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ABSTRACT

The current status of the lunar gravity field
determination is reviewed and then followed

by a discussion of the POLO (= Polar Orbiting
Lunar Observatory) gravity experiment. The

mission baseline comprises two spacecraft: the
Orbiter in a low-altitude, near-circular polar
orbit and the Relsy in a high-altitude trajectory.
The two-spacecraft concept allows Doppler tracking
on the lunar farside (via Relay) and improves the
coverage in the polar regions. Covariance

analysis shows that processing of Relay Doppler
data permits an order-of-magnitude improvement

of the precision of the polar moment of inertia
parameter. To this end, daily tracking sessions
of two hours over 27 days are required. Doppler
data accurate to 1-2 mm/s is essential.

Keywords: Lunar Gravity Field, Moment of Inertia,
Doppler Tracking, Covariance Analysis.

1. INTRODUCTION

A new era in the exploration of our closest
neighbour in space, the moon, began with the
launch of Luna 1 on January 2, 1959. To date
L6 probes have been launched, the most recent
being Luna 24 (launched 9 August 1976). An
unprecedented amount of information was
gathered from the flybys, orbiters and
landers.

One of the physical aspects of the moon is the
gravity field. Besides the importance of gravity
on the dynamics, the external gravity field,
together with topographic, librational and
seismic data, sets boundary constraints on
models of the lunar interior. Gravity and
topographic models of equivalent resolution
allow the calculation of Bouguer gravity
anomalies, a necessary prerequisite for the
study of isostatic compensation in crust and
upper mantle. The possible existence of a

lunar core can be inferred from precise gravity
data, although current evidence is inconclusive.

1.1 Methods for lunar gravity field determination

The foremost data source pertaining to the lunar
gravity field are the lunar orbiters. Gravity
field anomalies cause variations of the space-
craft velocity,which can be observed by the
Doppler frequency shift of a radio signal
transponded or emitted from the spacecraft. The
Doppler signal is proportional to the relative
velocity in the direction between spacecraft

and ground-station.

Three methods of processing Doppler data for
gravity field determination are (1) direct
dynamic modeling, (2) long-term orbit evolution,
and (3) line-of-sight accelerations.

In the classical approach (method 1), spacecraft
epoch state and gravity coefficients are
simultaneously estimated adopting a weighted
least-squares scheme. An initial estimate of
epoch state, gravity coefficients and

possibly some other parameters (solar radiation
pressure) is differentially corrected until the
sum of the weighted least squares of the Doppler
residuals becomes stationary. With this
approach, which involves numerical integration
of the spacecraft equations of motion and the
associated variational equations, spherical
harmonic coefficients through thirteenth

degree and order were determined (Ref. 1).

Method 2 is a two-step approach. Method 1 is
first applied to short data arecs to derive a
set of mean elements. In a second step the
gravity parameters are obtained from the long-
period and secular variations of the mean
elements, which is a linear estimation
problem. The advantage of method 2 is the
computational ease to handle data arcs of
long duration (several months). Examples of
this method are Refs. 2 (complete to degree
and order sixteen) and 3 (complete to degree
and order seven, zonals to degree twelve).

Method 3 is a two-step procedure to determine
local gravity features. Method 1 is first
applied to short data arcs adopting a low
degree and order gravity model. The

resulting Doppler residuals contain the high-
frequency gravity field information.
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Spline fitting and differentiation of the
residuals leads to line-of-sight (LOS)
accelerations. Contours of LOS accelerations on
lunar tcpographic charts allow the identification
of local gravity features, such as mascons (Ref.k)
or craters. A subseguent step is to fit LOS
accelerations to local mass distributions using
a least—squares scheme (Ref. 5). Application of
method 3 for quantitative geophysical modeling is
cumbersome, since LOS accelerations sre hissed
because of the least square procedure of orbit
determination. Ref. 6 reports 25-30%

amplitude compression and peak anomaly shift.

LOS acceleration is most valuable when the line-
of-sight coincides with the local vertical.

1.2 The current knowledge of the lunar
gravity field

Characteristic for the lunar gravity field are

the relatively mild broad-scale variations and the
distinet local gravity features such as mascons
and craters. This particular structure requires a
large number of terms in the spherical harmonie
expansion of the gravity potential.

