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AN INVESTIGATION OF THE ANOMALOUS ATTTITUDE MOTION OF THE
ISEE-D SPACECRAFT

Richard W. Longman

Columbia University
New York, N.Y. U.S.A.

ABSTRACT

The ISEE-B spacecraft is a spin stablized sate-
1lite (19.8 rpm) with two radial 14.5 meter tape
or ribbon booms having small tipmasses. The limited
sensor data concerning satellites attitude motion
exhibits an unexpected persistent fluctuation of
the spin rate with a 13.2 sec period (nearly 4.37
spin periocds). Attempts were made to eliminate
this spin ripple using a sequence of attitude
manoeuvres designed for this purpose, ard the
ripple amplitude decreased to one third, only

to return to its original value within roughly
10 days. The available data as well as the para-
meters of the spacecraft are given. Spin rate
data for the spacecraft although somewhat incon-
clusive does not appear to have a persistent
decay, so that one is led to seek an external
source of energy to drive the ripple oscillations.
The envirormental forces affecting the satellite
are reviewed, arnd solar radiation pressure ident-
ified as the most likely cause. The equations of
motion for the ISEE-B satellite, subject to this
pressure, are derived. Due to the very small
amount of damping in the system and the nonlinear
nature of the excitation, difficulties are en-
countered is isolating any steady oscillations or
limit cycles, either analytically or numerically,
in order to predict the spin ripple. Although
the numerical results are not conclusive they
suggest that solar radiation pressure alone is
not sufficient to explain the spin ripple
phenomenon.

Keywords: Attitude Dynamics, Solar Radiation
Pressure, Flexible Spacecraft, Spin Stabilization.

1. INTRODUCTION

One of the most fascinating aspects of the history
of man-made satellites is the history of unexpect-
ed or anomalous attitude behaviour. The first
such satellite was also the first U.S. satellite
Explorer I, which was thoughtto be spin stabil-
ized about the axis of leastmoment of inertia,
and yet its coning angle grew to 60° within a few
hours of launch. Other spin stabilized satellites
have unexpectedly spun up or despun (for example,
Explorer XII and XX, Alouette I, Timation, ISIS I,
etc., see ReB. 1 - 4). Spin rate fluctuations are
also observed that are due to spacecraft temper-
ature changes and associated thermal expansion
resulting from earth reflected sunlight (Ref. 5).
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Gravity gradient satellites employing STEM booms
have unexpectedly tumbled after coming out of the
earth's shadow (Ref. 6), and certain dual spin
satellites have exhibited a host of unexpected
phenomena such as limit cycles, trap states, ard
phase locks (Ref. 7). Satellites with active
attitude control systems have used all their att-
itude control fuel within a short period due to
failure to model spacecraft flexibility. Refer-
ence B presents a nice history of some of these
phenomena.

The subject of the present paper is the anomalous
spin behaviour of the ISEE-B spacecraft, a nearly
symmetric satellite with two radial 14.5m tape tooms
Rather than showing a secular spin up or dowm 2s in
some of the above satellites, this spacecraft ex-
hibits a persistent small oscillation of the spin
rate. When an attitude manoeuvre was devised and
used to decrease this spin ripple, it unexpectedly
returned to its original amplitude within a matter
of days. Luckily the amplitude is sufficiently
small that the spin ripple does not interfere with
the mission objectives, although it does adversely
affect the attitude reconstruction.

2. THE ISEE-B SPACECRAFT

The ISEE-B spacecraft is part of an international
program between NASA and ESA using three spacecraft,
a mother/daughter pair (ISEE-A/ISEE-B) lauriched by
the same rocket on 22 October 1977 into nearly
identical highly eccentric earth obits, and an
interplanetary spacecraft (ISEE-C) launched a few
months later into an orbit about the unstable sun/
earth-moon libration point between the sun and the
earth. The separation between the ISEE-A ard
ISEE-B satellites is controlled by orbital manoce-
uvres of the lighter ISEE-B. Mission attitude
requirements dictate that the ISEE-B spin axis be
kept perpendicular to the ecliptic plareand that
the spin rate be controlled to within narrow lim-
its. Table 1 lists the nominal orbit and attitude
parameters.

The geometrical structure of the spacecraft is
illustrated in Figure 1. The central hub is a
cylinder with solar cells mounted on the circum-
ference except for a skirt at the bottom where
scientific instruments are placed ard three hard
booms containing scientific equipment are hinged.
Symmetrically connected to the spacecraft are two
14.5 m long tapes serving as an experiment RF
antenna. Table 2 lists the basic data related to
the geometrical, thermal, and mass properties of
the satellite.
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With this configuration it is clear that the in-
orbit manceuvres induce oscillatiens of the wires
in the centrifugal force field. All information on
attitude motion ard wire oscillation must be de-
duced from the data of a combined sun-earth albedo
sengor. O'I'his sensor consists of two slits with
120" x 1° fields of view. One of the slits is
mounted in a satellite meridian plane. The other,
inclined at an angle of 30° intersects the meridian
slit at the satellite equator. During each spin
revolution both slits detect the sun, ard the ass-
ociated transit times, obtained from a U096Hz
clock, are loaded into a 16 bit register. The
clock recycles every 65536 counts (16 sec). When
the telemetry down link is gerating in the highest
bit rate (8192 bps), successive transit times of
the sun in both the meridian and oblique slits
are available. The difference between successive
sun crossings in one of the slits can be used as
the spin period, and the solar elevation with res-
pect to the spacecraft equator can be derived from
the difference in transit times in the meridian
and inclined slits.

3. THE SPIN RIPPLE PHENOMENON

Table 3 gives typical raw sensor data from which
the attitude behaviour is deduced. The data
show that the sun elevation stays constant at -53
counts (2.7° below the equator) with an isolated
count of -52. This constant elevation excludes
the possibility °£ any nutation of the spin axis
greater than 0.05 , which is indicative of the
presence on board of a well tuned nutation damper
The data also show that the spin period varies
between 12414 counts (3.031 sec) and 12434 counts
(3.036 sec), and this is the spin ripple.

Studying more closely the spin period data reveals
that they can be fitted well by a sine wave having
a period of about 4.37 times the average spin per-
icd. For a nominal spin pericd of 3.03 sec, the
spin ripple period is estimated to be 13.24 sec
(Ref 10,11).

