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THE FLIGHT MAINTENANCE IN THE VICINITY OF A LIBRATION CENTRE AND THE ONE-
IMPULSE TRANSFER TRAJECTORY TO THE LIMITED ORBIT IN THIS REGION

P E Eliasberg, T A Timokhava & M N Boyarski

Space Research Institute

ABSTRACT

The problem of spacecraft (SC) motion control

aimed at long-term keeping of the SC in the
vicinity of one of collinear centers Ly or
Lz in the restricted elliptic three-body

problem is considered in the paper. The osculating

parameters method is wused for the purpose. The
equitions of &SC motion are obtained in these
parameters. These equitions were employed to find

the necessary integral condition for orbit to be
limited. The method of search for limited orbit
under this condition was constructed as well as
method of calculation of correction impulses
necessary for a long-term wmaintenance of the

limited orbit. The method of search for a
one-impulse transfer trajectory between Earth
satellite orbit and about libration center is also

described. The numeric calculations were made on
the basis of these methods.

Keywords: Three-body Problem, Libration
Center, Limited Orbit, Spacecraft Motion Control

1. INTRODUCTION

The solution of some space research problems
demands long-term keeping of a spacecraft (SC) 1in
the vicinity of one of libration centers L, or
L2 of three-body problem, which are situated
near smaller attracting body. The selection of
orbits for such SC a and its motion control were
discussed in (Refs. 1-6). Different modifications
of a small-parameter method were wused in these
works. As a result, the existence of limited
orbits was shawn. Moving on this orbits, the SC do
not moves far away from a libration center. These
orbits are unstable and demand maintenance
corrections. The closer is the real orbit to a
limited one, the smaller are the correction
implulses needed for the orbit maintenance.

The accuracy of limited orbit determination by
small parameter method is mainly defined by the
value of ratio £ of SC distance from the libration
center to the distance between the libration center
and the center of smaller attracting body
(Ref.7).In the works mentioned above, satisfactory
accuracy is provided when £ 1is not greater
than £ ,=8.1. With greater computational errors
lead to the significant +fuel overspare for the
orbit maintenance.

Moscow USSR

From the other side, as it was shown in (Ref.&)
transition from the transfer trajectory between the
smaller attracting body and the limited orbit about
libration center with £ =0.1 demands large
injection impulse (in the Sun-Earth system VZ300
m/s). In this paper it is shown, that when & max
=@.5 this impulse is not needed. So the necessety
arises to solve the mentioned problems for larger

The new method of solving above mentioned
problems 1s suggested in the paper, which is based
on osculating parameters method. It provides the
possibility to obtain solutions in the wide range
0f &€ maxlin the Sun-Earth system up to &4, =08.8).
At the same time, high accuracy can be achieved,
which is sufficient for application purposes and is
limited only by our knowledge of forces acting on
the 5C and by the performance of computer
available. The problem is solved for the case of
SC wmoving in the attraction field of two spherical
bodies, which in their turn move relative to each
other on Kepler elliptic orbits (i.e., under!
assumptions of classic restricted elliptic
three-bodies problem). The method wused can be
immediately extended to the case of motion taking
into account perturbations from other celestial
bodies.

Also analised are the ways of selection of the

transfer orbit between circular Earth satellite
orbit and orbit about libration center and it is
shown that one-impulse trajectory of this

transition exists.
2. THE OSCULATING PARAMETERS METHOD.

Let us consider motion of a S5C in the field of
attraction of two bodies Sy and Sz which

have masses My and‘ Mz respectively and
let MiMz. In all practical cases
(Sun-planet, planet - its satellite)

My2 M2, We shall adopt a rectangular

Oxyz, centered at the center of
masses 0 of bodies S; and Sz. Dx axis of
the system is directed from the center of S,
to the center of Sz and Oy axis lies in the
orbital plane of Si and Sz at the right
angle to Ox in the direction of motion of &,
and Saz. We shall analise the SC motion in the

coordinate system

neighborhood of one of the libration centers
kg or L= situated on Ox near B2,
The distance OL between any of these centers and

the center 0 is (Refs.3,8,9):
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Ob=(1-m+r)r
where s =My /(M+M),

is the distance between

5, and Sz and is the root of quintic
equation :
1-m + A i
EMAE™ (rodie = §7
in which sign '+’ corresponds to L,, and

'-* = to Lz.

