertheless, a big difference arises between those intermediaries, the second one, Hν , is endowed
with two axial symmetries, thus further reduction may be performed in this case. However, we have
decided not to study the second reduce space due to the following two reasons. Since our aim is to
compare two Hamiltonian systems, they must be defined on the same reduced space. On the other
hand, second reduction does not allow us to identify some of the equilibria of the first reduction,
that is to say, under certain conditions, intermediary Hν admits four isolated equilibria in the first
reduced space, which can not be identified in the second reduction.

It is worth noticing that the approach proposed here may be put in parallel with the way of proceeding
in orbital dynamics, started by Cushman [19], Deprit [20] and Deprit et al. [21] in the eighties,
and reaching until today (see, for instance, Palacian et al. [22]). Although there are publications
in rotational dynamics with this approach, most of them assume axial symmetry (see for instance
Hanßmann [23]); in other words, the qualitative study is done after the second reduction.

4. Intermediary H{ν ,φ}

Accomplishing the requirements of the intermediaries, our model breaks the degeneracy of the
Kepler-Euler system although the mathematical apparatus does not grow since only Legendre
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elliptic integrals are still involved. According to Eqs. (13) and (14), the intermediary H{ν ,φ} in the
rotating frame is given by

H{ν ,φ} ≡H
{ν ,φ}

0 =
1
2

(
sin2

ν

A
+

cos2 ν

B

)
(M2−N2)+

N2

2C
−nΦ (24)

−n2

8

{
(2C−B−A)[(2−3s2

I +3s2
I cos2φ)−3s2

J ]−
3
2
(B−A)s2

J cos2ν

}
.

Note that we have a separable system which defines two 1-DOF subsystems in (ν ,N) and (φ ,Φ)
plus a quadrature giving µ . Comparisons with the full model below show that, in the absence
of resonances, almost periodic oscillations separate the intermediary from the complete gravity-
gradient model Hamiltonian H .

4.1. From Hamiltonian to Poisson dynamics. The reduced flow

Taking into account the symmetry associated to M, making use of the transformation 21, the new
reduced Hamiltonian (24) takes the form

H
{ν ,φ}

0 = HM +HG, (25)

where

HM =
1
2

(
M2

1
A∗

+
M2

2
B∗

+
M2

3
C∗

)
, (26)

with

1
A∗

=
1
A
− 3n2

8M2 (B−A),
1

B∗
=

1
B
+

3n2

8M2 (B−A),
1

C∗
=

1
C
− 3n2

4M2 (2C−B−A) (27)

and

HG =−nG3 +
n2

8M2 (2C−B−A)(M2 +6G2
1). (28)

Figure 2. A snapshot of the reduced flow for a small value of M. From left to right we show the
intersections of the momentum spheres S2

M defining the reduce space with the integral surfaces HM
and HG.
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Thus, after some computations, the explicit expression of the reduced flow for our system 23 is
given by

Ṁ1 = α1M2M3, Ġ1 =−nG2, (29)

Ṁ2 = α2M1M3, Ġ2 = n
[

1+
3n

2M2 (2C−B−A)G3

]
G1, (30)

Ṁ3 = α3M1M2, Ġ3 =−
3n2

2M2 (2C−B−A)G1G2, (31)

where α1, α2 and α3 are the following expressions

α1 =−
C−B

BC
− 3n2

8M2 (4C−3A−B), (32)

α2 =
C−A

AC
+

3n2

8M2 (4C−3B−A), (33)

α3 =−
B−A

AB
+

3n2

4M2 (B−A). (34)

Thus, the reduced flow lies on S2
M×S2

M and the intersections of each ball with the Hamiltonians
HM and HG give the trajectories in the M and G spaces (see Fig. 2). As a function of the angular
momentum, two main types of dynamics ought to be considered, namely: slow and fast rotations
associated to small and large values of M respectively.