This oseillation in the spin of the hub nust be
accompanied by oscillation of the '[lexible tapes.
If the flexibility is modelled by assuming the
tapes to be rigid but hinged at the base, then
there are five spacecraft vibration modes as shown
in Figure 2 (Ref.12). The equatorial anti-symmet-
ric mode involves rotation of each tape in the
same direction, amd a corresponding rotation of
the hub in the opposite direction (indicated by
the bold arrow). It is this mode which is excited
during spin ripple. The equatorial symmetric mode
involves only translational motion of the hub and
hence carmnot be observed from the on board sensors.
Similarly, the meridian symmetric mode involves
hub translation along the spin axis without rot-
ation of the hub and hence it too is unobservable.
Both the meridian anti-symmetric mode and the
rutation mode involve coning motion of the hub,
the former is of higher frequency and in the
latter the tapes remain approximately perpendicular
to the coning axis. The constant elevation angle
observed in the data indicates that the amplitudes
of these two modes is negligible.

Reference 13 describes the strategy followed by
ESOC to reduce the amplitude of the spin ripple,
taking into account the numerous practical con-
straints imposed by the on board control system
as well as the ground operations. The main con-
straints are :

i) The on board system quantizes the start/
stop times of a spin rate change torque
t0 0.5 sec correspording to a spin ripple
phase shift of 13-14 deg.

ii) Consecutive spin up/spin down torque pulses
must be separated by at least 20-30 sec
(about two spin ripple pericds).

iii) The spin period must be kept within tight
limits (3.03 + 0.015 sec).

The main features of the procedure applied for
each spin ripple damping exercise are as follows:

i) The telemetry down link is switched to the
high bit rate and attitude data are collected.
ii) the spin ripple amplitude, phase and frequ-
ency are estimated by a least squares fit
of the sun transit times in the meridian
slit.

iii) A dynamic simulation predicts the spin ripple
for a sufficient mumber of cycles into the
future to generate a sequence of spin up/
spin down control torques optimized to fit
the pulses near the extreme value of the
spin ripple oscillation.

iv) The telecommards are generated and uplinked
to the satellite.

Figure 3 illustrates the outcome for the first
spin ripple damping manceuvre which reduced the
spin ripple amplitude to approximately one third
its original value. Two such manoeuvres were
performed in October 1979 and April 1980. On
both occasions it was observed that within a week
to 10 days the spin ripple amplitude returned to
its original value, as is illustrated in Figure 4.
In normal operation, the attitude data obtained is
insufficient to study the spin ripple phencmenon.
During two additional periods, October 1979 and
February 1981, the telemetry down link was switch-
ed to the high bit rate for various periods, and
the results are shown in Figure 5. In the top
part of the figure the high bit rate was used for
five minutes every four hours during one orbit,
ard in the lower part of the figure the data were
taken for five mirute intervals at a seqguence of
times clustered at the beginning and ending
roughly once every orbit.

It is clear from the data that the spin rate
oscillation of + 10 clock units (1 clock unit =
0.24 msee.) amplitude remained essentially con-
stant over the pericd of the test and was nearly
equal to the value obtained some 10 days after the
erd of the spin ripple damping manceuvres, in spite
of the satellite manceuvre occuring in between,
orbital evolution, variation in instantaneous
distance from the earth, etec. It is the aim of
this paper to investigate the cause of the spin
ripple, and the reason for its persistent return
to its steady state value after the damping man-
oeuvre.

4, APPROACH TO THE PROBLEM
In order to try to isolate the cause of the spin

ripple the following chain of heuristic reasoning
was employed.
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The amplitude of the oscillation of the tape
boogs associated with the ripple is about
3.0, and the amplitude of the oscillationo
in the hub spin angle itself is about 0.31
(+ 10 clock units adjusted for the inherent
averaging over a spin period of the'sun
transit information). These numbers are
sufficiently small that a linear model of
the spacecraft dynamics would be well
justified.

The system contains damping as a result of
flexing (berding and longitudinal stretching
due to variations of centrifugal force
during oscillations, Ref. 12), and this damp-
ing is continually acting during spin ripple
oscillations.

The energy needed to maintain the oscillat-
ions must come from somewhere. If it is 6)
within the system, energy would continually
be transferred from spin into spin ripple.
The data are somewhat inconclusive, but do
not appear to exhibit the long term despin
trend needed for this. Hence, one is led to
postulate an external source for this energy.
The external source might be a nonlinear
function of the variables of the system,
making the differential eguations nonlinear.

Consider for the moment an equation of the
form

%+ 269 4 u&'"o(: f{k)

which can represent any of the modes of the
dynamic model. The f(t) is used to repre-
sent the inputs to the mode coming from the
energy source of interest. Of course, these
inputs will probably be a function of the
state of the system, and perhaps a nonlirear )
one, but if we know the actual periodic
ripple motion, it could be substituted into
the approximate expression to obtain f(t),
ard then the solution for®of the above
differential equation would have to be the
appropriate modal component of the ripple
motion.

Let the above equation be written in oper-
ator form L (k)= fk). The solution is

a sum of a particular solution o{p ard the
solution to the lomogeneous equation &y .
If &Y and ™ are any two solutions corres-
pording to two different initjal corditions,
then L (®®)=z §, L («x™®) = -i;a and
therefore L (oL - ®™)20. Thus the
difference between any two solutions
satisfies the homogeneous equation. Since
the differential equation is stable, this
o, approaches zerc with increasing time
so that all solutions converge to one part-
icular solution (in this case a periodic
particular solution), and & which contairs
the natural frequency of the system dis-
appears from the solutions. The spin ripple
frequency appears to be at or near one of
the mode frequencies of the system, and
hence this frequency must somehow be con-
tained in the particular solution

The f(t) obtained as a linear or nonlinear
function of the state ard time for this
oscillatory ripple motion, can be written

as the sum of sinusoids with a fundamental
frequency arnd in the case of a nonlinearity,
sums and differences of the freguencies in
the system (e.g. the product of two siru-
soids dis the sum of sirusoids with fre-
quencies that are the sum and difference
of the original frequencies). For any
(completely) damped linear system L(s)= '}(I:)
if £(t) is sinwt (or a sum of sirusoid ),
then the olp solution is of the form
Msin (wt+@) (or a sum of such terms), where
M and @ depend on w, Therefore, if the
long term solution (after the transients
&y bhave died away) contains the natural
frequency of the system, this freguency
must be present in the driving functicn
f(t), and the excitation force on the space-
craft must generate this frequency ir £(2).

