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ABSTRACT

This paper deals with multiple burn apogee maneu-
ver strategies for geostationary satellites.
We present an efficient method based on dynamic
programming which is suited to the optimization
of orbit corrections. The method we present
has been designed in order to cope with the
curse of dimensionality proper to dynamic program-—
ming. The method is split in two parts. First
a simplified orbit correction problem which
corresponds to impulsive approximation is solved
using a backward dynamic programming procedure;
In the second part this solution is used to
initialize an iterative procedure which looks
for an optimum of the low thrust case. The elemen-
tary process of the iterative procedure is a
backward dynamic programming process. This method
is used to solve an highly constrained problem
submitted by the C.N.E.S. with limitation on
the total time for station acquisition, time
interval between apogee maneuvers, visibility
to ground stations and location of the spacecraft
in the orbit with respect to the sun.
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1. INTRODUCTION

Three axis stabilized satellites, like television
satellite TDFl, have a low thrust propulsion
system which can be restartable. As a consequence,
various apogee maneuver strategies can be conside-
red for station acquisition. In the particular
case of TDF1 the injection from the elliptical

transfer orbit to a near-synchronous orbit is accom-

plished with a 400 N apogee engine. An optimal
strategy minimizes the propellant consumption
subject to some mission constraints. In this
paper we will be concerned with the following
constraints limitation on the total time for
station acquisition, time interval between two
apogee maneuvers to facilite orbit determina-

tion, visibility to ground stations (the longitude
of the satellite during the maneuvers must be
included with a certain range), location of
the spacecraft in the orbit with respect to
the sun (this constraint ensures accurate attitude
determination and power generation during the

maneuvers). In order to optimize apogee maneuvers
one has to answer to the following questions:
What is the optimal number of burns?

What are the starting times of burns (and as
a corollary what are the numbers of drift orbits
between the burns)?

what are the burn durations?

Maneuver optimization is a non-linear optimization
problem with equality and inequality constraints.
This is a complex problem and it is very difficult
to find an optimal burn strategy especially
in the case where the mission constraints are
very strong. Nevertheless we know that multi-burn
apogee maneuver strategies permit to reduce
long arc burning losses, to satisfy the solar
constraints and to compensate thrust errors
(ref. 3). Methods based on 1local optimization
around a solution of the impulsive problem or
calculus of variations have been proposed to
solve this problem, (ref. 1), (ref. 2). We present
now our method.

1.1 Principle of the method

The method we propose consists of two parts.
First a backward dynamic programming procedure
is used to solve a simplified orbit correction
oroblem corresponding to impulsive approximation.
This approximation is still wvalid for a 400 N
engine (ref. 1). The resulting optimal apogee
burn strategy gives the number of burns, their
respective modules and the number of drift orbits
between them. In the second part this solution
is wused to initialize an iterative procedure
which looks for an optimum of the low thrust
case. The elementary process of the iterative
procedure is a local backward dynamic programming
process, 1i.e. the method iterates wvia backward
dynamic programming around strategies resulting
of previous computations until . an optimum is
found with a given precision. This feature permits
to reduce the curse of dimensionality. In this
study we consider only the deterministic case,
nevertheless the method that we present can
be extended to take into account thrust uncertain-
ties. The next section presents the backward
dynamic programming process for impulsive maneuver
optimization. Section 3 is devoted to the
iterative procedure applied to the low thrust
case. In section 4 we present some results obtained
in the case of an highly constrained problem.
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2. IMPULSIVE MANEUVER OPTIMISATION

In this section we consider a simplified orbit
correction problem which corresponds to impulsive
approximation. This approximation permits to
reduce the dimension of the state vector like
the dimension of the decision wvector. We note
that with impulsive thrust the velocity of the
spacecraft varies instantaneously without any
change of the satellite position. We suppose
also that the transfer orbit belongs to the
equatorial plan and that all .the burns take
place at the apogees and the thrust vectors
are parallel to the velocity vectors. So the
problem is : how to split the increment of velocity
AV = V- V. 7 Where V_ is the velocity of the
satellit® on *the geostationary orbit and V
is the velocity at the apogee of the transfer
orbit.

