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THE USE OF EULER PARAMETERS IN THE ROTATION OF A SATELLITE NEAR L4
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ABSTRACT

The rotational motion of a rigid body satellite
whose center of masses is moving near the li-
bration point L  is studied by using the Euler
parameters. The 'Hamiltonian form of the equations
of motion is obtained, and some inherent diffi-
culties of the problem ( singularities, triaxial
complexity, etc. ) do not appear.
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Body Problem, Euler Parameters.

1. INTRODUCTION

The problem of the motion of a rigid body satel-
lite placed in the libration point L, ,, has been
dealt with by several authors.

Most of these authors assume that the center of
mass of the rigid body is placed at the Lagragian
point (Ref. 1-4).

On the other hand, some studies have been made
supposing that the center of mass of the satellite
moves along an arbitrary periodic orbit (Ref. 5-8).
In the two last references, under assumption that
the coordinates of the center of masses of the
satellite are known functions of the time, the
equations of the rotational motion in Andoyer var-
iables are integrated by using the Lie-Deprit per-
turbation methed.

The complexity of the problem increases when the
rigid body is triaxial (Ref. 8) since the potential
function is composed by more terms, and besides,
the use of angle-action variables introduces ellip-
tic functions which increases the difficulty. In
both cases ( axisymmetric and triaxial ) some cases
of resonance appear. In Ref. 7, the resonant cases
are reduced to a generalized Ideal Resonance Prob-
lem.

However, some of this disadvantages can be avoided

by using another more convenient set of variables,
the Euler parameters.

In fact, the use of Euler parameters is of partic-
ular utility in numerical applications:

1) Euler parameters have no inherent geometrical
singularity.

2) The elements of the rotation matrix are simple
algebraic combinations of Euler parameters.

3) The time derivatives of Euler parameters are
related with the angular velocity thruogh an or-
thogonal transformation.

For these reasons, we formulate the problem in
Euler parameters, and by means of the Hamiltonian
formalism given by Maciejewski (Ref. 11), give the
equations of motion, which are a differential e-
quation system of first order which may be solved
by whatever numerical method.

2. EULER PARAMETERS

It is well known that in the motion of a rigid body
what is of basic importance is Euler's theorem:

" the general displacement of a rigid body with one
point fixed is a rotation about an axis ".

If w is the amplitude of the rotation, and ( cosua,
cos B, cos y) are the direction cosines of the axis,
the rotational motion can be represented by means
of the Euler parameters ( 945 Q9> 945 4 ) given

by the expresions 3" 4

¥ p

9= sin

(1)

cCOS a q2= sin “’E cOs B
uw

sin 5 cos y = Ccos

wlg wlg

U
These four quantities are obviously related by the
condition

Q3=

e S U L
lal“=iay + 9, ¥a,+ 95 (2)

The Euler parameters can be expressed in terms of
the Eulerian angles ( ¢, 8, ¢ ) by the relations

| e Y- T
9= sin 3 cos = 9,= sin 3 sin —-
(3)
_ E 3 Yo+ ;] vid
q3— cos 3 sin = qy= €0S 5 Ccos ——
The inverse relations are
9,9,49,9 9,9,-9,9,
¥ = arctg —laj:—z—i ¢ = arctg 13 24
ql 4 q2q3 q1q4'q2q3
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Boe B Bl D
8=arws{qqu4—ql-q2} (4

For more details about these relations see Ref. 0.

If we have two different coordinate systems, one
fixed OXYZ = X and the other mobile Oxyz - x, the
direction-cosines of the two sets of axes with ref-
erence to cach other are given by the following
expression:

X =C% (5)
where the components cij of the matrix C are

2 2 2

Cpp == q2+ qzl- q2+ qz Cap = 2 (9,9, + 9,q,)
22 1t 927 2% 9y 32 293 19

C13 = 2 (qlq3 + qu4) cz3 - 2 (qij = q1q4}

- ST PP

Besides, the parameters (q",q;,q",q")t - q" cor-
responding to the result 0} tio éucécsivc displace-
ments q', q are given by the equations

9 93 -9 9
™ Py 9 9 ] 2
qQ" 1=29 (') q

% Y Yy
-q; -1 -93
(6)

= q'=Q (q) q'

_ql -qZ -q3 q“

On the other hand, if we consider the rotational
motion of a rigid body around its centre of masses,
the relation between the components of the angular
velocity w , w,, w_ ( réferred to the principal
axes of inertia frdme, namely Oxyz ), and the
Eulerian angles ¥, 8, ¢, is:

- sin® sin¢ cos¢ 0 ¥

W, | = sin® cost¢ -sin¢ 0 8

w cos8 0 1 é
3

By means of the relation between Euler parameters
and Euler angles, the previous equation is trans-
formed into:

i-409 @3 7)

(=¥ =5
ct

)t

E|

where & = (v, @, Was 0

3. THE POTENTIAL FUNCTION

Let us consider the restricted circular three-body
problem, in which the primaries 0 ,, 0,, of masses
m,, m,, rotate around their mass centfe 0 in cir-
cular®orbits, and the satellite, which does not
perturb the motion of the primaries is a rigid
body, so that its centre of masses is moving in

a neigbourhood of the Lagragian point L, ,, so that
its coordinates can be regarded as knowﬁ functions
of the time.