From the rise time after the spin ripple
manoceuvre (Figure 4), as well as Ref. 12,
it appears that the time constart (i.e.
1/c) of the system is somewhere ir. the
neighbourhood of six days. If the irput
f(t) is an osecillation at the resorart
frequency, ¥ cos w £ with arplitude 7,
then the solution to the equation is ar
oscillation at the same frequency with
amplitude ( 4/¢)F. Converting to consis-
tent witsshows that the gain factor /2
between input and output amplitudes is on
the order of 518,400. Hence, the exterrzl
force that produces f(t) with some compcredt
at frequency Wi can be very small irdeed
ard still prgduce an oscillation of the
observed 3.0 amplitude. If the ripole
frequency is not at or very close to z
resonant frequency, the gain would be much
lower.

The external forces or sources of erergy for
an orbiting satellite include :

Solar radiation pressure
Radiative heating

Gravity gradient torques
Atmospheric drag

Magnetic field interactions

Any one of these acting alone can sigrifi-
cantly influence the attitude dynamics of a
satellite. For example, the magnetic field
interactions include torgues resulting from
induced eddy currents, V x B irduced curr-
ent, and magnetic hysteresis effects

(Ref. 3); radiative heating can produce
thermal expansions that generate nutation
(Ref. ), or change the spin rate (Ref. 5);
ard structural energy dissipation due to
gravity gradient induced deformations can
despin a spacecraft (Ref. 15). Often the
anomalous behaviour of a satellite is due
to a coupling between two or more of these
inputs. The solar motoring that caused
spin up or spin decay of many satellites is
associated with distortion due to solar
radiative heating (with a phase lag) ard
solar radiation pressure (Ref. 2). Such
distortions can also interact with atmos-
pheric drag in essentially the same manner
(Ref. 16). Obviously, there is a great
wealth of possible combinations, ard there
is always room for more interaction effects.
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Consider how these forces relate to the
ISEE-B spacecraft. Its orbit shown in
Table 1 includes a perigee altitude of 1900
km, an apogee altitude of 137,000 km, ard
an orbital periocd of 2.4 days, For such an
orbit atmospheric drag can be eliminated
from the list of possible causes. Due to
the high orbital eccentricity, gravity grad-
ient torgue and magnetic field interactions
will have a relatively strong effect only
over a short time in each orbit. With a time
constant of about 6 days a periodic increase
in the ripple at each perigee followed by
decay should be observed in the data if
either of these forces were the culprit.
Examining *Figm'es 4 ard 5 shows no such
behaviour.

This leaves only the two sun related inputs.
Nominally, the spin axis is maintained per-
perdicular to the ecliptic plane so that the
tape booms are completely shadowed for some
period of each revolution. It is unfortun-
atethat no spin ripple data is available for
the few pericds for which the sun angle was
such that only partial shadowing occurred.
This could have firmly established the corr-
elation with solar inputs.

Let us consider whether thermal distortions
alone could produce the ripple. Thermal
inputs from earth reflected energy imply a
perigee deperdence in the datd which is not
observed so that only solar radiative heat-
ing need be considered. Thermal effects
alone were responsible for the tumbling of
certain gravity gradient satellites. The
mecnanism required differential heating of
the unzippered STEM booms whose complex
geametry allows a component of bending, due
to thermal expansion, perperdicular to the
direction of the incident sunlight, and this
couples with boom structural dynamics to
produce a coning motion after sudden input
of heat energy. The very simple geometry of
the berylium—copper tapes with a thickness
of only 0.0004 m, illuminated in the plane
of rotation seems to preclude any important
thermal berding effects. This leaves only
thermal expansion. Periodic thermal expan-
sion of the spacecraft can produce some fluct-
uations of the spin rate due to change in
inertia:

The above considerations leave only solar rad-
iation pressure as the cause of the spin
ripple. The fack that the radiation pressure
impinges at a 90~ angle of incidence onto

the full surface of each light tape twice dur-
ing each spacecraft rotation makes this a
likely source of the needed energy to drive
the spin oscillations.

The observed data, for example in Figure 3,
forms a rather clean sine wave, but the

*Although there is no clear evidence of spin ripple
dependence on perigee, after the study reported
here was completed, some spin rate data were found
that correlated with perigee crossings. As a
result thermal expansion as well as other perigee-
related effects will now be investipated.
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actual tape boom motion could be quite

complex. The spin rate information is ob-

tained by taking the difference in sun

transit time as a period of rotation that

applies to the midpoint of the time interval,

then the amplitude, phase and frequency of a

sine wave are adjusted to achieve a fit. Finally,
the amplitude is adjusted for the averaging
inherent in the period information.

The amplitude of the spin ripple is + 10 clock
units, so that other frequencies beside the
fundamental one can be present in the dynamics
if their effect on the period is less than a
clock unit. Also, the sampled nature of the
data implies that oscillations at the spin fre-
quency or its multiples can never be observed,
although by studying the mature of the solar
radiation pressure it is clear that such oscill-
ations must exist. Furthermore, the tape oscill-
ations associated with all unobservable modes
will not appear in the data.

Let us consider what modes could be present in
the spinrippledynamics. Since there is no
mutation, neither the meridian anti-symmetric nor
the nutation mode can be present. The meridian
symmetric mode could be present since it is
uncbservable. This motion would necessitate
twisting of the tapes near the base, and the
solar radiation pressure impinging on a twisted
tape would have a force component inthe meridian
plane which could feed these oscillations, and
the equatorial force components would féed one
or both equatorial modes. One can imagine some
type of coning motion of boom developing as a
result of twisting, induced by initial cordition
excitation of the meridian symmetric mode, and
radiation pressure coupling. Such a mechanism

is reminiscent of the solar thermal excitation of
the STEM booms that tumbled gravity gradient
satellite (Refs. 6, 17). The small width of the
tape (0.005 m) makes this mechanism seem unlikely.
Also, the meridian symmetric mode has never
been excited by any thrust manoeuvre (although
precession manceuvres have been performed which
would excite the meridian anti-symmetric mode
that also involves tape twisting), and it is not
clear how the coupling with the equatorial
symmetric mode could get a driving term of the
13.2 sec ripple frequency. To model the dyna-
mics of this mechanism, and then determine
whether it can predict the observed data is a
formidable urdertaking and will not be considered
here.