We give now the system equations which describe
the dynamic behavior of the satellite :

E(k+1) = C(k) (1 - E(k)) (1)
V(k+1) = V(k) + AV(k) . E(k) (2)
L(k+1l) = L(k) + H (V(k+1)) (3)

Where k, which is c¢alled the stage variable,
is relative to the kth apogee, E(k) is a state
variable relative to whether there is or there
is not a burn at the kth apogee, i.e. if E(k) = 0
there is no burn, if E(k) = 1 there is a burn.
C(k) is an artificial decision  variable,
clk) € { 0,1} . We will give further comments
on this wvariable in the following of this section.
V(k) is the satellite velocity relative to the
kth apogee, AV(k) is the module of the velocity
increment which occurs at the kth apogee, L(k)
is the 1longitude at the kth apogee, H(V(k+l))
is the drift between the kth apogee and the
k+1 th apogee, it is a function of the satellite
velocity. In the following the state wvector
of components E(k), V(k) and L(k) will be noted
X(k) and the decision vector of components C(k)
and AV(k) will be noted U(k). The system equations
(Eq. 1-3) will be rewritten as :

X(k+1) = G(X(k)), U(k), k) (4)

The constraints on the initial and final states
are :

V(1) =V, (s)
L(1) = Lt (6)
V(N+1) = Vg (7)
L(N+1) = Ly (8)
where L is the longitude at the first apogee

of the %ransfer orbit and L_ is the on-station
longitude. The process studfed will be called
an N-stages process.

The constraints are : whatever k,&il,...,N}

V(k) & V(k+1) (9)
which implies that the satellite velocity is
always increasing

L(k) < L(k) < L(k) if E(k) =1 (10)

min max

This constraint is relative to visibility to
ground station during the maneuvers.

The constraint on time interval between two
apogee maneuvers is included implicitly in Eg.
1. As a matter of fact we see that if there
is a burn at apogee k, E(k) = 1 this implies
E(k+l) = 0, so there can't be a burn at apogee
k+l. We notice also that if there is no burn
at apogee k.

E(k) = 0 so we can have two possibilities
at apogee k+l either a burn , either no burn
according to the wvalue of the decision variable
C(k).

We give now the expression of the cost function :

N
J= 3 F(X(k), Ulk),k) (11)

k=1

with :
2
FOKR) U0 )=V -0k) . (L 10 \/(1— B 1 S0 )
=4 e 14

(12)

Where ¢ is a constant and e, is the error in
declination of thrust wvector, this error is
supposed to be a constant.

Eq. 12 gives the expression of the local cost
of the maneuver at apogee k which is relative
to the error in declination of thrust wvector.
The variation of the 1local cost (in m/s) in
function of V(k) + AV(k) is shown in Figure 1.

30.0 A
27.0 - ';
~
E
20 L
-3 0 S
18.0
15.0 |
|
T 1 TR B
|
.0 i
-5 T I
|
1.0 i
0. 1 L L i I
1.500 1.900 2,300 2.700 300

WVoeie Ve km/ 5)

Figure 1. Cost of the impulse apogee maneuver
Vt = 1.597 km/s, Vg = 3.074 km/s,
ey = 1.74 1072 rd.
We have chosen a dynamic programming method
to solve the simplified orbit correction problem.
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Dynamic programming is a global decision making
procedure based wupon the fundamental notion of
feedback. The decision rules depend on the current
state of the process. As an advantage we see
that for a station acquisition problem dynamic
programming can take into account thrust uncertain-
ties, nevertheless this point is not discussed
in this study. The main drawback of dynamic
programming is the <curse of dimensionality.
The algorithm we propose is based on a backward
dynamic programming procedure.

The problem we have to solve is :

min J (13)
u(1),u(2),...,U(N)

suject to the system equation (Eq. 4), the cons-

traints on the initial and final states (Egs.
5-8) and mission constraints (Eqs. 9-10).

This problem corresponds to the optimization
of a multistage decision process. This class

of problem is the kind to which dynamic programming
applies. The basic dynamic programming approach
to the above problem consists to define a minimum
cost function I(X,k) as the minimum cost of
going to the end of the process by using an
admissible decision sequence from an arbitrary

admissible state X and an arbitrary stage k

with 1¢ k ¢€N. So :

I(X,k)= min { ; thu}.uu).i)}
U(k),U(k+1),...,U(N) {j=k (14)

with X(k) = X

Eq. 14 can also be written as the following

functional equation :

I(X,k)= min {F(X,U,(k).k)+I(G(X,U(k),k).k+l)} (15)
U(k)

The minimum cost from state X and stage k is
obtained by minimizing the sum of the local
cost F(X, U(k),k) plus the minimum cost from
the resulting next state G(X, U(k),k) and stage
k+l. Let I(X,k+1l) be known for all admissible X, Eq.
15 gives an iterative relation for obtaining
I(X,k) for all admissible X and for all k and
in particular for k=1. We notice that by carrying
the minimum cost function backward one stage
at a time we will be able to compute the minimum
cost at any state and stage. This recurrence
relation which is the fundamental result of
dynamic programming is an immediate consequence
of Bellman's principle of optimality (ref. 4).