4.2. Relative equilibria and bifurcations

The above system of differential equations (29)-(31) has a number of equilibria related to periodic
orbits in the Andoyer’s angle µ (relative equilibria), the cyclic variable around which the reduction
is carried out. According to Tab. 1, we classify these equilibria in three groups depending on the
range of values of M where such equilibria exist, namely:

∙ Permanent equilibria. It is straightforward to verify the existence of 12 equilibria composed
by combinations of the directions of the coordinate axes in the M-sphere with the two poles of
G-sphere (see equilibria E1−E6 in Tab. 1). These are called permanent equilibria because they
exist for any value of M.

∙ Transitory equilibria (pitchfork bifurcation). There are other 12 sextuples of equilibria com-
posed again by combinations of the directions of the coordinate axes in the M-sphere with two new
points out of the poles of the G-sphere in the meridian G1−G3, always at the south hemisphere of
this sphere (see equilibria E7−E9 in Tab. 1).

Indeed, apart from the poles of the G-sphere, in order to have other equilibria, the coordinate G2
must be zero. Then, there is a particular value of the coordinate G3 which cancels out Ġ2 in Eq. 30,
namely

Geq
3 =− 2M2

3n(2C−B−A)
< 0. (35)
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Table 1. The below sextuples of S2
M×S2

M correspond to relative equilibria for a generic triaxial
body. This table is split in three parts according to the range of values of M where these equilibria
exist. Thus, note that there are 12 sextuples of permanent equilibria arranged in 6 sets E1−E6;
other 12 sextuples of transitory equilibria arranged in 3 sets E7−E9; and 4 circles of equilibria
arranged in other 3 sets E10−E12. For details about of the evolution of the values of the energy for
each of the equilibria given in the last column, the reader should go to Fig. 5.

Permanent equilibria

Region M Equilibria Energy

ID (0,+∞) E1 = (±M,0,0,0,0,M) H1

ID (0,+∞) E2 = (0,±M,0,0,0,M) H2

ID (0,+∞) E3 = (0,0,±M,0,0,M) H3

ID (0,+∞) E4 = (±M,0,0,0,0,−M) H4

ID (0,+∞) E5 = (0,±M,0,0,0,−M) H5

ID (0,+∞) E6 = (0,0,±M,0,0,−M) H6

Transitory equilibria

Region M Isolated equilibria Energy

ID (0,MG
C ) E7 = (±M,0,0,±Geq

1 ,0,Geq
3 ) H7

ID (0,MG
C ) E8 = (0,±M,0,±Geq

1 ,0,Geq
3 ) H8

ID (0,MG
C ) E9 = (0,0,±M,±Geq

1 ,0,Geq
3 ) H9

Punctual equilibria

Region M Circles of equilibria Energy

ID M = MM
C E10 = (±M1,±M2,0,0,0,MM

C ) H10

ID M = MM
C E11 = (±M1,±M2,0,0,0,−MM

C ) H11

T ∗2 M = MM
C < MG

C E12 = (±M1,±M2,0,±Geq
1 ,0,Geq

3 ) H12

from where it is immediately followed that

Geq
1 =±

√
M2− (Geq

3 )2 =±M

√
1− 4M2

9n2(2C−B−A)2 (36)

giving the equilibrium point (±Geq
1 ,0,Geq

3 ), i.e., two points moving along the meridian G1G3.

However, note that the existence of these equilibria is restricted to be within the interval (0,MG
C ),

being

MG
C =

3n
2
(2C−B−A) (37)

the maximum value that M can reach for which these two points collaps at the south pole where
Geq

3 =−MG
C , which is precisely the value giving the pitchfork bifurcation.

11



This bifurcation may be better explained by observing the evolution of the intersection between
the energy parabolic cylinder (HG) and the rotational angular momentum sphere (S2

M). Indeed,
reordering Eq. 28, we may express the parabolic cylinder as

G3 =
3n

4M2 (2C−B−A)G2
1−H ∗

G , H ∗
G =

1
n

[
HG−

n2

8
(2C−B−A)

]
(38)

whose intersections with the sphere generate generic flows given in Fig. 2. More precisely, fixing
a value of the radius of the M-sphere we may reduce the analysis of the dynamics to the plane
G2 = 0 as illustrated in Fig. 3. Note that for M ≈ 0 we have two stable equilibria near the equator
of the sphere (at the maximum circle G1G3), which move towards the south pole as M increases,
collapsing exactly when M = MG

C .