This equation has one real root for each
libration center, and 4 <@ for L.,g0 for
Lz.

In Appendix the values of ¢ and )/are given far
the system Sun-Earth%Moon barycenter, which will be
further called the Sun-Earth system.

We shall solve our problem using dimensionless

variables E , " and J defined by the following
transformation:
x=(1-puty+8)0, y=1r , E= 30 (1)

which describes the SC motion in the right
rectangular coordinate system Lens centered at
the libration center L, axes of which are parallel
to these of Oxyz system and, generally speaking,
variable length scale proportional to the distance
r between centers of 5. and Sa. The true
anomaly of Sz in its motion about S, is
used as independent variable. In these variables
the equations of SC motion can be writtem in form
(Refs.3,7,8):

E"‘z—"l'“(ZBo+i)§:as,
N'428'+ (Bo-1)m=an, (2)
J'+ BoJ = q’}

=d-M Yo
Bo EEr R VIE

where g, 5 and &3 are perturbation
accelerations = which include non-linear terms
relative to values of £ 4 ‘q and 3 and eccentricity
e of §5; orbit about Ss.
Let us adopt well-known solution of (2) with
2y = Zn=@y=0 (Refs.3,7-18) as an intermediate
orbit.It can be writen as :

‘] asen e ~ fo{,*eﬁ,

J=dsin¥,

a=a, , P=Yo—w(9-7;), ol
d-o(.oe)(#-?’"),

(/3=ere-)('¢7=2?..))

a,/-_-a{o) 152(5"-2};),

W= VE(e-Bor VIBF-R.) ,
A VE(B-2+V3EF-28, ,

k= (dlg.e&,-ﬁj g_ ..)d*_e/qt_fi
w

, S2=Ye,

)

where @,%¥,«, 2, C/, ¥ are
the orbit parameters and index '@° marks values of
corresponding parameters in the initial moment
= 2% The values of w, A, 4k, £, 52 for  the
Sun-Earth system are given in Appendix.

So introduced intermediate orbit parameters
have simple kinematic sence (Ref.7). Quantities@
and¥are the semimajor axis and the phase of
elliptic motion in Lﬁplane, whileand Pare the
amplitude and the phase of harmonic oscillation
along Lyaxis. Both motions are performed relative
to center 0', which moves along one of the

hyperbolas centered at L and bounded by

asymptotas M.N, and HaN=z defined by
equations 7% ='3§ and -7=!f = respectively.
Farameters LS and B are proportional to
distances from asymptotas MzNz2 and
MaNy respectively. Directions of all

arrows on Fig.2. The big
adopted direction of §; and

As it changes, so do all
The solution (3) shows,
without perturbations oL
remains @ for all ¥ . 1In this case O’ center moves
along straight line MaNz, asymptotically
approaching L. The SC motion is than limited and
asymptotically approaches the gquasiperiodic motion
about the libration center L with different angular
velocities & and$2. But this motion is unstable:
with the smallest perturbation the center 0'
passes to a hyperbolic trajectory and moves away
from the libration center asymptotically
approaching MaNy line. With given values
of phase coordinates £ 7,75, &/and %/, 3 orbital
parameters are defined by formulae derived from

motions are shown by
arrow shows the
Sz about each other.
other motion directions.
that with oo =0 and

3

@ = /fVA +A4°, sin¥= , COSP=
“',/ 2 l/_-—'efA_"
As

d=YaZ+ AL, scak= .
VA Ag , Sca VF_AE’CG“'VE?:Z}’

T ki e Ay - As

T T (a)
v e £E4 Ay o LAt +y/ ‘%E""“’V
I & Q)i > % ) 44 @i
_wAkE 2’
A= ¢)+ P 43‘“3‘%,A5=1,
ﬁ_f=w¢?r)k 3 mz 5‘)8 “Jk
The values of Dy and Dz for the

Sun-Earth system are given in Appendix.