The calculated period of the equatorial anti-
symmetric mode is 12.76 sec, while that of the
equatorial symmetric mode is 13.47 sec. The
observed spin ripple frequency is 13.2 sec. If
the spin ripple is occuring at one of the modal
frequencies, presumably it would be the eguator-
ial anti-symmetric mode which must be excited in
the ripple. Nevertheless, the observed frequency
is closer to that of the equatorial symmetric mode.
The only way that the ripple could correspord to
this mode is if the mode were for some reason
observable, for example, if there was a signifi-
cant centre of mass imbalance (there are in fact
unequal tip masses). An imbalance would also
couple the two equatorial modes making the
oscillations more observable from tne sensors.
The equatorial symmetric mode is excited every
revolution by the solar radiation pressure,
whereas the equatorial anti-symmetric has no
direct forecing term. On the other hard, if the
ripple is a limited cycle it need not be at
either modal frequency, but due to the very
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small damping, and the small excitation avail-
able from solar radiation it should still be
quite close to a resonant frequency in order
to obtain the amplitudes observed. A limit
cycle requires a nonlinear differential equa-
tion , and the solar radiation pressure invol-
ves an absolute value which is nonlinear

ard couples the two equatorial modes.

5. EQUATIONS OF MOTION FOR RADIATION PRESSURE
EXCTTATION

Based on the reasoning of the previous section,

the equations of motion for the ISEE-B spacecraft
were developed considering solar radiation pres-
sure forces only, assuming specular reflection

from the tapes, and modelling the tapes are rigid
physical pendula hinged at their base. This

latter assumption models the lgwest frequency vi.
bration mode of the tapes with reasonable accur-
acy. Only equatorial planar motions are considered.

5.1 Notation

With reference to Figure 6, define an inertial
coordinate system centered at O with axes Tty
with Lz being, parallel to the incident sunlight
(ass inertially fixed in direction). Define
axes %4 ,hy, fixed in the hub and centered

at its geometric centre, H, assumed also to be

its centre of mass. The generalised coordinates
used, 4,,92 ,93 - s are X X specifying the
inertial position of the hub cefitre Rou= X0t X, T,
@ specifying the angular orientiation of the hub,
and angles d, and d, for deflection of the
tapes. In terms of these variables, of, and <,
where

represent modal variables for the eguatorial
anti-symmetric and equatorial symmetric modes
respectively.

Introduce the following nomenclature and constants.

Mass related parameters:

™M p = mass of hub including hinge booms
M = mass of tip mass (both assumed to be of
equal mass)
£ = mass per unit length of tape booms
AL = length of tape booms
Tﬁ = PL , mass of tape boom

Mp+rmE2m,, total spacecraft
mass

Inertia related parameters:

T4 = hub and hinge boom moment of inertia

about spin axis (tapse boom mass removed)

= |R wa | radius from spin axis to base
of tape booms 3
(™ gt Y3 'm) ¥ &
(Mg +'/e ™M)

+r
Il (2MG+4rMyt 2(mesm)rd]
inertia of total satellite about spin
axis if satellite were rigid

)
My
My
My
31
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Radiation pressure related parameters:
p = solar pressure constant
= reflectivity of berylium-copper tape
booms
W = width of tape booms
?  =w(a+p)p, maximm force per unit
length on tape
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Pu = total force due to radiation pressure
on hub (includes averaged force on
» hing booms)
2; = length of shadow on boom i

Time variables:
= true time
W = nominal spin angular velocity
T =wkl ,scaled time

Frequency parameters:

Wy =W, w angular frequency of equatorial
anti-symmetric mode
Wy, = Waw _ﬁlﬁiemy of equatorial

s ric N
w g :[rH,_/(H;'IH;II n
we =My r2My/M)/ (M -2 M5 /M)]
5.2 Basic Formulation

Newtorts law for a differential mass element dm
located relative to an inertially fixed pcint
by vector Rov .i;s

dF= R, dm
where the time derivative is taken relative to
inertial coordinates, anddF is the differential
force applied to dm. Vector Rov is a functiorn
of the five generalized coordinates q::X(,%,6,4,,4d,.
The directions OR,, /0q; are associfted with
directions of motion alloded by the constrzirss
of the system. Taking the dot product of the
above equation with these five directions and
integrating over all mass in the system.MNMU.gives

B ap - WBev & dum
Qi T
n

T (38,8 }_? (1,8 jg.,,
:TL[&NE 2 S0y o -‘,q‘,-t—w-w
4wt | e
T
where ')Bw,qu_z'.agm‘ /D‘i‘

used, ard
4 L]
T"'. gm E 80"'
is the total kineticenergy of the system, ard let
PR,y

Qis | &
)
be the generalised force associated with variable

Q, . Here superscript € has been introduced
on ~olF* to indicate that only external forces
need be considered since internal forces will
cancel due to Newton's third law. Each integral
can be separated into five integrals, one each
for the hub, for each tape boom, and for each
tip mass.

has beer

dwm

oV

\o

dE" (1)

Since there will be energy dissipation due to boom
motion let the force associated with it be intro-
duced using a Rayleigh dissipation function

3

with ¢ being the appropriate damping constant.
the equations of motion are

A ad - A3

Then



216 R.W.

:n— a%
Q. cl'c 'Mh\ r‘)qd (2)

The next sections evaluate the five integrals for
T and for each Qj.

5.3 Kinetic Energy Calculation

The kinetic energy of the hub is the sum of the
kinetic energy of translation of the centre of

mass as if the hub were a point mass, and the kinet-
ic energy of rotation about the centre of mass:

T 2 -"m"‘(x -tx )+-l 9

In order to obtain the kinetic energy of a tape,
consider a differential element of length dq
with mass dm = fdq and located at distance

qQ= |R ay along boom 1 (see Figure 6).
The inertial position vector to this mass and its
inertial derivative are

Bw’xt"-*xlfz* .-E\ b 1

I.

