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ABSTRACT

The proposed procedure applies to the generation of
open loop suboptimal numerical solutions in
dynamical systems optimal control problems. The
approximation of the control by a function dependent
upon a finite number of parameters, and the use of
a linear perturbation scheme associated with a
direct search criterion reduce the problem to one
of parameter optimization, in each iteration. A
stochastic approach to establish the search
criterion and to treat the errors due to the first
order approximation makes it possible to arrive

at the search increment using optimal linear
estimation.

Keywords: Suboptimal Control, Numerical Methods
in Optimal Control, Trajectory and Transfer
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1. INTRODUCTION

The optimization of open loop solutions in
dynamical systems optimal control problems is
fundamental during the design phase for the
definition of a nominal solution, which is not
only acceptable in terms of problem constraints,
but is also the best in terms of an index of
performance. For most of the problems of practical
interest a numerical treatment is necessary,
including those of controlling trajectories and
attitude maneuvers of space vehicles.

This work presents a numerical procedure for the
treatment of optimal control problems, combining
three approaches: (i) an approximation of the
control by a function dependent upon a finite number
of parameters, leading to a suboptimal control
problem; (ii) a linear perturbation scheme
associated with a direct search criterion, reducing
the problem to one of parameter optimization in
each iteration; and (iii) a stochastic
interpretation of the search increment and of the
errors due to the linear approximation, employing
optimal linear estimation to arrive at the search
increment.

The choice of a first order direct search method
(Ref. 1) is dictated by the characteristic of good
numerical behavior, even when the initial guesses
are not close to the solution. The choice of the
control suboptimal approximation is necessary to
reduce to a parameter optimization the numerical
treatment of the dynamical problem. Besides that,

this choice meets the objective of saving
processing time and computer memory space (Refs.
3-6).

The use of optimal linear estimation to find the
search increment has the objective of testing the
validity of an alternative numerical tool to solve
the parameter optimization problem associated to
each iteration. The procedure presented in this
work is the result of the extension and refinement
of results previously presented by one of the
authors (Ref. 2).

To evaluate numerical performance, the example
chosen was one that has been used by many authors
(Refs. 3-6) in testing optimal and suboptimal
procedures that apply to dynamical systems control
problems. It consists of a simplified minimum time
Earth to Mars orbit transfer with low thrust of
fixed magnitude and controlled direction.

2. PROBLEM STATEMENT

The proposed numerical procedure applies to the
solution of optimal control problems with
performance index, dynamical and boundary
constraints given by:

IP = G(Xu,xf,tu,tf) (1)
x = f(x,u,t) (2)
Clx0,xg,t0,tg) = 0 (3)

where x is the n-component state vector; u is the
m-component control vector; t stands for time;
C(.) is the Np (Ng < 2n+2) column vector comstraint
function of the initial and final values of time
(ty and t¢) and of the state (xg,xf).

Thus, the objective is the optimization of the
index of Eq. 1 (either minimization or
maximization), under the restriction that Eqs. 2,3
will be satisfied on the solution. Taking the
approach of the so called direct search methods, a
numerical procedure is proposed in the following
sections. It makes use of a suboptimal
approximation for the control, and of an optimal
linear estimation for the determination of the
search increment.
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3. SUBOPTIMAL SCHEME

1f ;h, ;E, Eﬁ, E% are starting guesses or values
previously obtained, the solution of the problem of
Eqs. 1-3 can be seen in a typical iteration, under
a direct search approach (Refs. 1,2), as the
optimization of

IP = G(xg+dxg, xgtdx, Tto+dtg, t+dty) (4)
subject to

(X + 6%) = £(x+6x, u+u, t) (5)

{:(E{,+dxu,§f+dxfjn+dt{, ,?f+dtf} =

=a C(xp,X;,0,t) (6)

where Osa<1; and since a linear perturbation
scheme is to be adopted, the increments have to be
sufficiently small, corresponding to first order
variations, such that

dx = X dt + éx (7)

5x = E-(X,T,t) « 6x + £-(X,U,t)-6u (8)
S(t,Tp) = £.(x,0,)  S(£,Tp) , S(Ep,E) =1 (9

where f;(;,:,t) and Eﬁ(f,g,t) are the matrices of
first order partial derivatives with respect to
state and control, evaluated on the over bar values;
and S(t,T3) is the associated transition matrix,
which gives

fx(t) = S(t,tp) » 6xg +

+

t
f S(t,s) - EE(Q,;,S)-Gu(s)- ds (10)

]

relating first order variations of the state at any
time t with first order variations of the initial
state and of the control time history.