A fundamental deficiency of all lunar gravity
models is related to the lack of data on the

lunar farside and the inhomogeneous data
distribution on the front side. Attempts to

reduce the deleterious effect of sparse or
lacking data with a priori covariances are
problematical since the solution is preconditioned
on constructed data.

Recent gravity models were derived from data of
the Apollo missions 8, 12, 15 and 16; the Apollo
subsatellites 15 and 16; the Lunar Orbiters 1, 2,
3, 4 and 5; and Explorer 35 (AIMP-E) and L9
(RAE-B)., The Lunar Orbiters were either in low
inclination (<30°) or nearly polar orbits.
Explorer 35 was placed in an eccentric, retrograde
orbit (a=5980 km, e=0.576, i=170 ). The Explorer
49 orbit was: a=2803 km, e=0.002 and i=62°.

Evidence of the unsatisfactory knowledge of the
lunar gravity field is the radial acceleration
error at 100 km altitude. Ref. 2 quotes formal
acceleration errors between 30 and 65 milligals
(1 milligal = 10 "em s~ 2). As expected, the
error is maximum on the lunar farside and in the
polar regions.

A term-by-term comparison of two solutions,

Ref. 2 and 7, both complete to sixteenth degree
and order, illustrates the difficulties involved
in determining the lunar gravity field from
existing data. Second- and third-degree
coefficients are reliably determined while
already the estimates for Js have a different
sign. The formal uncertainty exceeds the estimate
already for some fifth-degree coefficients.

A carefully designed mission, such as POLO, could
remove many uncertainties and misconceptions and
advance significantly our knowledge of the

lunar gravity field. The next section describes
the objectives of the POLO gravity experiment,
followed by results of a covariance analysis,
which dealt with the Relay gravity analysis.
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2. THE POLO GRAVITY EXPERIMENT

The mission baseline comprises two spacecraft:
the Orbiter in a low-altitude (100 km), near-
circular polar orbit and the Relay in a high-
altitude trajectory (Fig. 1). Doppler links
ground-station to Orbiter and Relay, and Relay
to Orbiter are assumed to exist.

ORBITER RELAY
~
\
N
EARTH

Fig. 1 POLO Mission Gecmetry

The scientific objectives of POLO are described
in Ref. 8. The primary goals of the gravity
experiment are:
(1)
(2)

(3)

identification of local gravity models
global high-resolution gravity survey

improved determination of low degree
and order harmonics

5 s i Cc 2
improved determination of /MR 2,

()

2.1 Identification of local gravity models

The objective is to determine gravity models of
local features (up to 250 km extension) to an
accuracy of 5 milligals.

The first step is to compute LOS accelerations
from the raw Doppler data. Contour lines of LOS
accelerations on lunar topographic maps allow
the detection of gravity anomalies. Bouguer
gravity anomalies will be determined from free-
air-gravity anomalies by treating topography
above the selenoid as equivalent gravity.
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In the past this technique was restricted to the
lunar frontside excluding polar regions. The link
Orbiter to Relay will permit a global application.

2.2 Global high-resolution gravity survey

The objective is to obtain a global high-
resolution map (200 km resolution, 5-10 milligal
accuracy) of the lunar gravity field using the
Doppler link éarth to Orbiter and the bent-pipe
link via Relay.

The anomalous gravity potential may be re-
presented as

n
ﬁU=¥rZ i (%) Pl:: (sinB)

{C__cos mA +S__ sin mA}
nm nm

where u denotes the lunar gravitational constant,
r the selenocentric radius, B the selenographic
longitude, A the selenographic longitude, R the
mean lunar radius, and P the associated
Legendre functions. By cBnvention the zonal

coefficients are J = -C and S = 0,
n n,o n,o

The task is to estimate the C__ and S .
nm nm

2.3 Improved determination of low degree and
order harmonics

The objective is to improve the estimates of the
low degree and order harmonics from the Doppler
link earth to Relay. The Relay orbit, if properly
chosen, will only be sensitive to the long
wavelength components of the gravity field, and
consequently, the gravity solution will not be
aliased by higher order terms.

2.l Improved determination of C/vm2

Let A, B and C denote the principal moments of
inertia. The principal axes of minimum moment A
and maximum moment C have mean directions which
deviate slightly from the mean earth and mean
rotation direction.