. A - - - b L
Eov =z ’\J_ts* x‘_il-& rel\l"" q(e*'ég,)ﬂ}_

Then the kinetic energy of boom 4 is
T SL*(X ) L P A e
ar 9(-x sin© + x coA 9) + .—qe(e +a.‘)eme,_
£q(6+3,)(-Xosin (043, )+ X 04 (042, )jqu

which is easily integrated. The kinetic energy
of tip mass 4 treated as a point mass is obtained
by deleting the integral and replacing the f

of the integrand Doing the same oper-
ations for boom 2 and adding the five kinetic
energies gives the desired total kinetic energy:

T- M (if+i:)+i{]:&+ Lomrt, gom rt) et
+§‘_-(fmt+3*_ﬁn)£"'[(9'-ri.)"+ (éuis.)j
+ (M %,.m).-{ é[[éél)cosaﬁ (6+3y)cen A,{) 3
+ (ﬂu.__-»g.m\).q(é+$‘)[—i,_5m{e+at)+X'Lco4{eﬂ,ﬂ

- (843, ) [-X,Ain( B 43, )+ Xycor (€ @B}

5.4 The Differential Force Due to Solar Pressure

Assuming specular reflection, the absorptivity is
\- /A where /A is the reflectivity. Let M be
the angle between the perperdicular to the boom
surface and the incident sunlight. The area of
differential element d.q of boom# projected onto
a plane perpendicular to the incident light is
dq l.-.'.o-;ﬂu Then the differential force on
thlS element is given by

d.f‘- p(wdq ‘wm‘o‘h_ P)am 11 L *E"'MM" *lr:ca‘\ﬂfr i

The componergg of radiation pressure along the
tape (along ].- ) should have negligible influ-
ence on the dyna.rru.cs and is dropped, so that the
differential forces on boom 1 and boom 2 can be
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written as

vt A% Plces (8+32)|cos (@+3) 15 Aq

T (“)
dF%-P |cor(@+3y)|cot (B +3,) b dg

boom 2:

These forces apply to each element dq that is
not in the shadow of the spacecraft.  In nominal
satellite operation the sun direction is
perperriicular to the spin axis and each boom
becomes totally shadowed for part of each rotation
and is partially shadowed for half of each rotat-
ion. When sin @ 2 O there is shadowing on boom 1
and the distance from the base of this boom to
the end of the shadow is £3 . Boom 2 has shadow
length L% and shacimr_mg occurs when sin 8 < 0.
These lengths are given as

min (R, ’_'_E_‘E_‘__‘i"_".ﬁ‘_)) whon 4in (€)y0

4 s
0 whenn  am B <o
_ (5)
(o] "\IJ“\&\-\. Am 920

I:(Q,a,): r(a-leen®l) ) avken A 00

5 gt bt
’ \eon (@ +a)l

The differential force due to radiation pressure
on each boom applies from L% te & ;.

5.5 The Generalized Force

Each peneralized force @ can be written as the

sum of five integrals, one over each mass element of
the system. The radiation pressure on the tip
masses is negligible so that these two mteg'a_ls
can be set to zero. For the hub,®R,, /X, =1,

and R, fO¥%= T, so that

E‘o\t /bxa.}'d-ftr ?',1' g\i"E¢=
hub

s Sl

For coordinates 4, and dathe associated deriva-
tive of R,, 1S zero, and for © the associated de-
rivative gives a vector perperdicular to the d. " so
that the total contribution of the integrals over
the hub mass is to introduce a P, driving term to
the q,= X o equation from (2).

Consider differential element d,c‘ of boom 1. Its
inertial position vector is

Bov= -ou"?:ng* E‘nv
A ~ s
. &51“- X, b+ rh, + q-(r’

and therefore

o g, ;Do W L
3%, S e a, Day

’aﬂav rb'p\cv_ '})!1 r)_grl /ﬂ: E.’
“) ag O (-b_ﬁ - 9 q’h ; * q

For _boom 2 the analogous results are t,,t;,c 2
I-,, ard ~chg 4+ q Performing the dot
product of these quantltles with thed E* of (4)

ard integrating from ¥ to & , and then
adding the results for each boom together
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gives the generalized forces of equation (1) as

8 “,P?@‘.le(eraﬂ/\v'\. (B +a)t ﬂilcﬁfed.)séu(p,al)J

Qy: PO, cond(o+3qy +“i|cm"(9¢é.i.)]+?ﬂ

ng?f tm’-(gq-ag‘)(q‘:“ l'Cma,r‘lJ,:ltT,‘,_) (‘)

- €on?(0+32)( Ty, reos 2z + H LTa2 )}

Qu = YPLEFancor (0. 303

Qg =~y PA*Ong 022 (O 4 21

where “he U:: are shadow functions given by
0. (6,21) “=»gm [cor(@+aa)) (1~ 1‘.‘/!_)
The(0,2,) =Ag, Lot (8x 2 ) (- L7Y/C*)
T3, (€)42) mLcor(@+32)] 1y - 43 /R)
U3y (8,32 )% Agm [o1 (E+2,5) (4- L3 %/4%)

5.6 The Equations of Motion

(7)

One obtains five second order differential
equations for Y through by substituting
equations (3) and (6) into (2). These equations
are then linearized about a nominal spin rate w

B= wt + SO

where 34,2, ,99,X,,X; are assumed small quantities.

Since the equations do not deperd on x; and X5,

one need not assume that these urdifferentiated

variables are small. Furthermore, the lineariz.

ation is done in the sense that the essential

nonlinear nature of the switching times intro-

duced by (7) in (6) is maintained, so that the
ations are piecewise linear, except for the

L7 deperdence, between switching points in (7).

