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Abstract: This work is related to the dynamics of rotational motion of artificial satellites, that is, 

its orientation (attitude) with respect to an inertial reference system. The attitude determination 

process, in general, involves the knowledge of nonlinear estimation techniques and is essential to 

the safety and control of the satellite and payload. The aim of this work is to study the influence 

of real data of the CBERS-2 (China Brazil Earth Resources Satellite) satellite in the attitude 

estimation process when the estimator is the Unscented Kalman Filter (UKF) and the attitude is 

represented by quaternion incremental. The attitude sensors available are DSS (Digital Sun 

Sensor), IRES (Infrared Earth Sensor), and the gyros. For nonlinear systems, the UKF uses a 

carefully selected set of sample points to map the probability distribution more accurately than 

the linearization of the standard Extended Kalman Filter (EKF). Herein the proposal is to 

estimate the attitude and the drift of the gyros obtained by the UKF and EKF with quaternion 

incremental and compare them. The results show that, although the EKF and UKF have roughly 

the same accuracy, the UKF leads to a convergence of the state vector faster than the EKF. This 

fact was expected, since the UKF prevents the linearizations needed for EKF, when the system 

has some nonlinearity in their equations. 

 

Keywords: Unscented Kalman Filter, real data, attitude estimation, quaternion, Extended 

Kalman Filter. 

 

1. Introduction 
 

Nonlinearities in spacecraft attitude determination problem have been studied intensively during 

the past decades. To resolve this kind of problem the extended Kalman filter (EKF) algorithm 

has proven to be a successful solution for engineering application. Unfortunately, the EKF has 

two important drawbacks: the linear approximators to the nonlinear function can be complex 

causing implementation difficulties, and these linearizations can lead to filter instability if the 

timestep intervals are not sufficiently small. In recent years, advances in space missions, such as 

the greater agility, demand and the application of lower cost sensors, deserve a revisit of the 

nonlinearity issue. In the existing methods, the Sigma-Point Kalman filters (SPKF) have proven 
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to be among the most efficient ones. In this work one of the SPKF family algorithms, called 

Unscented Kalman Filter, is used.  

 

A widely used parameterization for attitude estimation is the quaternion representation. Some 

advantages of using quaternions include: linear kinematic equations with respect to angular 

velocities, absence of singularities for any axis rotation, and the algebraic attitude matrix in the 

quaternion components. However, since the quaternion parameterization involves the use of four 

components to represent the attitude motion, the quaternion components are dependents, which  

leads to a constraint that the quaternion must have a unit norm. This constraint produces a 

singularity in the Kalman filter covariance matrix. To resolve this problem, here is used an 

incremental quaternion error. This approach is most commonly used to maintain normalization 

for the estimated quaternion [5].  

 

2. Unscented Kalman Filter 

 
The basic premise behind the Unscented Kalman Filter (UKF) is that it is easier to approximate a 

Gaussian distribution than it is to approximate an arbitrary nonlinear function. Instead of 

linearizing using Jacobian matrices, the UKF uses a deterministic sampling approach to capture 

the mean and covariance estimates with a minimal set of sample points [4]. Here we present an 

algorithmic description of the UKF omitting some theoretical considerations. More details can be 

found in [2] [4].  

 

Consider the nonlinear system model given by: 
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where xk is the n x 1 state vector and yk is the m x 1 measurement vector. The function f is a 

possible nonlinear function of the state xk ∈ ℜn
 and the observation yk ∈ ℜm

 is often a nonlinear 

mapping of the current state. Both the dynamic model and the measurement model are 

inaccurate, due to modeling and/or sensor errors. This is described by the stochastic processes in 

which we assume that the process noise wk and measurement-error noise ννννk are zero-mean 

Gaussian noise process with covariance given by Qk and Rk, respectively.  

 

Given the state vector and the covariance matrix at step k-1, we compute a collection of sigma 

points, stored in the columns of the n x (2n+1) sigma point matrix χχχχk-1 where n is the dimension 

of the state vector. The columns of χχχχk-1 are computed by: 
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in which λ∈ℜ, ( )( )k 1
i

P −+ λn is the ith column of the matrix square root of (n+λ) Pk-1 and the 

scalar λ is a convenient parameter for exploiting knowledge about the higher moments of the 

given distribution. Note that we assume matrix ( )( )k 1
i

P −+ λn  as symmetric and positive 

definite which allows us to find the square root using the Cholesky decomposition. 