With the objective of transforming thedetermination
of the search increments, in each iteration, into a
problem of parameter optimization, a suboptimal
approximation is taken for the control (Refs. 3,4).
It consists in replacing the control by a function
U(p,t) dependent upon a finite number of parameters.
This suboptimal control is modeled by arcs, with no
restriction of continuity at the junction points,
leading to arcs of the state trajectory possibly
connected through corners. The number of control
arcs (K) and the number of parameters defining each
control arc (jy+l) are a matter of previous choice.
Following Ref. 5, in the interval correspondent to

the kP control arc, it results:

jk —* k

] —k —k
gu(t) = § (—¢ U(po,>P1s--+»P; 3t)) - dp; =

j_u a.p‘ Jk |
3

j

k
k —k k

= ] Di(p ;t) - dp; (11)
j=o e

where

k k
+sPs o3E)

sk
ui(t) I Ui{pai'pli"' jkl’

where i=1,2,...,m; and, for €} <t <Ttp,, pl." are
mxl vectors of parameters with j=0,1,...,J%,
k=0,1,...,K-1., Thus, from Eqs. 8,9 it results:

Sxlrs ) =

o) = ST B - xCE +

j =
k rt
k+1 — —k k —k k
) (L s(t,s) » f—(x,U",s)+D.(p ,s)ds)-dp. (12)
j=0 t; u J ]
where the upper minus and plus signs indicate the
values just to the left and to the right,
respectively.

However, at the junction point Ek, where a corner
may exist, it is necessary to impose (Ref. 1):

i(’:‘;) -t +6x(T;) = x(Th) -dt, +6x (T} (13)

Taking the results given by Eqs. 12,13 back to the
problem of Egs. 4,6, it results the following
associated problem in a typical iteration, after
some algebraic manipulations (Ref. 5):

Optimize: L(v) (14)

Subject to: M(v) =a+*M (15)

where the over bar variables have been omitted,
since they are constant in each iteration; L(v)
and M(v) replace G(?U+dxg,§f+dxf,fo+dt0,ff+dtf)
and C(Xp+dxg,Xg+dx¢,Eq+dtg,Letdts), respectively;
and

K-1

ng[(dpo)T:(dpl)T:...:(dp )T

:Gxg:(dtu,dtl,...,dtfli

From Eqs. 14,15 it is clear that the problem has
been reduced to the optimization of the parameters
correspondent to the search increments, in each
iteration. This has to be done satisfying the
linear perturbation hypothesis and the criterion
of getting closer to the suboptimal solution, in
the next iteration.

4. PROPOSED PROCEDURE

In the direct search procedure to be proposed, the
increment vector in the problem of Eqs. 14,15 is
taken as the sum of two other increments,

v = vl+y? (16)

which are to be found using optimal linear
estimation and meeting the requirements of the
search criterion. These increments translate the
ob{ective of getting closer to meet the constraints
(v') and the suboptimal value of the index of
performance (v2).

4.1 Determination of First Increment

To find vi, a first order series expansion of the
left hand side of Eq. 15, about the values of the
previous iteration (v=0), is taken, resulting

MG-v1+o(2)= (a-1) +M= -qM (17)
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where is the matrix of first order partial
derivatives, and o(2) represents the high order
terms in the expansion. If ey, is the maximum
admissible error in the satisfaction of the i
Egqs. 17, it is reasonable to model o(2) by a
Gaussian random noise vector Ey of uncorrelated
components, given by:

th of

= iy = 2 3 " y
E[Euli]‘ 0, E[(Em‘i){l 1/9 Sa TR R, (18)

where E[{] means expectation. Hence a condition for
determining v' is now given by

=M, () -v! +By.= -0 B (19)
Considering that the right hand side of Eq. 19 has
the magnitude of a first order term, and to be
consistent with the hypothesis of linear
perturbation, it is also reasonable to adopt the
value of q; as given the following empirical
criterion:

qi-Mln-{qij:q.