The modal variables
“¢= &,_Jt é’.' J

are introduced and the equations manipulated to
eliminate the coupling with X,,X, and §®which
is not through the Qj. The equations are then
converted to scaled time Z=wt , and a prime used
to indicate differentiation with respect to 2 .
The resulting equations are

Xy 24 Wi 06,9 ) -5, otz - $Bam2]
a7 -3,%) - T, (05142, Y 42T
N ot "z“.'l* w:v{ o= [I"s(rlfgl) u I;(s;lrs_‘ujl-_tm"Z - SGMJ.E]
- [lautragm,) - [ (65,4 06 JpmeT (8)
> -Plea
56 + ;lln(';_ - [R5 G )+ 26,6 ) corz - Soaimez]

Ky= dp- 3,

a
-l_f'; [a.'i',l- 3 Ts )t e (alv-s‘,q;,)]aim:. z

11}

vhere the¥;;(6,a:) = T;(2¢86,8.) are given by

(7) in which the 2Z(e5a.) =7 (t+'se, a. ) are given
in (5), ard the a;
modal variables as

are given in terms of the
3z 2 (%4 %y) i 3as 2(Xa- )
The coefficients in these eguations are
2¢a. ¢ /(M3 -ani /) w) ",

Cy= f(.Ms _zn;/m)/(ﬂa-lﬂ.fl)](-a

M= /2 22P(1- am, /1)/ (M3 ~ami/1)w?)

e 2MarLP/[(My- 2Mi/D)Tw?)

Py o £2P/[(My -2 M2 /M) W)

ﬂ.: 2“;1?/[(M3'1 ﬂ:/ﬂ)nw"]

)

217

= ¥P/(Iwy)
r:’. 0P /(I wt)
Pz aM P, /(M3 -2M5/M) Mwt]

6. SPECTAL CASE OF NO SHADOWING AND INTERPRETATTON
OF EQUATIGNS

If one assume that there is no shadowing the
equations simplify considerably and these sim-
plified equations will be considered here purely
to gain a better understanding of the varicus
terms. During certain short periods the sun
angle on the ISEE-B spacecraft was such that

there was relatively little shadowing and thase
equations would make a reasonable spacecrafy

model during those periods. HNote that 4} = L_'

=0 for no shadowing and G,=%, ,T =0T3,. Define
case 1 as (%31, %) = (+1,+1), case 2 as (-1,-1),
case 3 as (+1,-1), and case 4 as (-1,+1). licte
that case 1 applies for @ = T + 80 in the rarge
-90 to+90(modulo 360 9except for same sort irterval
at each erd of the range, and case 3 applies in
the range 90~ to 270" except for a short irterval
at each end. These short intervals apply vhen
cos (T+90+34) and cos (T+ %@ +dy) have different
signs due to the difference in boom argles da

ard &g . For maxinum boom angles around 3~ these
intervals could be at most around 6°. The eguatior
reduce to
‘*11-!,(.1'(;_““3:’“1:
i Aniz) casest, d
(r',-l'l) 41( i ) ".
2@;‘195‘, = u;ta.mzz[zseﬂ,) cases 3,4
Ny + 2C llyx Wity z ~Plean?
T Emlt—U:l“““’-t(zse'ﬂ(‘) Cases 4,2
+(r‘5‘ﬂ! %®
~Oaalam 2T, cases 3.4
59"4- t{—'} d; =
Ir‘ —'Tu(m}.?.)o(,' cises 4,2
(s {! |
5 ‘) Gd“cos'z -%maz{zaew,) coses 3.4

Consider cases 1 and 2 which apply nearly all
the time. The righthand side of the o, equation
is essentially a linear term with a periodic
coefficient which could be included as part of
the homogeneous cqvations of the system which
now are coupled. The same is true of the &€
equation, and of two of the terms for the oy
equation. Then, if the short intervals of
arourd 6 are neglected, only the ®, equation
has a true forcing function. TheP term repre-
sents the excitation of the «y mode when the
hub is accelerated due to radiation pressure,
and the 2@, cos®2 term can be understood by
examination of Figure Tz. The radiation pressure
tries to increase a, ard decrease a, so that the
force gn oy 1is positive. If @ "is rotated
by 180" the roles of a and a, reverse, Tyq
changes sign, and the radiation pressure tries
to decrease ®, as this term predicts.
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To understand the terms that drive the 4

equation, which is the mode of interest in the

spin ripple, consider Figure 7 a, and note that

it correspords to Oy 20 , Tyy=+dand a T corres-

pording to a @in the first quadrant. The radiation

pressure tries to increase a4 and decrease a.,

but because of the positive o4 , the projectea

area of boom 1 is smaller than the projected

area of boom 2, and hence the force trying to

increase a, is smaller than the force trying

to decrease a, with the net effect that o{,=2st3e

should see a ge@tive force, i.e. - Gy (sin2T)o,.
If oy is negative the effect reverses,

if T is made negative so that © is between -90

and 0°the effect reverses consistent with the

sign of sin2T , and if 8 is rotated into the

third quadrant the &. and 3, roles interchange and

the effect reverses consistent with the sign of

0—11 :

Cases 3 and 4 can be studied with the aid of
Figures Tb ard ¢. In b, T290%,7,,=-4 and the
radiation force tries to decrease a2, and a,
giving the negative forcing term 2a,,tes'C.

To investigate deperdence onéB consider part c of
the figure for which T is somewhat less than 90 .
By increasing 86 , the force on a, increases and
on a, decreases but to a lesser extent, so the
term - (haAmat (280 ) is positive. Similarly
increasing«, , by changing a, by Aa, and a
by A a, as ilgsustrated, has the same ef‘i‘ect. ff‘
T is agove 90" the trend reverses as is consis-
tent with the sign of sindT , and if T is
increased by 180° the roles of a, and a, reverse
and the U,, sign changes appropriately.

7. POSSIBLE SOLUTION METHODS

Consider several approaches to the study of the
oscillations predicted by equation (8). The basic
difficulty is that a steady oscillation is sought,
but the differential equation solution will also
contain a transient part which decays with a 6 day
time constant. If the damping is artificially
increased to cause the solution to convergence
more quickly to a steady oscillation, the oscill-

ation itself is strongly affected and one converges to

an oscillation of the wrong amplitude, or if a
limit cycle is irnwvolved the desired steady oscill-
ation may disappear.