Let us now consider the orbit defined by the
solution of complete system (2) taking 1nto
account perturbations Qf,a nd &y . We shall call
this orbit a perturbed orbit. It is characterized
by the law of change of phase vector :

Cfb"!gaq?)‘sif‘?’?’):slj >c|’3 =Clj(17)' 9

With the aid of (4) and (5) one can find
for each value of parameters @ ,¥,« 3, ¢ and ¥,
which we shall call osculating parameters of
perturbed orbit in given moment (the moment of
osculation). Using these parameters, it is
possible to construct corresponding osculating
intermediate orbit, The law of motion along this
orbit 9P =3, (J) is defined by (3), Evidently,
in the moment of osculation

<>, () ;cp(-ﬁ') (&)
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The vector <P (&) will later change according
to the complete system (2) and vector o (7))

according to the same system with a;:dq=¢25=a.
Let p(?)=pteb(F)1 be one of the osculating
parameters of perturbed orbit. It can be obtained
from (2), (5) and (&) that
J P Iy 4 " ‘1
27 2% § *"o";q? Yo S " ’ag’ ¢ +’a'q"q +’OS'
(do)o 'ag' e 2om 7 3 3o

uhere@dg)o is derivative of p with respect to
¢ when the motion is performed along osculating
intermediate orbit. We obtain from (3] that

(5e) (oo (£ h)
( )“2"6 (a)az

We shell use (4) in order to obtain the
values of; ?-g, and 3 Substituting these

I
values tnget&er with (8) nto (7) we find:
A

a -g—-fsmw-czt -4, cosr- @y,
s —«J+é—(’('§ cosw-czss +-’£143?F-czs7),
oL-Ael = F

(9)
ra.: qf 'b Q"))

{/‘3 "J(/; i _( Q'y);

i cos ¥ B i
a1 ’” -’2 feol "3

So we obtained the system of equations of

motion in osculating parameters. It is completely
equivalent to the initial system (2) for everyr%%,
anddycan be succesfully wused for qualitati
analisis of motion along perturbed orbit (Ref.7).

3. THE NECESSARY CONDITION OF THE LIMITEDNESS OF

ORBIT.
We shall «call a "limited orbit’ such sulution
of system (2) or (3) on which a SC remains in

the region D defined by

max [ £(9),M(V), J(W)] <™ (10)

for arbitrary 2 >. M is a constant. It is
assumed, that the selection of M provides for the
absence of bodies of noticable masses in the region
D. In this case the perturbation accelerations
({f,a.,; and jSn the region D are limited, i.e.

max Uity | Qi y 17N - (11)

Now we shall define the necessary condition of
the limitedness of orbit (Ref.11). Let suggest,that
such an orbit exists. The equations of motion
along this orbit may be written as:

@=@(8), = P(P),ad=2(V), S5 (D), dde) Y- 7).

With the aid of these relations we can
righthand sides of equations
the argument 7 :

write
(9) as functions of

Fa(?)s —-‘:ruJ'f’ Qg -2 ’—‘ cose - @y,

7‘ (?)= =~( %= -r;—-

% (0 s (M)J’ (12)
ésw--—(  ap - £ a),

Fd (¥ ~'_§2i Cos¥ Ay .

Integrating (9) we obtain, that on orbit
under cons:deratlun
@(v)=@o +/ ,t,, (r)dT, )
-A(T-2%) AT
(D)= {«o =~/f.¢me arle B hahe
)
(0) Q’o f)a/?l -2
A(T-2) ~A( )
,,)-( : ;{A(r)e ot fe y
‘/?’( lloﬁﬁ/ from (11) and (12) that on the
luuted orbit :
[ 4o (< Na | |4 (DN <N,
| $p ] N, \4d (D)€ Nel, (14)
Z _ N Z
gL =NAk (32 *2; )> Mi'?(z% *32.)’
A
N =35,
Substituting these unequalities into (13) and

taking into account that & )8,a/>0 we
for 2 > 2,

obtain that

Osa(dl)s Qo+ Vg (P-T5 ),

/‘ﬁﬂ?)/ [feo) » L (15)
< (V)< ofo + A/d(f)‘- ?)')