It is clear that the dynamic programming computa-
tional procedure can be implemented only for
a finite number of states and decisions. So
it is necessary to quantize state and decision
variables. In order to cope with the curse of
dimensionality the algorithm that we propose
implements first a backward dynamic programming
procedure for a nonfine quantization. Then the
algorithm iterates around this solution via
backward dynamic programming with a finer quantiza-
tion (ref. 5).

For computational facilities the constraint
on the final longitude (Eq. 8) has been eliminated

by adding to the cost J the penalty E(X(N+1)).
The expression of the final cost is :
§ (x(N+1)) = € (L(N) - Ls)z (16)

3. LOW THRUST MANEUVER OPTIMIZATION

In this study we have concentrated on a simplified
low thrust injection problem. We have considered
a two-axis orbit correction problem i.e. without
inclination and we have neglected the terms
relative to nonsphericity of the earth, sun
and moon gravity, etc.

The system equations in earth-centred cartesian

axes are :

FE‘.’_‘-"

at = *

g-ﬂ

at = Y

dx .
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dt 3 M (17)
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dt 3 M
3 o
aM __ EF
dt goI

Where x and y are the coordinate of the satellite,
I is the earth's gravitational constant, r
is the module of the geocentric position,
£ is a parameter equal to 1 if there is a burn
and equal to O if there is no burn, M is the
satellite mass, F_ and F_ are the coordinates
of the thrust vector F, g is the wuniversal
gravitational constant and ci is the specific
impulse of the apogee engine.

In order to apply a dynamic programming method
to low thrust maneuver optimization we introduce
from Eq. 17 the following discrete-time version
of the system equations :

X(k+1) = G(X(k), U(k),k) (18)

Where the burns are held to be discrete events,
i.e. each maneuver corresponds to a stage. The
components of the state vector X(k) are the orbit
parameters of the satellite : semi major axis
a, eccentricity e, argument of perigee w, the
longitude at the apogee L and the satellite
mass M. The components of the decision wvector
U(k) are the true anomaly at start of burn
v and the burning time t_ of the maneuver. Eq.
18 comes from the following computations.

Computation of the longitude, relative to the
starting time of the maneuver from the knowledge
of the longitude at the apogee and the true
anomaly at start of burn. Change of coordinates
from +the orbit coordinates to the Cartesian
coordinates. Numerical integration of the system
equations relative to the burn. Change of coordi-
nates from the Cartesian coordinates to : the
orbit coordinates and computation of the longitude
at the apogee of the drift orbit relative to
the next stage.

The constraint on the final state is :
X(N+1) = XF (19)

Where is characterized by a semi major axis
a equal to 42164.2 km an eccentricity equal
tc zero and an on-station longitude equal to

L.
s

The constraint on the initial state is :
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X(1) = X (20)

I
Whatever the stage k the longitude of the satelli-
te, 1(k), must satisfy the following relation
during the burn in order to comply with the

constraint of wvisibility to ground stations:

1(k) € Lad(kj (21)

(672 [P Y )

min max

The constraints on attitude determination and
power generation imply that the angle Sun-Earth-
Satellite, X , must satisfy :

where Lad(k) is the segment : JL

amin <X < 2, T (22)
where o(min. .and o‘max one some constants; The
angle of verifies :

X=W+v-Pt (23)
Where w is the argument of perigee, v is the
true anomaly at start of the burn, B is the
Earth's velocity and t the time variable.

The expression of the cost function is :
N
J= 3 F'(X(k), U(k),k) (24)

k=1
with :

F'(X(k),U(k), k) = K .F(X(k),U(k),k)+K,. BV(k) (25)

F(X(k), U(k),k) satisfy Eq. 12 with :
K

. 3
d ~ sinok
Kl' Kz, K3 are some constants and AV(k) is the ve-

locity increment at stage k. Eq. 25 gives the
expression of the cost relative to the kth
maneuver. This cost is a combination of cost
relative to error in declination of thurst
and cost relative to consumption.