The polar moment of inertia parameter is linked
to Cpg or Cpp by

c 2Cap (148) Lcy,
MR2 = Y-2B-By i Y

where M = lunar mass, B = C;BA and y = %

The fractional differences in the moments B and

Y play a role in the lunar physical librationms.

They are rather accurately determined from lunar

laser ranging.

CIMﬁz is related to the internal structure of the
moon. The moment of inertia parameter of a solid
homogeneous sphere is 0.l4. Lower values indicate
a density increase towards the center. Thus
precise estimates of C/MR? allow boundary
conditions for a possible core (density and
dimension) to be established.

A recent estimate (Ref.9) is 0.391 * 0.002
based on og = 0.03 x 1078, ¢ = 0.7 x 10-6
Op,. . = 0.9 1076, U

20
Assuming a core radius of 300 km, this
uncertainty of C/MR? corresponds to a core
density variation of about 4 g/cm?, which is too
large to be geophysically significant.

and

The }imiting factor for a precise determination
of C/MRZ is the uncertainty of the gravity
coefficients. The error of C/MR? is plotted in
Figs 2 and 3 as a function of the errors of
Cags Cpp and y. In Fig. 2 Og = 0, vas assumed.

Tomm?
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The goal of POLO is an order-of-magnitude
improvement of the precision of C/MR2. This can
be achieved by either improving the estimate of
Cpg or Cpp, but then Y has to be known with an
accuracy of about 10-7 which can be expected from
lunar laser ranging. Ref. 10 quotes errors pon B
and y derived from libration models of 1.32 x 1077
and 1.00 x 1077, respectively.

The remainder of this paper 1s concerned with the
improved determination of C/MR? and low degree
and order harmonics. Covariance analyses are
performed assuming Doppler tracking of the Relay
from two ground-stations.

3. THE RELAY ORBIT

The Relay spacecraft has to fulfill two main
functions:

(1) serve as relay station for the bent-pipe
Doppler link

(2) provide suitable Doppler data for the
determination of the long-wavelength gravity
variations.

Eccentric orbits are ruled out for the following
reason: they are sensitive to a large number of
gravity harmonics around the periapsis, yet the
information content of Doppler data is in-
sufficient for their determination. The optimum
choice is a near-circular orbit with main
perturbations arising from the low degree and
order harmonics and strongly attenuated effects
of high-frequency terms. Studies carried out at
JPL and ESOC (Ref. 11, 12) concluded 5000 km to
be the appropriate altitude.

G. Janin (Ref. 13) discovered a most interesting
strategy to attain such an orbit. Both spacecraft,
Orbiter and Relay, are inserted into lunar
transfer orbit in a mated configuration.
Separation occurs after injection into a
selenocentric polar orbit with perilune and
apolune altitudes of 100 km and 10000 km,
respectively. The Orbiter reaches its circular
orbit with a further impulse at periselenium.

The perturbation of the earth decreases the
eccentricity of the Relay orbit for suitable
initial values of the argument of periselenium.
This strategy does not demand a separate pro-
pulsion capability for the Relay and may be an
optimum solution from the point of view of
system complexity. The disadvantage is a delay

of at least 150 days until the eccentricity is
reduced to appropriate values. A typical time
history of the eccentricity is displayed in

Fig. La. From ey = 0.73 the eccentricity reaches
the minimum of 0.07 after 320 days. Subsequently,
the eccentricity increases until the orbit decays
after about 1000 days. Fig. Lb illustrates the
sensitivity of the eccentricity decrease with
respect to the initial value of the argument of
periselenium. The ordinate is the eccentricity
after 235 days and the abscissa the deviation

of w from the optimum value. The long-term
variation of the semi-major axis is negligible.
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Fig. 4b Eccentricity 235d past injection vs w-wg,

This concept of the "natural circularization" of

_ the Relay orbit is feasible. The coverage of the

lunar farside is not impeded by an eccentric Relay
orbit (Ref. 14). The only negative aspect, as
compared to an immediate circularization, is the
five months waiting period, after which a
reliable determination of low degree and order
spherical harmonics Lecomes possible.

L. COVARIANCE ANALYSIS

L.1 Assumptions

4.1.1. Ground-stations. Two ground-stations are
considered, Weilheim and Carnarvon. Their
coordinates are given in Table 1.