 

Once χχχχk-1 computed, the sigma points are propagated through the nonlinear system  

 

( ) ( )( )k k 1 , 0,...2 ,−= =χ χχ χχ χχ χ
i i

f i n                                              (3)       

 

The posterior mean, k
ˆ −x  , and covariance, kP− , are determined from the statistics of the propagated 

sigma points as follows 
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where the weights are defined by: 
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To compute the correction step, first we must transform the columns of χχχχk through the 

measurement function to kϒϒϒϒ . In this way 
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With the mean measurement vector,
k

ˆ −y  , we compute the a posteriori state estimate using 

 

( )ˆ ˆ ˆ− −= + −k k k k kKx x y y                                                             (7)                                                                     

 

where Kk is the Kalman gain. In the UKF formulation, the Kalman gain is defined by 

         
1−=k xy yyK P P                                                                       (8)                                        

  

with 
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Finally, the last calculation in the correction step is to compute the a posterior estimate of the 

error covariance given by 

 
T

k k k yy kP P P−= − K K                                                            (11)                                                                                               

 

 

3. Attitude Representation by Quaternions 
 

The quaternions are useful in inertial navigation systems on board the satellite, show no 

singularities in the kinematic equations, give a rule of algebraic products suitable for successive 

rotations, and the rotation matrix in terms of the quaternion does not depend on trigonometric 

functions. However, the quaternions have one redundant component (they are 4) with reference 

to Euler angles (they are 3) and does not have an immediate physical interpretation. 

 

The quaternion set is defined by 

 
T
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where ê  is the axis of rotation and ϑ is the angle of rotation. Since a four-dimensional vector is 

used to describe three dimensions, the quaternion components cannot be independent from each 

other. The quaternion satisfies a single constraint given by Tq q 1= . The attitude matrix is related 

to the quaternion by [8]: 
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The quaternion kinematics equation is given by:  

 

( )
1

ˆq(t) q(t)
2

= Ω� ωωωω                                                         (14) 

 



5 

with: ( )
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A major advantage of using the quaternion is that the kinematics equation is linear in the 

quaternion and is also free of singularities. In this paper, it is assumed that the gyro data are 

assembled in a fixed rate and that the angular spin velocity vector in a satellite system,ωωωω, is 

constant over the interval of sampling. Then a solution of Eq. (14) is [3], [5]: 

 

k q k-1q (t ) = Φ ( t, ) q (t )∆ ω                                                    (15) 

 

where ∆t is the sampling interval; q(tk-1) is the quaternion at time tk-1;  q(tk) is the propagated 

quaternion to time tk; e Φq is the transition matrix that computes the system from time tk-1 to tk. 

When the direction of ω (t) is constant throughout the time interval or the displacements of the 

axes is small, then Φq can be approximated by [5] 
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where I4 is a 4x4 identity matrix. 

 

If the bias term is included in the formulation of the quaternion propagation, i.e., εωω −=ˆ , 

where ε is a vector of gyro biases, then a system state composed by quaternions and gyro biases 

will have the following transition matrix [3]:  
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where ∫−= t
t q

o
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Note that the system is still linear with respect to system state composed by quaternions and 

biases. Therefore the transition matrix also assures the needed coupling between quaternions and 

biases to be taken into account in the covariance computations. 
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With such considerations, the quaternion approach makes the system dynamics to be fully linear.  

Thus in the prediction of state and covariance cycle, the conventional linear Kalman filter can be 

used so that it saves processing cost. Only the measurement equations are still non linear, and the 

Unscented transformation should be used, with the corresponding sigma-point measurement 

update cycle being implemented in the UKF. In this work, the state vector will be compose by 

four quaternions components and three gyro bias components, 

 

[ ]
T

=x q εεεε                                                                  (19) 

 

 

4. The Measurement System of the Satellite 

 
In order to measure the satellite attitude accurately, several types of sensor, including gyros, 

earth sensors and solar sensors, are used in the measurement system. The mathematical models 

of these sensors are introduced here, and will compose the measurement vector of Eq. (6), given 

by 

   
T

H H ψ θ
 = φ θ α α y                                                       (20) 

 

4.1. Mathematical Models of Gyros 

 
The advantage of a gyro is that it can provide the angular displacement and/or angular velocity of 

the satellite directly. However, gyros have an error drifting problem, meaning that their 

measurement error increases with time. In this work, the RIGs (Rate-Integration Gyros) are used 

to measure the angular velocity of the roll, pitch and yaw of the satellite. Suppose the 

measurement error of a gyro consists of a constant drift ε and white noise η. The mathematical 

model of RIGs is [2]: 
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t

i i i
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∆ = + =∫Θ ω εΘ ω εΘ ω εΘ ω ε                                          (21) 

 

where ∆ΘΘΘΘ  are the angular displacement of the satellite in a time interval ∆t. Thus, the estimated 

components of the angular velocity of the satellite are given by: 

 

ˆ ˆ ˆ= − − ηgω εω εω εω ε                                                               (22) 

  
 

where ( )t
∆=

∆
g ΘΘΘΘ  is the output vector of the gyroscope. 