Figure 3. The reduced space G and its pitchfork bifurcation as a function of M ≤MG
C . The center

figure illustrates the associated energy-momentum mapping with the energy of the equilibria in this
sphere.

∙ Punctual equilibria. The last group of equilibria (E10−E12 in Tab. 1) has been called punctual
because they can only exist when

M = MM
C =

n
2

√
3AB, (39)

where MM
C is the special value for which α3 = 0 in Eq. 31, giving a circumference of equilibria at

the equator of M-sphere when M3 = 0. Note that α1 ∕= 0 and α2 ∕= 0 respectively in Eq. 32 and 33.

The sextuples of equilibria are given by the combination of any point at the equator of M-sphere
with either the poles of the G-sphere or the aforementioned couple of equilibria at the maximum
circle G1G3 whether the special value MG

C has still not been reached.

Finally, the evolution of these equilibria depends also on the value of the moments of inertia.
Indeed, in this case the role of triaxility is illustrated in Fig. 4, where two regions (T ∗1 and T ∗2 ) are
distinguished on the inertia plane ID given by

ID = {A,B,C ∈ ℝ+;A≤ B≤C, A+B >C}, (40)

12



Figure 4. Evolution of flows and relative equilibria according to the value of M. Note that, for
triaxial bodies, there are two regions and one curve where this evolution is different, namely: T ∗1
(with MM

C > MG
C ), L∗2 (with MM

C = MG
C ) and T ∗2 (with MM

C < MG
C ). Expressions for MM

C and MG
C are

given in Eq. 37 and 39.

which are delimited by the special curve L∗2 where MM
C = MG

C . By equating these two critical values
given in Eq. 37 and 39, we find the expression for L∗2 in ID to be

B
C

= 2− 5
6

A
C
− 1

6

√
A
C

(
24−11

A
C

)
(41)

from where we also have

M∗(L∗2) =C
n
2

√√√⎷3
A
C

(
2− 5

6
A
C
− 1

6

√
A
C

(
24−11

A
C

))
(42)

13



The evolution of the whole set of equilibria may be explained from L∗2 in Fig. 4. We may observe
the surfaces MM

C and MG
C over the inertia plane ID, where three vertical lines (one for each region)

have been traced out representing the third dimension M of the graph. The intersection of these
two surfaces (curve L∗2) generates four spatial regions plus the four boundaries among such regions
whose 2D projection is given in the top-left corner of the picture. In this projection the curve L∗2
has been reduced to a point from which, by moving to any of the eight directions, the change of
equilibria (bifurcations) can be observed. Note that each one of these eight regions has been labeled
with their corresponding sextuples in Tab. 1.

4.3. Stability

There exist several definitions of the stability of a stationary point. We consider here the classical
definition of stability in the Lyapunov’s sense (see for example [24], [25]), that is, an equilibrium
point E is stable if for every ε > 0, there is a δ > 0 such that ∥E−φ(t,X0)∥< ε for all t whenever
∥E−X0∥< δ , where φ(t,X0) is the flow through X0. The study of the linearized system also plays
a role in the stability. When all eigenvalues of the linearized system have nonpositive real parts, we
say that it is spectrally stable, and if the linearized system is stable at E in the above sense, we say
that the original system is linearly stable.

Linear instability implies the same for the original nonlinear system. The ambiguity arises when we
obtain linear and/or spectral stability. This case may be tackled by means of the Energy-Casimir
method, see [17]. In our study, we combine both approaches as well as we take advantage from the
fact that the flow may be projected and visualized in the M and G spaces. Figure 5 summarizes the
parametric dependency study of the stability in the plane M,G. For details, see [11].