In order to apply any analytical approaches, the
equations should be simplified as much as possible.
Evaluation of the coefficients in equation (8)
gives

f',_ = 0.1888 x10

0 = 0.1920x16¢

¢
-¢
(5-o09282x%10

(7 = 0.814& x TE

M - 01873 X0 © ¢

3 P- 0.al108 x10
[l = 0-1460 % lo' 3

since 3,1, T5, T and P’are mich smaller than 'y
and Ty one could eliminate all but the Il andl’
terms, and eliminate $6 by —(Ms/I)s . It would be
desirable to have a simpler form for the functions
£.*and 27 . One possibility is to assume that they
switch from O to} in one step occurring at some
point T4+ 58 +3r= Yi-€ o 3M/2-€

for some € and then back to zero at
1;&“5,3%* & . With this choice

o +2e,04 + Wiy +2 1AM T |eon T | Xy
20, [ [Reoz - amaT(d)4a +280)]

+ 03 7] (Am2T) oy it 7m0

2{ +3 T, 1] [Reott -Am2T(d 4t +268))
+T3 1 (am2x) Xy Gy =0
otherwise

ol +2ca oy + Whdy + 23 leonz| 2w 2 (4+280)

16,1} [2eotr - sun2t (&,a,_uleﬂ

+ 03T} [2een'e -ane2z (¢, 1 1!9)]

= zf;lwx‘c\wh i‘u-ui';[u?!z A 27(d,+dy u.sag]i Itif"
403 Ty [Reoat - aumar (o, +286])

© olherwise .

(fggo

where (3 =Agn fer® ] and wnere it is assumed
that &€ 1s wide enough that@, %4 is never neg-
ative. Note that periodic coefficient terms have
been added to both sides of the eguations in order
to make the bracketed "forcing function" on the
right hand side zero unless one of the booms is

in the € shadow region. One expects that the
small periodic coefficient terms will have only a
very small effect on the solution to the "homo-
geneous" equations (i.e. with the right hand sides
set to zero), so that these terms could be dropped
and concentration placed on the small kicks given
to each equation whenT,«T, is zero.

The small intervals for which Tpy=© of Uy z0 suggest
approximating the bracketed terms by impulses.
This could be done by evaluating the solution of
the equations at (2m-1)™ /2 without these terms,
using a Taylor series expansion of the solution

to determine the interval for which Oag or Ve

is zero, and then integrating the term over

this interval to generate the area to use under

the impulse which would be
applied at (2m-1) ™4 or more accurately at the mid-
point of the T,y=0 ovJ,-u time interval (or more
accurately still, a set of impulses can be made
for the periods when Ty and Ty , or g, and T3
do not change sign). The number of terms involved
in this approach becomes large.

It is also natural in problems of this nature to
consider averaging methods. If one assumes that
the period of the osecillations of interest are
long compared to the spin period, which is some-
what questionable in this problem where the ratio
is 4.37, then one might assume that oy and o 5
are constant over each spin period for the non-
linear terms. This approach might be more natural
in the original equations (8). When applied to
the simplified equations, the approach results
in essentially the impulse approach discussed
above.

The contribution of each impulse could be distri-
buted over the half rotation between each impulse.
If this is done a large number of terms are gen-
erated, including terms like

% 1 '
pbdegx) Lo H = — Te ¥ g ¥y

Consider the possibility of a limit cycle in such
an equation. If of, = Feor @ T is the furdamental
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frequency in the limit cycle, then the product

¥, el'ywill generate a contribution toe, , at
frequency2@ . Letting®i=AccaT tBeos@ et () One can
substitute into the equation to find an A,B, &

ard @ for which the equation is satisfied for these
two frequencies. Note that is c, is very small

the limit cycle frequency W should be near but

not equal to the resonant frequency ty . One

expects the limit cycle to be unstable since too
small an amplitude in &, , precludes the nonlin-

ear term, with (Me!o¢,\ considered as a coeffic-
ient, from dominating the damping term with 2c

as coefficient. Including other nonlinear terms

on the right hand side, for example there will

be cubic and fourth order terms in &, and o'

which might produce an additional stable limit

eycle at a larger amplitude. Such a result would

be consistent with the observed behaviour of the
satellite, which failed to exhibit the spin ripple
until the first spin rate manoeuvre in deployed
configuration was performed, and has exhibited

the spin ripple ever since. This behaviour would
correspond to initial conditions within the
stable limit cycle originally so that &y
verged to zero, and outside this limit cycle
after the manoeuvre so that the oscillations
grew to the stable 1limit cycle. Unfortunately,
the great plethora of nonlinear terms obtained

by this approach precludes following the approach
to a conclusion.

con-

A final possible analytical approach is to use the
correct %7 in equations (8) but employ the remain-
ing simplifications. Then search for a limit
cycle ofyx AA DL , og= Ay coa( b+ be ),plus

other frequency terms as needed, determine the
appropriate frequency components for each term

of the equation with these solutions substituted,
and then solve for the amplitudes, phase angles,
and the fundamental frequency itself. This direct
approach to search for a limit cycle is again
intractable analytically.

8. NUMERICAL RESULTS

In the absence of an effective analytical approach,
a computer simulation of the differential equations
(8) was generated.

In order to avoid the problem of selecting the
initial corditions on 4@ for which the chosen
nominal spin rate W is the average spin rate,

and in accordance with the small size of [ andff,
0 was set equal to =(Myfr)o, (even if the
right hand side of the §8 equation averages to
zero, $@ will still generally have a secular
growth or decay term unless the initial comditions
are chosen judiciously, and 0 was assumed to be
small in the derivation of the equations).

The fact that the damping in the system has a

6 day time constant precludes searching for a
periodic limit cycle by choosing various initial
corditions and integrating until the transients
have decayed to a negligible level. If the
equations are thought of as linear equations with
a foreing function on the right hard side in (8),
then to obtain that particular solution without
any transient contribution from the solution to
the homogeneous equation, the initial corditions
can be set to zero at some point for which the
foreing functions are all zero. Hence, runs were
made with the initial conditions specified as

zero at T =T/2. The results are shown in
Figures 8 arnd 9. The amplitude of the oscillations,
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given in degrees, are very small, indicating that
if the spin ripple is a result of the solar
radiation pressure excitation being investigated,
its amplitude is not determined by the simple
response of the o, equation driven by a forcing
function containing a component at the resonant
frequency. Rather, if the eguations are to
predict the spin ripple, they could only do so
as an essentially nonlinear phenomenon, i.e. as
a limit cycle.

Figures 10, 11 and 12 study the excitation of (.
due to a sizable Xjoscillation. The initial
conditions for &, were set to zero, ard the
initial conditions on Ry set to 7.5 with a zero
derivative. The response of W, is still very
small as shown in Figure 10. The "forcing
function", i.e. the right hand side of the &,
equatign is plotted in Figure 11. Figure 12 shows
the7.5 oscillation of ®4 together with its
"forcing function'.