= 2 M= 2
;0= 1s af) Mi=(Be, )?) (20)

1

where i=1,2,...,Ng; and g>>1 is an adjustable
convergence parameter consistent with increments
within the linear perturbation region limits. To
complete the conditions for an estimate of v2, the
a priori piece of information is considered to be:

vi=0=vl+nq (21)
= = _1 2 - ﬂ_
e[n] =0, E[njnla (CHRERINES 2%

where j,k=1,2,...,N_, the number of parameters;
and 6:) is the Kronecker symbol. To evaluate the
o5h statistical consistency will be imposed by
maximizing the probability of occurence of the
observation residues given by Eq. 19 (Ref. 7),
resulting

N
p
3 Yo (02 o
jgl(avj M; () o)+ 1/9 eai Q2 M (22)

where i=1,2,...,Nc. Adopting for each o a criterion
of equal opportunity to contribute to :ﬁe
satisfaction of the consistency requirement, it
results:

M.

L a5 wly2iiajgve?

65;; v) Uj) (qi Hi 1/9 Eai)pr (23)
and applying, for each j-l,?,...,NP, a least squares
fitting:

—142 25 e 232 2

(aj} - (iZI{EGE(V)) (q Hi-IJQ-eai))f

NC 3“1 .
N_- — (v ) (24)

/oy iZI ‘avj )

as far as the value given by Eq. 24 is positive, and
(1)2=0 if the value given by this equation is
negative.

2
o
N

Finally, applying a Kalman filtering or,
equivalently, a least squares with a priori piece

of information,to Eqs. 19,21, an estimate v! of v!
is obtained.
vl = K- (Q:M) (25)
K = PR (26)
e =L o .
P = P-PeMo- (= PML4R!) T oMP (27)
v v v v

Qdiag. [q;,i=1,2,...,8q, E[m"]%F, E EiERT4RE.

Notice that, since the noise EJ is of uncorrelated
componentes, the vector of observations (Eq. 19)
can be processed component by component, avoiding
the need of matrix inversion.

4.2 Determination of Second Increment

To find v2, the idealized objective of having this
increment vector in the gradient direction of the
performance index is considered. Thus, if the
problem is for example one of minimization, it
would be convenient to have:

v2 = pell, p>0 (28)

However, a compromise has to be taken to assure
convergence to the constraints. This can be done
if it is imposed that

LV T O oL R
e Hi(v) (vi+v4) +EMi qa; Mi (29)

where the error EH% is chosen to guarantee the
possibility of * having p> 0, without loosing
the convergence on the %?nstraints. Based on
these considerations, EMi is taken as a Gaussian
random noise of uncorrelated components and
statistics given by

B[] =0, E[(B)’] = (Be, /3)2/y2 (30)
1 i 5

where i=1,2,...,Ns, and y>1 is a convergence
parameter to be adjusted. Now, from the
substitution of values of Eqs. 19,28 in Eq. 29,
it results

Moo (-p L) + (EZ-EL) = 0 (1)

which is the desired observation relationship.

However, since the requirement is to get closer to
the suboptimum index of performance without
compromising the convergence to constraints, it is
reasonable to consider the following conditioned
realization of this relationship:

M, _ T =
v (V) (po 1) —Ey=-q;, M, [y (32)

and py is then estimated by a least squares
fitting, resulting

1

- T -1 T - T =1 =
Po= (LgeMoe (R1) T oM L) ™"« (LoeMoe (R T -Qr M) /y (33)

where Q) A diag.[%qil,i=1,2....,NC].
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Finally, the following estimate is taken for vZ:
SRt T
ve = -/pu/-LV (34)

4.3 Checking Conditions

There are three phases of convergence. The first is
a coarse phase, where priority is given to the
requirement of getting closer to satisfaction of
constraints (/M(V+V)/</M/). In this phase, the
value of qj;, as given by Eq. 20, is less than one
(q.,<1). If reduction of the constraints is not
met, the value of B is decreased before proceeding
to a new iteration. Before summing the increments
%! and ¥2 to obtain ¥, the following verification
has to be made:

Tlayv22 nleyn? L\T7 (35)

where # means not of the order of; n! and n? are the
errors in the estimates of the increments. This
verification is done to avoid a needless effort in
the noise region. To reduce it to a usable form,

the statistics estimated for n! and n? is used

(Eqs. 27,33). This is done considering the 3¢
limits:

N
P
4 ~l . ~9 ."‘ T_..z
L= (vi+v<) < +3 (izlfbgif o; *lol— o ) (36)

where 3! is the standard deviation, as given by the

ith diagonal term of the estimated covariance matrix
of the errors in the estimate of v! (Eq. 27); and
G2 is the standard deviation of the error in the
estimate of pg (Eq. 33). If the condition of Eq. 36
is not verified, the search increment is taken

equal to V(¥ = ¥1).

The second is a fine phase of convergence and is
characterized by the condition of all the qj,, as
given by Eq. 20, greater than or equal to one
(qj,21, i=1,2,...,Np) and the qj=qjp=1. In this
phase, the following conditions are to be
satisfied:

Ne

Fa- T () < T (8e, )? 37)
i=1 i

during all the iterations in the fine phase; and
if for all i=1,2,...,Np, it is true that

qilnih;'ﬁi—eai (38)

then it is necessary that
Lge (v14v2) = L (Flnle(=/Bo/+n2) L) <0 (39)

where, under the 30 uncertainty given by the
estimates, Eq. 39 is to be interpreted as:

Np

! « :
L;-vc-a(izln.;i/-o;m\-,-u;-az) (40)

In the fine phase, if Eq. 37 — or, when applicable,

Eq. 40 — is not met and if the e,. are all greater
1% AR

than the em; (eai> em; > where ep; is the minimum

error in the satisfaction of the ith constraint),
the values of the e;. are reduced, proceeding to
an iteration in the third phase of convergence.
Whenever in the fine phase the value of the e,
are all less than or equal to the em; (eai< qmi),
convergence has been reached.

The third phase of convergence is a coarse phase
inside the linear perturbation region. In the
equations used to calculate the search increment,
qj ‘and qj; are forced to be equal to ome
(g3=qi1=1) in this phase, instead of being

taken as given by Eq. 20. However, Eq. 20 is still
used to verify when it is necessary to shift back
to a fine phase. Since this is only a linear region
coarse phase, the checking condition correspondent
to Eq. 36 has to be used. For the same reason,
priority is given to convergence to the constraints.
If this requirement is not met in an interation

of the third phase, the values of the qj; in

Eq. 33 are reduced only inside that iteration,
until constraint convergence is attained.

5. NUMERICAL TESTING

The problem chosen to evaluate the procedure
performance is that of a simplified minimum time
Earth to Mars orbit transfer, with low thrust of
fixed magnitude and controlled direction

(Refs. 1,3-6), as given bellow.

Minimize: IP = tf (38)

Subject to: x; = x5

X5 = xg,’xl - 1.1;‘:\(112 +Tsin B/ (mg-mt) (39)
x3= -Xpx3/x) + Tcos 8/ (my-mt)

x1(tg)=1.0, x2(tg) =0.0, x3(tg) =1.0

xl(tf) =1.523679, xz(tf) = 0.0, xg(tf)=0.31012?28

where x; is the radial distance from the Sun to
the spacecraft; x;, the radial velocity; x3, the
tangential velocity; T, the thrust magnitude; m,
the mass of the spacecraft (mg=m(tg)); u, the
gravitational constant; and B, the control. In
normalized units, p=1.0, mp=1.0, m= 0.074800391,
T=0.14012969.

Table 1 and Figure 1 show the results obtained
when the control is approximated by four straight
line segments, with no restriction of continuity
at the junction points. In this case, in the
interval correspondent to the kt segment, the
control approximation is given by:

Uk(pg. plf; t)=p‘a‘+((p¥—pl§)/(tk+l—tk))-t (41)

where k=0,1,2,3; and t,, k> 0,are among the
parameters to be optimized (tf- ty) .