Figure 5. Energy-Momentum map for region T ∗1 : Each polygonal line represents, qualitatively, the
energy of an equilibria. Tick-marks in the M-axis are placed for each intersection of the energy
curves. The regions in M where the equilibria are stable correspond with continuous lines, the
dashed line is used for unstable equilibria. Note that the scale has been modified.
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5. Intermediary Hν

The Hamiltonian of the intermediary Hν is studied in [8], where it is shown that , in the rotating
frame, it may be put into the following form by taking into account Eq. (15) and Eq. (16),

Hν ≡H ν
0 =

1
2

(
sin2

ν

A
+

cos2 ν

B

)
(M2−N2)+

N2

2C
−nΦ (43)

+n2
∆

[(
2
3
− sin2 I

)(
2
3
− sin2 J

)
+ f3

(
2
3
− sin2 I

)
sin2 J cos2ν

]
where we have used the notations introduced by Kinoshita and Andoyer

1
D

=
1
C
− 1

2

(
1
A
+

1
B

)
, χ =

C(B−A)
C(A+B)−2AB

(44)

together with

f3 =
B−A

2C−B−A
> 0, ∆ =− 9

16
(2C−B−A)< 0, (45)

5.1. The reduced space. From Hamiltonian to Poisson dynamics

Proceeding in the same way that in the case of the intermediary H{ν ,φ}, we apply the non-symplectic
transformation from Andoyer to the MG-space, which leads us to the Hamiltonian

H ν
0 =

1
2

(
M2

1
A∗

+
M2

2
B∗

+
M2

3
C∗

)
−nG3−

n2

8
(A+B+C)

(
1−3

G2
3

M2

)
. (46)

where

1
A∗

=
1
A
+n2 3A

4M2

(
1−

3G2
3

M2

)
,

1
B∗

=
1
B
+n2 3B

4M2

(
1−

3G2
3

M2

)
,

1
C∗

=
1
C
+n2 3C

4M2

(
1−

3G2
3

M2

)
(47)

On the other side, the system of differential equations associated to Eq. (46) is given by

Ṁ1 = a1M2M3, Ġ1 =−∆(Mi)G2, (48)

Ṁ2 = a2M1M3, Ġ2 = ∆(Mi)G1, (49)

Ṁ3 = a3M1M2, Ġ3 = 0. (50)

where

a1 =−
C−B

4BCM4 [4M4−3BCn2(M2−3G2
3)], (51)

a2 =
C−A

4ACM4 [4M4−3ACn2(M2−3G2
3)], (52)

a3 =−
B−A

4ABM4 [4M4−3ABn2(M2−3G2
3)], (53)
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and
∆(Mi) =

n
4M4{4M4 +3G3n[3(AM2

1 +BM2
2 +CM2

3)−M2(A+B+C)]}. (54)

Note that the previous equations define two coupled subsystems. The system Ṁi is an Euler-type
system, meanwhile Ġi defines a non-autonomous Hamiltonian given by

H (Gi) =
1
2

∆(Mi)(G2
1 +G2

2) (55)

5.2. Relative equilibria and bifurcations

The study of the relative equilibria of this system is influenced by the moments of inertia, which are
located in different regions of the parameter plane as in the previous model. More precisely among
the valid terns in the domain ID (see Fig. 6) we distinguish the oblate symmetric bodies given by
L1 = {(A,B,C) ∈D : A/C = B/C}, the prolate symmetric bodies L3 = {(A,B,C) ∈D : A = B}, and
the flat bodies L4. Finally we consider the generic triaxial cases T1 = {(A,B,C) ∈ D : 2B < A+C},
T2 = {(A,B,C) ∈ D : 2B > A+C} and the special one L2 = {(A,B,C) ∈ D : 2B = A+C}.