 

4.2. Mathematical Models of  Infrared Earth Sensors (IRES) 
 
One way to compensate for the drifting errors present in gyros is to use the earth sensors.  These 

sensors are located on the satellite and aligned with their axes of roll and pitch. In the work, two 
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earth sensors are used, with one measuring the roll angle and the other measuring the pitch angle. 

In principle, an earth sensor cannot measure the yaw angle. 

 

The measurement equations for the earth sensors are given as [2] 

 

H

H

b

b

φ

θ

φ =φ +

θ =θ +
                                                                   (23)

                                                                
 

where φb  and θb  are the bias representing the misalignment, installation and/or assembly. 

 

 

4.3. Mathematical Models of  Digital Solar Sensors (DSS) 

 
The Solar Sensor is an optical mechanism that detects the Sun and sets the position of one of the 

main axes of symmetry of the spacecraft relative to the direction in which the Sun was detected. 

The Digital Solar Sensor of the CBERS-2 is not able to measure the yaw angle, this is, and these 

sensors do not provide direct measures.  It measures the coupled pitch angle (αθ) and yaw angle 

(αψ). The equations of measurements for DSS are obtained as follows [1,2]. 

 

 

y1

x z

S
tan

S cos (60º ) S cos (150º ) ψ

−
ψ α

− 
α = + ν 

+ 
                                  (24) 

 

when x zS cos(60º ) S cos(150º ) cos (60º )+ ≥ , and 

 

1 x

z

S
24º tan

S θ

−
θ α

 
α = − + ν 

 
                                                (25) 

 when 1 x

z

S
24º tan 60º

S

−  
− < 

 
, where 

ψαν and 
θαν  are the white noise representing the small 

remaining misalignment, installation and/or assembly errors. Just as the IRES, these errors are 

assumed Gaussian. 

 

The conditions are such that the solar vector is in the field of view of the sensor, and Sx, Sy, Sz 

are the components of the unit vector associated to the sun vector in the satellite system and 

given by [1]: 
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where S0x, S0y, S0z are the components of the sun vector in the orbital coordinate system and 
ˆ ˆ ˆ, ,φ θ ψ  are the Euler angles estimated attitude. 

 

 

5. Optimal Estimation of Satellite Attitude using a UKF and quaternion incremental 

 
In this section the UKF algorithm is derived for attitude estimation. One approach for design of 

this filter involves using the quaternion kinematics in Eq. (15) directly. However, this approach 

has a clear deficiency. Mainly, referring to Eq. (4), since the predicted quaternion mean is 

derived using as averaged sum of quaternions, no guarantees can be made that the resulting 

quaternion will have unit norm. This makes the straightforward implementation of the UKF with 

quaternions undesirable. A solution for this problem is to use the quaternion incremental and the 

reduced representation of the covariance matrix. 

 

The quaternion incremental is the quaternion which must be composed with the estimated 

quaternion in order to obtain the true quaternion. Since this quaternion incremental corresponds 

almost certainly to a small rotation, the fourth component will be close to unity and, hence, all 

the attitude information of interest is contained in the three vector components. Therefore, the 

state vector, δx, related to quaternion incremental will be composed by the six components: three 

vector components of the incremental quaternion and three gyro bias components 

 

 

5.1 Design of Unscented Attitude Filter 

 
In order to make a better explication is shown the pseudocode of FKU with quaternion 

incremental. 

 
� Parameters:  R (considered known) 

                                 Q (considered known) 
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� Prediction Step:  

 

State Vector Predicted: k 1 q k
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Reduced state vector:  [ ]
T T
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� Unscented Transformation:  
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           Quaternion updated: 
k 1 k 1 k 1
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           State Vector updated: 
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6. Results 

 
Here, the results and the analysis from the algorithms developed to estimate the attitude are 

presented. To validate and to analyze the performance of the estimators, real sensors data from 

the CBERS-2 satellite were used. The CBERS-2 satellite was launched on October 21st, 2003. 

The measurements are for April 21st, 2006, available to the ground system at a sampling rate of 

about 8.56 seconds for around 10 minutes of observation. 

 

Indeed the on-board ACS (Attitude Control System) has full access to the sensor measurements 

sampled at the rate of 4Hz for the three gyros, to axes x, y, z of satellite; 1Hz for two Infrared 

Earth Sensors to the angle φ (roll) and θ (pitch); and 0.25Hz for two Digital Solar Sensors, 

related to the angles of pitch (αθ) and yaw (αψ). However, owing to limited downlinked TM 

(telemetry), the ground system can recover telemetries for the sensors at around 9 seconds 

sampling and only during the satellite fly over the tracking station. This means that the ground 

system does not have the whole set of measurements available to the on-board ACS [6]. 