6. CONCLUSIONS

The approach of approximating the control by a
function dependent upon a finite number of
parameters, in association with a first order
direct search method, reduces the problem to onme
of parameter optimization, in each iterationm.
This gives to suboptimal procedures using this
approach, as the one presented in this work, the
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Table 1

NUMBER OF ITERATIONS (NI) AND CONSTRAINT ACCURACY

NI /8% (tg)/

14 1.15862E-07

[0R2(t0) ] IRy (eg)/

8.13731E-05

4.63165E-05

CONVERGENCE PARAMETERS

g=1.E03, y=1.85, eai=ea=1.E-06, emi=em=l.E—0?

CONTROL AND TIME PARAMETERS

Symbol  Initial Guess Converged Value
ped 000000 .521974
P’ 1.17810 1.00935
t) .850000 .924517
Po’ 1.17810 1.05665
' 2.35619 2.26314
ty 1.70000 1.70891
Pe 2.35619 2.57549
NG 3.53429 4.38308
ta 2.55000 1.88816
p° 3.53429 5.23151
3 4.71239 5.23151
te 3.40000 3.33762
8t
n
(=]
ok
<
w
=z
g §_ ©—OPTIMAL CONTROL
a A—INITIAL GUESS
e X—SUBOPTIMAL CONTROL
zg
=] (]
o
=
29
o2
o optimal value of 1f=3.31949
suboptimal value of tf=3.33762
8 1 1 1 |
o 80 1.60 240 3.20

NORMALIZED TIME

Figure 1. Control versus Time

special features of: (i) saving computer memory
space, when compared to first order direct search
optimal procedures; and (ii) freedom in the choice
of the suboptimal control function form,

including those represented by arcs with
discontinuities at the junction points.

The use of optimal linear estimation to obtain
the search increment is intended to keep the
following additional features, exhibited by other
suboptimal procedures found in the literature
(Refs. 3-6): (i) of saving processing time, when
compared to first order direct search optimal
procedures; and (ii) of giving suboptimal results
which are close in quality to those obtained with
optimal procedures. The results of the numerical
test give a good indication that the procedure
presented attains these additional features.

However, aside from the referred improved features,
the use of optimal linear estimation leads to a
procedure with the specific characteristic of
greatly reducing the number and of simplifying the
use of the adjustable parameters needed to control
convergence. This happens due to the fact that
either the conceptual meaning of these parameters
(BsYseg:,ey.) is made clear in the linear
estimation ~ problem associated to each iteratiom,
or they are related to statistics noise (n)
adaptively determined.

7. REFERENCES

1. Bryson AE & Ho Y C 1969, Applied optimal
control, Blaisdell Publishing Co., 212-243.

2. Rios Neto A 1980, Estimagao linear otima apli
cada 3 geragao de solugoes numéricas subdtimas
em problemas de controle de sistemas dinamicos
(Optimal linear estimation applied to the
generation of suboptimal numerical solutions
in dynamical systems control problems), Proc
Third Brazilian Congress of Automatics, Rio de
Janeiro 16-19 September 1980, 123-126.

3. Williamson W E 1971, Use of polynomial
approximation to calculate suboptimal controls,
AATA Journal Vol 9(11), 2271-2273.

4. Hull D G & Edgeman L J 1975, Suboptimal
control using a second-order parameter
optimization methed, Journal of Optimiazation,
Theory and Applications Vol 17(5/6), 482-491.

5. Rios Neto A & Ceballos D C 1979, Approximation
by polynomial arcs to generate suboptimal
numerical solutions in control problems, Proc
Fifth Mech Eng Brazilian Congress, Campinas
12-15 December 1979, Vol C, 034-043.

6. Ceballos D C & Rios Neto A 1980, Um procedimen
to de busca direta, utilizando programagao li-
near, para gerar solugoes numéricas subotimas
em problemas de controle (A direct search
procedure, using linear programming, to
generate suboptimal numerical solutions in
control problems), Proc Third Brazilian
Congress of Automatics, Rio de Janeiro 16-19
September 1980, 147-152.

7. Jazwinski A H 1970, Stochastie processes and
filtering thevr,u, Academic Press, 266-329.