E Longitude Latitude

(deg) (ceg.)
Carnarvon 113.72 -24.50
Weilheim 11.08 47.88

Table 1 Ground-station Coordinates

Station coordinates within a global reference
frame can be determined with 1-2 m accuracy

(Le. a Doppler campaign of the Transit system).
According to Ref. 11 station location errors of
10 m do not affect the precision of the estimate.
Therefore, errors of this type were ignored.
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L.1.2 The Dopler observable. The Doppler observable

provides the velocity of the spacecraft relative
to the ground-station. The basic measurements are
range differences over Doppler count times.
Differentiation yields averaged values of the
relative velocity. Since the variance of the
measurement noise is inverse proportional to the
count time, a trade-off between measurement
accuracy and resolution can be made.

Irrespective of one-way or two-waey Doppler, a
random error of the range-rate measurements of
0.3-10 mm/s (10) is assumed.

4.1.3 Relay orbit. A "naturally circularized"
Relay orbit is assumed. Table 2 gives the orbit
parameters at insertion and at the times when the
eccentricity has decreased to 0.2 and 0.1,
respectively.

epoch 1.1.1987 1h.6. 1987 1.9.1987
time since injection (d) L] 165 2kl
semi-major axis (km) 6788.09 6788.09 6T88.09
periapsis altitude (im) 100 3691.2 L3IT1.L
spoapsis altitude (km) 10000 6k08.8 5728.6
eccentricity 0.T292 0.2 0.1
inclination (deg) 90 88.68 89.09
:::“l::l“ i i 184.95 188.88 190,22
argument of periapsis (deg) 11,0 138.18 135.02

Table 2 Helay Orbit Parameters

The lunar equator defines the fundamental plane.
The longitude of the ascending node is measured
from the ascending node of the lunar orbit on
the lunar equator (Cassini point).

L.1.4 Gravity error model. We take as a priori
statistics of the estimated gravity coefficients
Kaula's rule of thumb. It finds for the
terrestrial gravity field the standard deviation
for the normalized coefficients of degree n to
be 0, = 107%/n?, The extrapolation to other
planets is effected by assuming that the strength
of supporting material is similar to that of the
earth and that equal stresses are supported. The
condition of equal stresses implies a scaling

factor
M 5 R L
E
()" ()" -

P
where M. and are the masses, and Ry and Rp
the radii of earth and planet, respectively.
Kaula's rule gives for the expected absolute

values of the unnormalized harmonic coefficients
{GOm is the Kronecker symbol)

_ 1 f(n-m)! (2n+1)(2-6,y,) 1075
|Cnm’ Snml e \/ (o+m) | i =

The lunar value of f is 0.027. Kaula's rule
provides a pessimistic estimate for the a priori
errors of the gravity coefficients.
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For unadjusted gravity coefficients the more
realistic error statistics from Ref. 2 are
adopted. Both a priori statistics are listed in
Table 3.

Kaula's rule of thusb Ferrari (1977)
o a a a, a a,
c_ S_ C_ a_
2 4] 210 3.8 -
2 2 60 1.2 1.4
3 ] 110 2 -
3 1 bl 1.6 1.8
3 2 i 1.3 1.6
3 3 5.T -39 .95
L o 69 39 =
" 1 22 1.T LT
4 2 5.2 .98 69
b 3 1.4 A 1]
L & b9 ] 099
5 o ] T.L -
5 1 13 .68 .96
5 2 2.k 45 ]
5 3 ] 21 .20
5 L 12 JOAT .038
3 5 0.36 L0015 .022
6 ] 37 T.0 -
6 1 8.1 3.3 .28
6 2 1.3 .61 67
6 3 21 079 .076
6 L 039 025 027
] 5 .0083 0051 0053
6 6 002k 0013 001k
1 0 9 8 -
T 1 55 2.2 2.2
T 2 .15 43 ud
) 3 1 081 o8
i ) 016 L0081 0080
T 5 o027 0020 o022
7 & . 00052 .000kk 000L4
T T L0001k .00012 00012
Table 3 A Priori Errors of Unoormalized

Harmonic Coefficients (x 10%)

L.2 Covariance algorithm

This study utilizes a linear error analysis
program which simulates weighted least sguares
processing of Doppler data in batch mode.