A long computer simulation was made to try to
make equations (8) predict the increase in spin
ripple amplitude after a spin ripple reducticn
manoeuvre. = The initial cordition on @ ims

t to 0.1°, which ¢ spords to an &y of
2°. A step size of 20~ of Eotation was used
except within 10° of the 90 270° (modulc 360°)
points where a step size of 4~ was used. A fourth
order Rumga Kutta integration routine was used,
and 6000 secords of real time simulated. The
ISEE-B data over this period of time exhibited a
measurable increase in the spin ripple arplitude
of 1%. The initial condition &y was set to 3~
with a zero initial derivative. Of course,
there is no data to guide this choice, arg in
the search for a limit cycle, proper selecticn of
initial corditions could be critical. Unforturasely,
the amount of computer time needed precludes a
systematic search for a limit cycle., The sim-
ulation results showed a slight decay in both
¢ ard o ,in the former case a decay of zbout
2%, instead of the expected spin ripple growth.

9. CONCLUSION

In summary, the numerical computation of the
solar radiation pressure excitation have failed to
predict the observed spin ripple behaviour. The
results are inconclusive in two senses. First,

a limit cycle can deperd critically on size and
phasing of the initial corditions amd only one set
of initial conditions was investigated, and
secordly, if the exact points at which the sigrum
functions Gy; switch values are important, the
relatively d’oarse integration step size could
have failed to see this contribution. With

this priviso the results appear to indicate that
the solar radiation pressure alone is insufficient
to predict the observed behaviour, ard other
possible mechanisms should be sought.

After this work was completed, additional data
indicated that although no striking change in spin
ripple amplitude appeared near perigee, the spin
rate istself is affected. Implications of these
data are being investigated.
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Nominal Orbit and Attitude
Parameters

Table 1.

Orbital Parameters

epoch 30 April 1981 at 12h 38 min 03
sec

semi-major axis 75602.68 km
eccentricity .890851
inclination 4g.s430
mean anomaly 0.623°
argument of perigee 15.601°

motion + 0.0243%°/day
R.A. of ascending mode 358.770°

motion - 0.0270°/day
anomalistic period 2.394434L days
height of perigee 1873%.85 km

height of apogee 136575.24 km
Attitude Parameters (the spin axis is
kept aligned with the north perpendicular
to the ecliptic plane within a 3 deg.
cone).

spin axis right ascension 270.:0°
spin axis declination 66.3°
angle spin axis - sun
direction 90.0°
control tolerance (- 1.0°,+3.0°
spin period 3.03 sec

control tolerance(- 0.0154 sec, + 0.0154

sec)
Table 2. Geometric - Thermal - Mass
Properties (Ref. 9)
1. Cylindrical Hub radius 0.635 m
height 1.14 m
solar cells skirt
reflectivity
coefficient 0.19 0.04
height 0.85 m 0.29 m

2. Hinge Booms

~ 0.03 m
2.2Tm 2.29m

reflectivity

coefficient

radius

length 2:15 M

0.89

3.

8.

Wire Booms

length «~ 14,477 (20.02) m
width 0.005 m

thickness  0.0004 m

linear

density 0.00134 kg/m
attachment point radius

taken as 0.635 m
distance hub center to

spool center 0.590 m

reflectivity coefficient 0.55
Masses (midlife value)

total 152.4 kg
tip masses 0.01594 kg(along- X axis)
0.01575 kg(along+ X axis)

Position of Center of Mass

Stowed Wires Fully Depolyed

X = 0.009 m X 20001 7
Y = 0.008 m Y=001m
Z = 0.336 m Z =0,33 n
Principal of Inertisa

Stowed Wires Deployed Wires

I,, 83.1 kgn® 94.7 ken®
I,y 52-9 kgm2 63.3 kgm®

R 2
I, 49.9 kem 51.0 kgm

Principal Axes Direction

Stowed Deployed

Wires Wires
Z1 0.,00° Z1 0.01°
oz 42.56° z2 7.13°
Z3 42, 23T B2

Magnetic Moment

2

0.037 Am
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Table 3.

Satel

lite Data

Raw Satellite Data

Spin Period

Sun Elevation
Information

Sun Transit Times (Clock Counts) (Counts) (Counts)
Meridian Oblique Meridian Oblique

m o m _m o 0 o _ M

5 v Cie17t t3e17t8 bg =g
35893 35840 12415 12415 - 53
48321 48268 12428 12428 - 53
60754 60701 12433 12433 - 53
7640 7587 12422 12422 = 53
20054 20001 12414 12414 - 53
32477 3242 12423 12423 - 53
44910 44857 12433 12433 - 53
57337 57284 12427 12427 - 53
bo17 4164 12416 12416 = 55
16634 16581 12417 12417 - 5%
29065 29012 12431 12431 - 53
41497 h1hyy 12432 12432 - 53
53915 53862 12418 12418 - 53

794 T41 12415 12415 - 53
13220 13167 12426 12426 = 53
25654 25601 12434 12434 - 53
38077 38024 12423 12423 - 5%
50491 50438 12414 12414 - 53
62912 62859 12421 12421 - 53
9809 9756 12433 12433 ~ b3
22238 22185 12429 12429 - 53
34654 34601 12416 12416 - 5%
47070 47018 12416 12417 - 52
59500 59447 12430 12429 - 53
6396 6343 12432 12432 = 53
18817 18764 12421 12421 - 53
31231 31178 12414 12414 = 53
43655 L3602 12424 12424 - 53
56089 56036 12434 12434 - 53
2978 2925 12425 12425 - 53
15393 15340 12415 12415 - 53
27812 27759 12419 12419 = 5%
4ozauy 4o191 12432 12432 = 53
52674 52621 12430 12430 - 53
65091 65038 12417 12417 - 53
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Figure 7. Interpretation of the Forcing Initial Value of 0(2
Function
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Figure 8. Solution for©:, with Zero Figure 11. The Driving Terms to the ¥,
Initial Conditions at 7w /2 Harmonic Oscillator Eguation
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Figure 9. Solution for &, with Zero Figure 12. The Solution for &, with a
Initial Conditions at 7/2 7.5° Initial Value, and the

associated 7, driving term