Let us denote

A(T-7e)
=|¢o+j}¢('tJe dz | . (16)
It 1nned1ately follows from (14) that infinit
integral in the righthand side of (16} converges

on the limited orbit.
and (16) we find, that:

M7
S o€

With the aid of (13), (14)

*)_>I°{(7})P (}':ioe"(t’-_a’)% (17)

Substituting (13) and (17) into (3) We

-Po A(7-V
s’ TR 7 ¥ P
Cuo (TP, 2 |2 Lous € AR /ez 3
2, = :ca-*i/afﬁ-%)*/ﬂb/* .ed/vf-, (18)

Ky o * Na (D-20) r E (/] *+ i;f_@)

Than the necessary condition of the limitedness
of the orbit is&as=B. Or, according to (16):

oo
-A(T-7,
oLy -/;{‘(?')e AlT%e) you (19)
)
Using (13), it 1is easy to show, that under
condition (19) the unequality holds:
Nt
I‘*f‘))“”_'- (20)
The condition obtained is not always

sufficient, because parametersd (Z) ande/ (7)) nmay
in some cases infinitely grow when J-> o0, In
particular, this may happen when resonance occurs
between components of wvector {a} ,Q’o;,a!} and
elliptic or oscillating wmotion of the &C. For
instance, it is sufficient to put &g in the
righthand side of the first relation in (1.23)
proportional to sin¥ anuaqfﬁl in order to ensure

the secular increase of @@ (2) which leads to
unlimitedness of the orbit in accordance with
(3), (15} and (2@) under condition (19).

So, if for some initial conditions
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@rto)=Qe, PCT2) =Y, B3(2h)= /30,

¥res)=to.

limited orbit exists, than it can be found by
salving systems (2) or (9) under restrictions (19)
and (21). The limitedness of so obtained orbit
should be wverified (for instance, by numeric
integration of (2) or (%) on sufficiently long
period).

4, THE CONSTRUCTION OF A LIMITED ORBIT.

In order to find a limited orbit by numerical
integration of equations of motion under conditions
(1%) and (21) WE shall use the method of
successive iterations (Raf.12). Let adopt a limited
intermediate orbit defined under (2!) and X p =0 as
a zero approximation., For this orbit we compute
the values of perturbation accelerations and
restricting ourselves by terms of second order :

@' - 38,08 L_J') (RBorL)fe cos ]

Qy -_mx £€7-(Bo -z)o;emsJ 255
= ___ pLs 'ﬁ + ﬂ_
Be (z rj')-’ W7 TE Be= i1 Tim?

Substituting (22) into righthand side of (12)
and making use of (3) we aobtain corresponding
approximate expression for function f,c (e

/ re) i
]{{ "i_ /.-( (‘?"/ Yo, /e, O/”z 'k{;a )

and with the aid of (19 the first
approxinatma \‘ar H 2
-A(T-22)
¥
. /f/ (0%, o, 0, 45,20

After :ntzgratian we obtain :

4
a0 9_{3_‘[:2: Ta(Ug-Uz OS¢+ Uz schR¥+

2
UySineo oswo)+ d:f{)s('afz +2 QscnYotosVor
+A80n2Y5) - B30, + Qoo 1 (Ursinw,-Ug cos k'%)_]f
e ':k_ £ Qe[ {+28
+2{ . Flz; (1"280)‘*,3—2'(1*5.9)]1-2——[—-%)(
X (AP Cos¥o+ Bysin vo) + ‘,;,‘z"(/\ Psines - Pacost)]

4 Rl ¢
GAZrepR 7 i”,‘a_*“/,wz ?

Px"'Ei" Ez»

1=

m 2wk o o P
Ulzwi’e‘” (—5—%)1“(—5‘], (23)
Vo= &5, » Us= ;,5‘; 5o » Re-Ejtw)t Ep(trw),

fwk A : A
+ e
Uy=- » 5 20 v9322) °

Dz ir" 2 4D a
/'i-r(zwjz ]

(-1" ) za]’
K -y L e S L
Vs GE(16-30) 155 (%2 +21), = 52 +(Z4ept’

k4 P 2A€ LA
Choie (£t C0-28), 52

where @. , ¥, B0y @o and ¥ are the values
of orbit parameters for @ =2%. The construction
of next approximation is difficult because the
orbit which corresponds to the initial condition
A= is, in general terms, unlimited,and the
problem of convergence of the integral in (19)
remains open. In order to bypass the difficulty we
present (19) in form:

6{5.-.3)‘

Z - (24)
y, AT 7 -\ (7-2%)
d¢;= —/J(‘(?'JL" G/?'- '&(?")C" s
- 3

With the aid
limited

where 271 is some value of & .
of (14) it is easy to show, that for the
orbit:

-2 (7-2o) A(%T%) (25
\ 4(7)6’ dr TR

W
s Te
A

follows that, with proper choice of '-‘Z 3 ohiE
is pnss:hle to make second term in righthand side

of (24) as small as needed in absolute value and
substitute the necessary condition (19) of orbit
limitedness by approximate condition:
ok
% “A(2-2%)
‘io:;/ Fxrz)e oz, (26)
(]