1
3

1
2

1
A�C

2
3

1
2

1

B�C

Oblat
e

Prolate

Flat

L1L2

L3

L4

T1

T2

L1: B=A

L2: B=HA+CL�2

L3: B=C

L4: B=C-A

T1: B<HA+CL�2

T2: B>HA+CL�2

Figure 6. Triaxiality domains. The red line L2 separating the regions T1 and T2 requieres a particular
analysis since some expressions are not defined for this values.

A large number of the equilibria and their bifurcations hinges on the domain of the moments of
inertia. In Fig. 7 we present the configurations of the bifurcations lines of the equilibria depending
on the particular region of the triaxiality domain in which the moments of inertia lie.

The whole scenario of equilibria is summarized in Tab. 2, where we have classified those equilibria
in two groups depending on the range of values of M and the triaxiality domain region where the
moments of inertia belong.

∙ Permanent equilibria. Their existence is straightforward to verify by simply substitution in the
differential system (48)-(50), (see equilibria E1-E6 in Tab. 2). Those equilibria do not depend on the
triaxiality domain nor in the value of M, thus we have called them permanent.
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Figure 7. Different momentum-momentum planes over the triaxility domain. The different curves
are related to bifurcations of the previous equilibria.

∙Other equilibria. They correspond to equilibria that exists on particular range of M and triaxiality
regions, see equilibria E7-E20 in Tab. 2. The equilibria E7-E9 correspond with the principal direction
in the M-space and a particular value of G3 that make ∆(M) vanishes. From E10-E20 we obtain
equilibria that are located in the coordinate planes of the M-space but do not correspond with the
usual equilibria of the rigid body in the coordinate axes.

Next we study in detail the equilibria and their bifurcations for the case that the triaxiality belongs
to T2. Curves where we find relative equilibria of the system Eqs. (48)-(50) in the space G3−M are
shown in Fig. 8. Firstly on the lines G3 =±M we have the E1-E6 relative equilibria. We also have
the curves G′3 (blue), G′′3 (orange) and G′′′3 (green) standing for circumferences on the G3-sphere
whose combination with the directions of the coordinates axes of the M-sphere give the E7-E9
relative equilibria. Finally the curves a1 = 0 (purple), a2 = 0 (cyan) and a3 = 0 (brown) host the
E10-E20 equilibria.

In short, the analysis of this intermediary in a rotating frame shows the existence of several relative
equilibria for small values of the rotational angular momentum. They depend on the moments
of inertia within different regions of the parameter plane (Figure 6). Note that these equilibria
highlights some remarkable differences between this intermediary and the Euler-Poinsot motion.
Moreover, the addition of a perturbing potential makes it possible to find conditions where µ̇ = 0,
which is not possible when dealing with the free rigid body motion. This potential has a further
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Table 2. The below initial conditions correspond to equilibria for a general body. This table is split
in two parts, the first one does not assume any condition on the value of the integrals and the second
one hinges on a set of special values of them. Expressions corresponding to labels are given in [11].

Permanent equilibria

Region M Equilibria

ID (0,+∞) E1 = (±M,0,0,0,0,M)

ID (0,+∞) E2 = (0,±M,0,0,0,M)

ID (0,+∞) E3 = (0,0,±M,0,0,M)

ID (0,+∞) E4 = (±M,0,0,0,0,−M)

ID (0,+∞) E5 = (0,±M,0,0,0,−M)

ID (0,+∞) E6 = (0,0,±M,0,0,−M)

Other equilibria

Region M Equilibria

ID (0,M ′) E7 = (±M,0,0,G1,G2,G′3)

ID (0,M ′′) E8 = (0,±M,0,G1,G2,G′′3)

ID (0,M ′′′) E9 = (0,0,±M,G1,G2,G′′′3 )

T1 (0,M (2)
1 ) E10 = (0,±M(1)

2 ,±M(1)
3 ,G1,G2,G

(1)
3 )

T1 (0,M (1)
1 ) E11 = (0,±M(1)

2 ,±M(1)
3 ,G1,G2,−G(1)

3 )

T2 (M
(1)
1 ,M

(2)
1 ) E12 = (0,±M(1)