 

In total, it has been a set of 54 measurements from 13h 46min 25s until 13h 55min 27s, and 

measurements are spaced by 10s on average. For ease visualization measurements of the DSS 

and IRES sensors in Fig.1 and measurements the gyroscope in Fig.2 are graphically represented. 
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Figure 1. Representation of the real data from the sensors DSS and IRES from CBERS-2 
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Figure 2. Representation of the real data of the gyroscope from CBERS-2 
 

The algorithm implementation for the state estimation by the UKF using the quaternion 

incremental for the attitude representation was performed using MatLab® software. Due to fact 

that this study uses real data, and not simulated, it is necessary to validate the results with other 
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known. In this work the attitude estimation results obtained by the UKF are compared with the 

results obtained by LSM. According to the characteristics of the satellite and sensors, the 

parameters are listed as follows: 

 

 

Table 1. Initial conditions of the state vector components 

φ (deg) θ (deg) ψ (deg) εx (deg/h) εy (deg/h) εz (deg/h) 

0 0 0 5,76 4,64 2,68 

 

Table 2. Values of the main diagonal of the initial covariance matrix (P) 

σφ (deg) σθ (deg) σψ (deg) σεx (deg/h) σεy (deg/h) σεz (deg/h) 

0,5 0,5 2,0 1,0 1,0 1,0 

 

Table 3. Values of the main diagonal of the covariance matrix of the observation error (R) 

σDSS1 (deg) σDSS2 (deg) σIRES1 (deg) σIRES2 (deg) 

0,6 0,6 0,06 0,06 

 

Table 4. Values of the main diagonal of the covariance matrix of the dynamic noise (Q) 

σx (deg) σy (deg) σz (deg) σDgx (deg/h) σDgy (deg/h) σDgz (deg/h) 

0,1 0,1 0,1 0,01 0,01 0,005 

 

 

In Fig. 3 and 4 it is observed the behavior of attitude and the biases of gyros during the period 

analyzed. The estimated attitude using increments of quaternions with UKF, Fig. 3, are close of 

the attitude reference values (LSM). The mean estimate to roll and pitch are in the order of -0.47 

deg and -0.45 deg, respectively, for both estimators (UKF and LSQ). For yaw a random shape is 

not observed and its mean value is around -1.50 deg for UKF and -1.15 deg for LSM. In Fig. 4 it 

is observed the bias estimates behavior by the UKF. Due to shortage of measures, the analysis 

period was not sufficient for the convergence of the gyro bias. 

 

The results of the residues DSS and IRES are shown in Fig.5 and Fig.6. The residuals are 

obtained by the difference between the calculated value and the measured value after the 

updating of the filter. It is considered that accuracy of DSS is smaller than IRES. It is observed 

that the behaviors of residues of DSS sensors are within the range of accuracy set by DSS         

(0.6 deg). However, on the case of IRES is observed that a more rapid convergence to zero 

exists. 
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            Figure 4. Estimated gyros bias 

 

            Figure 3. Estimated attitude 
 

 

 

 

 

 

 

 

 

 

 



14 

 

 

 

 

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

D
S
S
 1
  (
d
eg
)

(a)

Resídue

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

D
S
S
 2
  (
d
eg
)

(b)
Time (h)  

Figure 5. Residuals of Digital Sun Sensors 
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Figure 6. Residuals of Infrared Earth 

Sensors 

 
 

7. Conclusions 
 

The main objective of this study was to estimate the attitude of the satellite like CBERS-2, using 

real data, provided by sensors that are on board the satellite, the quaternion incremental and the 

Unscented Kalman Filter.  

 

Although quaternions need 4 components with one redundancy when used in attitude estimation 

problems via UKF such parameterization makes the dynamical modeling linear. Therefore the 

overhead due to the unscented transformation to generate the sigma-points appears only in the 

measurement update cycle of the filter, where the measurement model is still nonlinear. This, in 

principle, translates to a computational saving because a numerical integration of (2n+1) sets of 

differential equations for the dynamics are avoided (n being the number of filter states), which is 

mandatory when using Euler angles. On the other hand, not only the number of states to be 

estimated increases but also the covariancel. To solve this problem proposed by [5] a reduction 

in the order of the covariance matrix and state vector is made. 

 

To verify the consistency of estimator, the attitude was compared with results obtained by a least 

square method (LSM). The usage of real data from on board attitude sensors, poses difficulties 
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like mismodelling, mismatch of sizes, misalignments, unforeseen systematic errors and post-

launch calibration errors.  

It is observed that the attitude estimated by the UKF is in close agreement with the results 

obtained by the LSM.  It can be concluded that the algorithm of the UKF converges to the least 

squares solution, providing a kinematic attitude solution besides estimating biases. 
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