We can use the method of successive iterations

to solve system (2) wunder conditions (21) and
(26):

,(€21) ¢e) = -7%) ;

«x =2;//.4. (< oty €54,2,... (27)

)

where q,c(” and A (T)(i=1,2,...) are the
jEp approximation of function «o (%) and
corresponding value of Fx (T), uhtained by
numerical integration of equations (2) “.591
with initial conditions (21) and ot (ol-al’.,, W
For the sake of simplification it is possible to
omit computation of integral in (27). To this end

We can use Expressinn 1131'

f:) = ce) “A(T-Y)
(%)= La( ;ﬂ (r)e a7

where a((‘}(?)ﬂ is the value of o on orbit of
ith  approximation for o = 2, . By
substituting (27) into this expression, we obtain:

(é4L) “A(Yi-2%)
o = c(o :)) (% (28)

A=)

The computation is performed
which with required accuracy:

until i=n, for

(n (ntt)
&, D oty . (29)
The final accuracy of solution obtained can be
characterized by the value of S« , determined
by formula (l6), The convergence and accuracy of
sugessted process depends on the selection of value
i&. It is necessary to take into account that
with unequality (25) the error decreases as
difference tz&-—i% ) increases. From the other
side, with too large value of this difference the
orbit of the first approximation can leave the
region where the convergence is ensured. In this
case it may be expidient to solve the problem in

few stages. On the first stage we use smaller
value of V3-2% So obtained value of oto is
later wused as the first apprpximation for the next

solution with larger 2/y and so on. By this way
arbitrary accuracy can be achieved, which is
limited only by the number of digits of processor

used and accuracy of knowlege of forces acting on
the SC.
The method presented in the paper  was

numerically tested for the case of SC motion in the



FLIGHT MAINTENANCE IN VICINITY OF LIBRATION CENTER 59

gravity field of the  Sun-Earth system under
assumption of classical restricted elliptic three
body problem.Various values of &, and /owere used

(see tab.l). =0, % =0, do=re-3, ¥ =0.
Table 1.

| tInitial | Parameter & ,! |
t .1 values e e m e e e e e e e i e GiE
L 47, TS Pt walu £
| | o It,gf, tapproximation! | H
1o LE-31 B 1-1.94P1372E-51-1.9976433E-5!"0.1
12 1 2E-31 @ 1-3.79399R1E-5!-3.98@3B41E-5!"0,2!
v 3 1 ZE-31 @ 1-b.b9236BSE-S51-7.1545174E-51"0.3!
P4 ) 4E-31 B 1-1.B635272E-4i-1.15467592E-4170.4!
19 1 SE-31'B 1-1.5622781E-41-1.725Q0149E-41"0.5!
i 6 1 BE-31 B 1-2.1654656E-41-2.4206307E-41"0.4!
V7 4 TE-31 @ 1t2.B731137E-4!-3.2399551E-4:%0.7!
i B 1| BE-31 B 1-3.6B52143E-4i-4,1732749E-4:"0.8!
i 9 1 SE-312E-31-1.4708B004E-4!-5.3007091E-4i"0. 5.

The calculations were performed in two stages:
for 2, =3 and 2% =6. They were completed when
equality (4.8) kept with accuracy 1E-10 (or 15 m).
Each calculation took no more than a few minutes of
BESM-&6 computer CFPU time. The results are
presented in table 1.

The limitedness of orbits so obtained was
tested by numerical integration on interval 042X b. 6
(i.e., somewhat more than a year). All orbits
remained limited on this interval, but by the end
of the interval the SC drift from the calculated
orbit became significant. It is caused by the
error &olg in accordance with unequality  (18).
The ratios & max of the maximum SC distance from
the libration center to the distance between the
libration center and Earth for every orbit are
given in Table 1. For orbits under consideration
Emax™ Aol Y

The projections of orbits 5 and 9 on the planes

Enl and LES are shown at Fig.3. It can be seen,
tha on the major part of the analysed interval,
the SC motion is close to periodic ane in both
planes (with different revolution periods in two
planes). The maximum deviations of the SC from the
libration center L along axes &€ , 7 and J
are close to @y, &o/Xk and a{, respectively,
exept for the beginning and ending parts of the
interval., In the beginning, the periodic motion is
disturbed by fading with the time influence of the
accepted .80, and on the final part - by the
growing influence of error éﬂi, .