2 ,±M(1)
3 ,G1,G2,G

(1)
3 )

ID (0,M (2)
2 ) E13 = (±M(2)

1 ,0,±M(2)
3 ,G1,G2,G

(2)
3 )

ID (0,M (1)
2 ) E14 = (±M(2)

1 ,0,±M(2)
2 ,G1,G2,−G(2)

3 )

T1 (0,M (1)
3 ) E15 = (±M(3)

1 ,±M(3)
2 ,0,G1,G2,G

(3)
3 )

T2 (0,M (2)
3 ) E16 = (±M(3)

1 ,±M(3)
2 ,0,G1,G2,−G(3)

3 )

T1 (M
(1)
3 ,M

(2)
3 ) E17 = (±M(3)

1 ,±M(3)
2 ,0,G1,G2,−G(3)

3 )

L2 (0,M (2)
1 ) E18 = (±M,0,0,G1,G2,G

(1)
3 )

L2 (0,M (2)
3 ) E19 = (±M(3)

1 ,±M(3)
2 ,0,G1,G2,G

(3)
3 )

L2 (0,M (2)
3 ) E20 = (±M(3)

1 ,±M(3)
2 ,0,G1,G2,−G(3)

3 )

effect related to the stability of relative equilibria over the M−sphere. Indeed, there is a change of
position of the unstable equilibria associated with the torque-free motion; expressions show the
dependency on the values of the momenta M and G3 and the moments of inertia. A comprehensive
study giving the whole set of formulas will be published elsewhere[11].

5.3. Stability

For the study of the stability we follow the same approach than in the previous intermediary. In this
case, the set of equilibria dubbed as other equilibria are easily classified as unstable, since the flow
in the G-space is made of circles at G3 constant. Therefore, it make sense to perform the second
reduction and study the stability in the M-space. As we have a rigid body flow type in the M-space,
the stability of the equilibria corresponds with two stable equilibria and one unstable. Nevertheless,
as we move by the different regions in the G3-M plane at a fixed G3, the stability of the equilibria
interchanges between each other (see Fig. 9).
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Figure 8. The MG3-plane showing the curves where relative equilibria and bifurcations are found
for the T2 region.

Figure 9. Different dynamics over the MG3-plane. Note the changes of the position of the unstable
equilibria in the M-sphere as we move in the MG3-plane through the lines G2

3, G3
3 and G4

3.
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6. Comparisons

In this paper we have studied two 1-DOF integrable systems. They represent approximations of
the full gravity-gradient system, which is a 3-DOF with several parameters. As the reader is aware
of, comparison among these systems is a task which is out of the scope of the present work. The
content of this paper, nonetheless, has set up a frame in order to do those comparisons. Having
stated that, we finish the paper showing some preliminary simulations. Figure 10 shows the absolute
value of the maximum difference, for each variable, between the full gravity-gradient problem and
the two intermediary models for three different bodies up to one revolution in the orbit. These
simulations have been carried out for different inclinations of the rotational angular momentum
plane with respect to reference frame. The results show that, for near-axial bodies (Fig. 10(a)),
both intermediaries behave similarly. When a bit more triaxial body is considered (Fig. 10(b)),
the intermediary Hν behaves clearly better than H{ν ,φ} for the angles ν and µ , giving similar
performances for the rest of the variables. Same functionality is observed in Fig. 10(c) as in Fig.
10(b). Nevertheless, it is important to note again that, as these are preliminary simulations, these
conclusions are still an open issue.
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Figure 10. Absolute value of the maximum difference, for each variable, between the full gravity-
gradient problem and the two intermediary models: H{ν ,φ} (blue curve), Hν (green curve) for three
different bodies up to one revolution in the orbit. (a) {A,B,C}= {0.28,0.31,0.39}(kg ⋅km2). (b)
{A,B,C}= {0.2,0.31,0.39}(kg ⋅km2). (c) {A,B,C}= {0.1,0.31,0.39}(kg ⋅km2).
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