Let z denote the vector of data residuals
(observed-computed). We assume z to be linearly
related to the solve-for parameters x and the
consider variables y by

z = Ax + By + n

3z 5
3x*B°

noise vector. x represents corrections to the
estimated parameters. The y variables remain
unadjusted, only their uncertainty is "considered'.
The dimensions are z = (mx1), A = (mxn),
B=(mxp),y = (px1) and n= (mx1).

3; and n is the data

where A

The computed covariance of the estimate £ of x is
T = A=
¢ =% [(2—x) (% -x) ]= (ATwA +c°1} 1

where W is the data weight matrix and C, the
a priori covariance.

In the case of a minimum variance estimate W is
the inverse noise covariance matrix:

w1l =E (D).
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For uncorrelated noise with standard deviation

op the weight matrix may be expressed as
1

W= ;% I

I = unit matrix.

n

The computed covariance takes only the effect of
data noise into account and ignores any systematic
error due to the consider variables y. A more
realistiz measure of the estimation error is the
consider covariance which includes the uncertainty
of the y parameters. Assuming that the errors in
the y parameters are uncorrelated with the data
noise, the consider covariance is

] T
Cc =C =+ SCyS
where Cy = covariance matrix of y
S = -CATWB = sensitivity matrix of

the error in the estimate of x
to the y parameters.

The consider covariance comprises a noise
contribution and an unadjusted parameter
contribution. In most practical situations the
consider variables are the dominating factor.

4.3 Results
The solve-for variables were selected as

- position and velocity of the Relay at
epoch;

- gravity harmonic coefficients of degree
2, 3 and 4 (without Cy; and Sp,).

The consider variables are

- gravity harmonic coefficients of degree
5 and 6.

The basic data collection period of 27 days was
split into three sub-arcs of 9 days duration.
After each sub-arc the statisties of the epoch
state and the harmonic coefficients are computed.

Unless otherwise stated the a priori Relay State
error is

50 km along each coordinate axis
10 m/s along each coordinate axis

for each sub-arc.

Both ground-stations measure the relative velocity
to the Relay at the specified sampling rate
whenever the spacecraft is visible.

4.3.1 Near-polar orbit, eccentricity < 0.1. The
low-eccentric orbit from Table 2 is investigated
first (e £ 0.1). The different cases of the
covariance analysis are summarized in Table L.
Intermediate results for C o and C2 (after each
sub-arc) are not shown, oniy the final ones.
Data collection over 27 days turned out to be
essential.

B

el

]
[ g n.ﬁ
g o tn UG OC

=t = s
g 55|52
# |28 EE Computed | Comsider Computed Consider
1 V)1 [7.2x1078 | 5.6x10°7 | 6.8x10°? [ 2.9x10°8
Ta | 111 |7.2x10°®% [2.9x1077 [6.8x10°% | 1.5x10°8
™ 1 |1 |7.2x1078 [ 1,1x107% |6.8x10% [5.6x1078
Te [1 )1 [T.2x1078 | 5.6x1077 | 6.8x107? | 2.9 x 1078
11 |tax1077 |5.6x10°7 [9.3x107% | 3.0x10°8
3 |11 |9.5x107® [5.7x10°7 | 1.0x107% |3.1x10°8
ba 10 [1 [7T.2x1077 [9.1x1077 |6.8x10°8 | 7.3x10-8
Wb lo.31 [2.2x1078 [5.6x10°7 |2.0x10°? | 2.8x10°8
5 |1 |2 [1.2x10® [5.6x1077 |6.8x107? |2.9x1078
6a |1 [1 Je.1x10°7 |5.7x10°7 | 1.8x10°® | 3.7x10°8
60 |1 [2 |2.9x1077 |6.0x10°7 [2.5x108 | k.1 x10°8
7 111 [3.4x1077 |7.9x1077 | 2.7x1078 | 4.1x10°8
8a [1 ]2 |2.9x1077 |3.4x1077 |1.5x1078 |2.2x1078
& |1 |2 [e9x107 [9.1x1076 [1.5x10° | 6.4 x10-8
Table 4 Study Cases

Explanation and comments:

Case 1. All measurements are taken whenever the
Relay is visible. Sampling rate is 1 measurement
per station every minute.