S. THE DRBIT MAINTENANCE CORRECTIONS.

From the unequalities (17) and (1B) it
follows, that inevitable errors Sot, of the SC
injection to the limited orbit lead to the growth
of the SC distance from the libration center. In
this connection periodic maintenance corrections,
bringing SC back to limited orbit, become
necessary. In this section we describe the method
for the calculation of these correction parameters.
We restrict ourselves by the case of impulsive
correction which results in a stepwise change of

i
derivatives EI o W and 3§
of coordinates themselves. This

without change
method may be

easily extended to the case of non-impulsive
correction.

Let f -€§ v T gy 11 3} is 5C phase vector
and jf is e value of this vector before

correction, A_P ={p,0,0,4 &' yaMm' a1y is the
correction impulse phase vector and £ =
=(0,0,0,5¢Em,E3) is  the wunit vector of
dlrectlnn, alnng h\hlch the mpulse is applied.

Let assume the moment 2 = 2 and the unit
vector & to be given (the problen of their
selection is discussed in (Ref.2)). The &C phase
vector J?,( after correction may be written as:

L= P(Pe)=f+ XE, o)
where X =

The praLlea consists in the selection of X, for
which solution of system (2) with initial
conditions (3@) satisfies the approximate integral
limitedness condition (26)

We shall apply the successive iterations method
to the solution of this problenm. Let denote by

) K'r‘jtha values of X and fx uhtalneq on each
step “of the solution and by o €(2?) the
function ol (2>) obtained by the numerical
1nteqrat:nn nf (2) with initial conditions

\f’(!’,}fﬁ As the zero approximation we shall
adopt
:o,\ (0)_
.ﬁ( (31
In the same way as (28) we can write:
ﬂ*-’) - (-7,
oy (?)} % V) (32)
It follows from (4) that:
AX=Cr§-Cam+Ca8'+Cyy! (33)

where
WA 2% . K .
Cc3mg 2Ca”2n; 0 C3° 32, » €4 722 "

The numerical values of constants ¢, , G, Csand
Cyfor the Sun-Earth system are given in the
Appendix. It follows from (38) and (33) that:

d:z;: (°’+/f“"(c_,5§ + ct,&?) ’
oL a4 st e+ CuE ).

(34)

With the aid of (32) and (33} we obtain,
that: §27

: ' -A(7-

R L S

s ] (35)

Using (31) and (35) it is possible to obtain
every approximation (c)  of . Calculations
should be perfirmed until the equality

AL

holds with the required accuracy.
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In order to pass from the dimensionless value
to the corresponding dimensional value
AVEH |fAxR+ay2+a 2R we differentiate the
transformation (1) with respect to time and make
use of the fact, that ihe impulsive correction does

not lead to the change of SC coordinates. Than

AV = Vg (k)X , (37)

where 'V;'(?yx) is the transversal component

Vo=V of Sa2 velocity relative to §; in
the moment ¥ = ﬂi.

In order to make the estimation of errors of

the method, we made the calculation of SC motion in
the vicinity of libration center Lz of the
Sun-Earth system on interval <20 (approx. 3
years and 2 month) under elliptic probleam
assumptions and following initial conditions: 7% =@,

Qo= SE-3 , B =7 ,,B= 0, adp= 1E-3, ¥ =0
assuming the absence of measurement errors and
correction execution errors. The correction was
made in the direction of Ox axis with constant step
& along angle & in moments

D =Ujtpe ; f=1,R.

2. was taken equal to 0.5 (somewhat less than
a month). The value of obtained by the numerical
integration of (2) with calculated initial
conditions after previous correction was used as a
value of the vector § for some moment of
correction 27 = Z. . The value 2% in (35)
was egqual to &, The calculation was performed
until equality (36) had been achieved with error
less than 1E-180.

As a result, it was found that total correction
impulse necesssary for orbit maintenance during one
year is *0.0@15 m/s, i.e. it is negligebly small.
In real +flight the correction cost would be
determined by the errors of measurement and
correction execution. In order to estimate this
expenditure one can use results of (Refs.2,11).