The low thrust optimization problem is :

mir J (27)
u(1),u(2),...,U(N)

suject to the following constraints : Eq. 18 - 22

Again for computational facilities the constraint
on the final state has been removed by adding
to the cost J the penalty @(X[Nd)] with the
following expression :

§X(N+1))=C (rp (N+1)-a)%4C, (L(N+1)-L ) (28)

where C. and C, are some constants and r_(N+1) is
the perigee ragius at the N+l-th stage. rP(N+1)
verifies :

rP(N+1} = a(N+1) (1 - e(N+1)) (29)

Notice that we are considering an N-stage decision
process. We <can apply dynamic programming to
the low thrust optimization problem. Nevertheless
the main drawback of this method remains the
curse of dimensionality because of the dimension
of this problem.

In order to cope with this drawback we propose
the following iterative procedure :

(a) Compute an initial low thrust strategy
from the optimal solution of the impulse
maneuver problem. The burn are deduced
from the velocity increments. The true
anomaly at start of burn gives symmetrical
burns around the apogee.

(b) Quantize a domain around the previous
solution and apply a backward dynamic
programming procedure on this domain.

(c) If the solution is obtained with a given
precision on the final state:
then stop
else modify the quantization increments
or move the domain of quantization and
go to step (b)

4. EXPERIMENTAL RESULTS

The research was supported by a contract with
the Centre National d'Etudes Spatiales, Toulouse.
C.N.E.S. submitted us the problem of the orbit
correction of a TDF1 type geostationary satellite,
with 400 N engine. The initial state of the
satellite is :

semi major axis a = 24371,1km
eccentricity e = 0,73
argument of perigee w = 205°
longitude at the first apogee L(1) = 90°
satellite mass M = 2000 kg

The on-station longitude required is 19° west.

The problem studied is highly constrained.
There are limitations on the total time for
station acquisition, time interval between
apogee maneuvers, visibility to ground stations :
the longitude of the satellite during the maneu-
vers must be included within a range of 60°
west, 60° East. There is also a limitation
on location of the spacecraft in the orbit
with respect to the sun : the angle sun - Earth -
Satellite must be superior to 15° .and inferior
to 45°.

The experimental results for various horizons
of optimization are presented in table 1, 2
and 3. 3

impulsive problem low thrust problem
7 L(k) av(k) v bS] &
(°w) (m/s) (o) (s) (o)
4 24.6 594.9 176.6 2670 20.4
6 59.8 820,7 175.1 2968 17.7
8 19 61.6 180.1 189 20.9
Table 1. N = 8
impulsive problem low thrust problem
L(k) AV(k) v - =4
k (W) (m/s) (o) (s) (o)
4 24.6 1028.4 174.6 4349 18.2
7 59 395.6 177.6 1312 19
/9 24 47.2 179.9 145 19.5
11 19 6 = 183.1 24 19.8

Table 2. N = 11
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impulsive problem low thrust problem

L(k) A Vik) v th o

(°w) (m/s) (o) (s) (o)
24,6 562 177 2562 20.4
54 573,5 176.6 2160 19.2

10 | 56 292,8 178.2 953 18
12 | 24 42,8 180 132 17.7
14 19 6 183 19 16.4

Table 3. N = 14

where o is the angle Sun - Earth - Satellite
at start of burn and for a thrust vector perpendi-
cular to the vector Earth - Satellite.

Table 4 gives some details on the solutions
of the low thrust problems
N
8 » T1 14
D =~ 4.5 7D 9.5
(days)
r(N+1) | 45164 42163 42163
(km)
e 6.1074 13672 3.3.107%
L(N+1)
(ow) 13 19 19
MENL) 1218 1217.6 | 1218.3
(kg)
c
{nfa) 12:2 7+6 4

where D is the duration of station acquisition
maneuvers and C is the cost of the errors in
declination of thurst.

out on a

The experiments have been carried

VAX 11/780.

The method that we present permits in a relatively
brief time to find a global optimum of the
impulsive maneuver optimization problem for
a given horizon and with constraints of visibility
to ground station. Afterwards the programmer
makes some choices on the various objectives
of the mission precision on the final state,
or error in attitude determination before the
implementation of the low thrust procedure.

The latter implementation is not time expensive:

2 or 3 hours on a VAX 11/780.

The multi-burn strategy for N = 14 is shown
in Figure 2 with geographic coordinates. The
burns are numbered and represented in thick

lines.

congbralnk
~sq000 L N6l degress west

Figure 2
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