Case 1a. Only 50% of the a priori statistics of
the consider-variables is taken. A linear
response of the a posteriori statistics (consider)
is observed. The formal statistics remain
unaffected.

Case 1b. The a priori statistics of the consider-
variables are multiplied by 2. Again the
response is linear.

Case 1c. The epoch state a priori was reduced to
5 km in position and 1 m/s in velocity. No effect
on the final result.

Case 2. Only Weilheim data is processed.

Case 3. Only Carnarvon data is processed. Both
cases, #2 and #3, show similar results as the
2-station solution # 1.

Case ba. Data noise is increased to 10 mm/s.
Obviously, the formal statistics are linear to
data noise (long data-arc). The consider
statistics are degraded by a factor 2-3.

Case Ub. Data noise is reduced to 0.3 mm/s. The
consider statisties remain almost unaffected.

Case 5. Reduced sampling rate (1 meas. every 2
minutes). Same accuracy as with 1 meas. every
minute.

Case 6a. Each station collects data only for two
hours per day. The estimation error of Cyy
increases by about 30%, while C,, remains
unchanged.
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Case 6b. Same as 6a but the sampling rate is
reduced to one measurement every 2 minutes. The
consider-statisties of C,, and sz increase.

Case T. Each station collects data only for one
hour per day. The consider-statistiecs increase by
about 40% compared with case $#1 or #5.

Case 8a. The solve-for varisbles are Relay state
and harmonic coefficients from degree 2 to 5.
Consider variables are degree 6 and T coefficients.
Data is collected over 27 days-whenever the
Doppler link is established. Compared with the
previous cases smaller differences between formal
and consider statistics are found. But also the
"consider" errors themselves are decreased, which
shows that the selected Relay Doppler data still
contain some information on the fifth-degree
harmonics. The optimum splitting between solve-
for and consider variables may further reduce the
estimation errors.

Case 8b. Same as Ba but the lunar gravitational
constant was added to the consider variables. The
uncertainty of p was assumed as 0.005 km3/s2.

The C,, estimation error increases by a factor
20-30 compared to # 8a. C,, is less affected, the
uncertainty is larger by a factor 3. The
deleterious effect of 6y on the C estimation
error has a straightforward explanation. C

causes a secular perturbation of the mean motion.
Thus 6y and C,, affect the spacecraft position
along its orbit qualitatively in the same way and
discrimination between the two causes becomes
extremely difficult. If the uncertainty of
cannot be further reduced then the use of C,_ to
calculate moment of inertia parameters becoOmes
questionable. The adopted value for 6y may be too
large. Ref. 10, which combined Doppler-data from
Lunar Orbiter 4 and lunar laser ranging data,
claims a precision of 0.0029 km3/s2.

All effort should be made to improve the estimate
of W, One possibility is to process Doppler data
from the earth—moon transfer phase. A precise
estimate depends however strongly on
uninterrupted data arecs (no thruster activation).

The uncertainty of C/MR? using C2 is 0.k x 1073
(#8a) and 1.2 x1073(# 8b). %

As an example of the achievable accuracy with
which the low degree gravity coefficients can be
determined, the results of study case # 8a
(Table L) are displayed in Table 5. We recall
that in # 8a gravity coefficients from degree 2
to 5 are estimated.

n m uCnm 0Snm
computed |[consider |computed consider

2 0 .29 .34 - =

iy i .15 .022, .037 .061

3 0| 156 2.1 - -

< .33 .43 .35 .3

3 2 .18 .19 .16 .19

3 3 .038 .048 .031 .038

L o | k.2 6.1 - =

| .20 b1 .26 .30

L 2 .09k Ak .21 .36

L 3 .017 .032 .07 .030

L L .0016 . 008k .0016 .0090

5 0 |20 26 = -

5 1 3.6 L. h.2 5.3

5 2 .76 .81 .70 .78

e K .1h 72 J12 .16

5 4 .0080 .0099 .0081 .010

5 5 .0018 .002k4 L0017 .0024

Table 5 A Posteriori Errors of Unnormalized
Harmonic Coefficients (x 108)

An immediate conclusion from Table 5 is that the
Relay orbit is well suited for the determination
of the second, third and fourth degree harmonics.
The improvement of the fifth degree coefficients
is less pronounced.

One should however bear in mind that these results
were obtained by processing data over 27 days.