Fig. 4-&6 shows graphs of change of the
osculating parameters CL,‘,L,‘/_;.(/. tTP and J¥ on
all analised interval as well as projections of the
orbit on planes Lgnj and Ly . It can be seen,
that the orbits remain limited on all interval
{unlike orbits without correction). In the same
time there are slow, but significant perturbations
of & and ¢, which may be explained by the resonance
effects connected with the proximity of 4requences

¢ and $2 to each other and to the doubled
frequency of the Earth revolution around the Sun.

In order to verify the character of the slow
perturbations of perameters ¢ and wWwe made
calculations of these parameters values on interval
8¢ 77 <180, corresponding to about 28.7 years. The
results are presented at Fig 7. It is seen, that
these perturbations have long-periodic nature with
period which depends on initial wvalues of ¥o
and ¥, . Besides, there are some secular
perturbations of phases of elliptic and osculating
motions and ¥ . They do not affect the
limitedness of the orbit ahd are connected to the
perturbations of average frequences of the analised
‘oscillations (Fig. B).

6, ONE-IMPULSE TRAJECTORY OF TRANSFER TO THE
LIMITED ORBIT

The analysis of SC motion on the transfer
trajectory to the limited orbit in the vicinity of
libration center is rather complicated problem
since we cannot employ conventional methods of
orbit selection and correction.

The following assumptions were wused d{for the
search of transfer trajectory:

- the spacecraft is launched from the low
circular Earth orbit (LEO) with given altitude and
inclination;

- the 6SC is speeded up by the thrust parallel
to the SC velocity;

- the SC is launched from the intermediate LED
at the moment which ensures the SC crossing of the
Moon orbit at sufficiently large distance from the
Moon;

- the apsides axis of the SC osculating orbit
after injection into the transfer trajectory should
lie in the ecliptic plane;

x the transfer from LED to the
trajectory is impulsive.

These assumptions resulted in the fixed values
of perigee altitude, perigee passage moment and
inclination of the osculating in the injection
moment transfer orbit and in a simple relation
between the perigee longitude and the longitude of
ascending node ?3 . S0, only the values of
semimajor axis & and ~é7 were left for the
selection of transfer trajectory.

The process of search for the nominal transfer
trajectory was reduced to the search for the
maximum of function T,(@,), which is the
period of time for which the SC does not move to a
distance more than R from the libration center. We
adopted R equal to 1| million km. The initial
values of &« and ® were selected in the
interactive mode. Such value of was searched for,
with which the trajectory could return to the Earth
or leave it depending on the value of

After such a value of @ had been found, it
became possible by the selection of 2 to find such
an orbit, which begins on the LEO and does not
leave the vicinity of libration center for more
than 2 years.

As an example of the

transfer

transfer trajectory we

shall describe the orbit with the SC launch from
LED at altitude 1B5 km and inclination &5 degrees
on April 7 1991, @ hour ET. Fig. 9 shows the

projections of the orbit to the planes EXY and EXI
of the following coordinate system: the center is
the Earth center E, EX axis is directed out {rom
the Sun, EI axis is directed to the ecliptic pole
and EY completes the system.

The limited orbit obtained after
trajectory is characterized by the
parameters:

- the maximum distance from EXI plane is
800,00@ km;

- the maximum distance from the ecliptic plane
is about 150,000 km;

- the Sun-SC-Earth
35°3

= the

center is about 1BD days.

transfer
following

about
angle between 2.7° and

period of revolution around L2
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Appendiy

The characteristics of intermediate orbit in
the Sun-Earth systenm

. # | Constant | Libration center k
; . i fig i bz
PO ] 3.040424E-4 i
T { -D.pigoie@9s ! 9.01007B24 !
A e I 4.061074 i 3.94e522 !
P B ! ~3@1.4699 ! 2956709
| gt T i 2.084454 i 2.057814 i
P oUg A ! 2.532659 fo giggesty [
e I K { 3.229268 R -5 o S
ST e ! 0.5345734 | 0.5452636 |
G PR ) i 2.815211 fl  L.983875
* WE 0 Ty i §.293999 i 9.@39782 |
B RN ! '5.383B2% ! 5.20156B !
P71 ! @.625737 i 0.63B2i14 !
B GRS I @.1122474 OB 1137767 ¢
51 S o i B.1737287 i 0.1762985 |
- R ! B.B92B7877 i B.@9412485 |
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