A better recovery of the potential coefficients
mey be achieved with the analysis of the long-
term orbit evolution (several months).

4.3.2 Near-polar orbit, eccentricity < 0.2. The
orbit analyzed in the previous section was
obtained 2LL days after epoch.

165 days after epoch the eccentriecity reaches 0.2.
Collecting Doppler data already from day # 166
onwards yields the following results (Weilheim
and Carnarvon, sampling pericd 2 minutes,
tracking period 27 days):

o g

CZU C22
Computed 1.0 x 1077 2. 7% 1678
Consider k.9 x 1077 9.0 x 1078

Thus the estimation error (consider) of C,, is
smaller, that of C,, significantly larger
compared with case ﬁ 5 of Table L.
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4.3.3 80° Inclination, eccentricity £ 0.1. For a
polar orbit the regression of the node due to

oblateness vanishes. Only the secular
perturbations of the argument of perigee and of
the mean longitude are exploited to determine
C..=

20

An obvious question is whether a non-polar orbit
would lead to a better determination of Czo.

The following orbit is therefore considered:

epoch 1.1.1987 [8.9.1987, 23 h
time since injection

(a) 0 251
semi-major axis (km)| 6788.09 6788.09
periapsis altitude

(km) 100 4371.3
apoapsis altitude

(km) 10000 5728.9
eccentricity 0.7292 0.1
inclination (deg) 80 82.68
longitude of

ascending node (deg) 18L.95 180.9
argument of

periapsis (deg) 141.0 150.0

Table 6 Relay Orbit Parameters (I ~ B800)

Processing Doppler data from Weilheim and
Carnarvon during 27 days (sampling period =
2 minutes) leads to the following estimation
errors:

a g

Ca0 a2
Computed i L e 7.3 x 1079
Consider 1.2 x 1076 2.8 x 1078

Thus Cpy is less accurately determined
(compared to I ~ 900) while C,n is slightly
better estimated.

In this case Doppler data were only collected
after the eccentricity had dropped below 0.1.

5. CONCLUSION

1. Doppler tracking of the Relay from two well-
separated stations (in longitude) over 27
days leads to an improved determination of
the long wavelength variations of the lunar
gravity field and of the moment of inertia
parameter. A precision of at least L x 107%
in C/MR2 should be possible. Critical
orbit parameters are the semi-major axis
(v7000 km) and the eccentricity (<0.1).

2. The measurement noise was assumed as 1 mm/s.
Slightly higher values might also be
acceptable. Station location errors were
ignored.

FLURY

3.

The accuracy of the estimated gravity
coefficients depends critically on the
statisties of the consider wvariables, i.e.
the higher degree harmonic coefficients and
the lunar gravitational constant.

After collection of sufficient tracking data
(10-20 days) the estimation error is almost
proportional to the statisties cf the
consider-variables and slightly sensitive to
higher data rates.

Of extreme importance, however, is the total
time span during which tracking occurs. Daily
tracking periods of 2 hours for each station
over 27 days are sufficient for an improved
gravity determination.

. Perturbations of the Relay orbit by thruster

operations should be avoided. Manoceuvre-free
periods of about 9 days are acceptable.

In most of the study cases the gravity
coefficients of degree 2-4 were estimated,
while degree 5 and 6 coefficients were
considered.

By estimating also fifth degree coefficients,
the estimation errors of C,, and C,, were
significantly reduced, which indicates that
the selected orbit is still sensitive to
higher degree harmonics.

The selection of the optimum set of solve-for
varisbles is a task still to be carried out.

The results cited above were obtained with a
near-polar and near-circular orbit (eo 0 1) .
Data collection began 2Ll days after insertion
into the lunar capture orbit. Processing data
from day #165 onwards (e, * 0.2) leads to &
significantly larger estimation error of Cope

. The ineclination of the Relay orbit is not a

critical parameter. Inclinations of 800 and
900 1ead to similar results.

Critical is the lunar gravitational parameter.
If the uncertainty of 0.005 km3/sz cannot be
further reduced then estimates of Cpp will

be strongly corrupted. The estimate of C,,

is less affected and can still be used for the
determination of the moment of inertia
parameter.

An improved estimate of u may be obtained from
the analysis of Doppler data from the earth-
moon transfer phase.
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