The potential acting on S,, attracted by the two
primaries, given in the ch—Cullagh form up to the
second order is then (see Ref. 8)
2
Ve -G I (7 + g ( AvBiC-3T, )) (8)
i=1 5 B 1
where A, B, C, are the principal momenta of iner-
tia, I. is the momenta of inertia of S, with re-
spect to the axis which joint 03 with éi’ and
(if 0i03 .

In order to express the function V in terms of the
Eulerian parameters, we choose as a fixed plane
0.xy the plane of motion of the primaries, the
aXis 0,z is the perpendicular line to this plane,
and fiﬁally, the axis 0,x coincides with the di-

rection 0,0, ( synodic gystﬁm ) 8
Under these conditions and bearing in mind the
properties of Euler parameters, we have

a. 1 1
i

B.] =c(@m [o

; = ¢ (Q@a) |of (9

¥y 0 0

where q are the Euler parameters between to the
fixed and the inertial frame, and q' are those
corresponding to a twist of axis 0,Z and argu-
ment U= KOSOi. ( See Fig. 1 ) 3
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Figure 1. Geometry of the orbital motion

After some calculations, we obtain the following
expressions for the direction cosines a., 8., v.,
of 0§Oi ( referred to the principal axes of iner-
tia- 73
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a.= (qz-qz—q2+q2] cos u, + 2(q.9,--9,q9,) sin u;
i (e Yk ik | i 1327 4304 1

h 25 Bl
B, = 2(q1q2—q3q4) cos u, - (ql-qz—q3+q4} sin u;
(10)

v~ 2(350,+959,)

In Hamilton's equations of the motion, only the
time derivatives of the rotational variables
appears. For this reason, we can eliminate from
the Hamiltonian function those terms which do
not contain the rotational variables. With this
assumption, the potential is
2 i,

V=36 ] (&) ((A-BaZ + (C-B)v}) (an

jo1 54 » .
where u;,yf are abtained from the Egqs. (10).

4. EQUATIONS OF MOTION

The next step consists’inexpressing the kinetic
energy in a convenient set of canonical variables,
of which the coordinates are the Euler parameters,
so that the Hamiltonian equations may be used.

In 1982 Lidov (Ref. 10) gave a general method of
obtaining the conjugate momenta of the Euler
parameters, however, these parameters are ob-
tained as functions of Euler angles, and their
specific properties are not considered.

Recently Maciejewski (Ref. 11) has given another
different way of obtaining the Hamiltonian func-
tion, based on Euler-Poinsot equations.

Essentially, the method may be summarized in the
following theorem: " Let:

H(g,p,t)= g p'Q(a)Te(a)p + V(g,t) (12)

I 0 0 Q
0 I 0 0
0
0 0 0 0

and let q=q(t), p=p(t) be a solution of Hamilton's
equations

a- H
: (13)
p= -H

q

with the initial conditions:

qUOY= 4,  plod=pi. Iq*12= 13
then, q(t), w(t), where

w(t)= P3G(t]

G(t)= 3 I Qa(t)" p(r)

1 0 0 0

are the solutions of Euler-Poinsot cquations
corresponding to an external torque given by a
potential function V=V(g,t) ".

With this result, we only have to integrate
Hamilton's equations (Egs. 13) corresponding to
the previous Hamiltonian (Eqs. 12), V(q,t) being
given in the previous section (Egs. 11).

By this procedure, the Hamiltonian function is:

2 2 2
1 T1(Pi,95)  Tolpga5)  Ts(pg.a5)

) +

H= g ( A
2 3CGm.
¥ I =
i=1 2¢.
where

: B

+

C

(lB—A]Bf{qi,ui)+(C-A)T;(qi})

T,‘\pi,qj)z Piay * Ppd3 = Paly = Pya,

T2{pi’qj)= ‘_p]‘]J ¥ P2q4 + Dsql = p4q2

ijpi,qjh Pydy = Pody + Pady = Pydq

Bi{q,,ui), ?i{q.} are given by Eqs. (10), z., u.
ate known fufictions of the time and the motion

equations are:
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where

aBl

;a; = 2q2 cos u; - 2q1 sin ug

aBi

36; = qu cos u, ¢ 2q2 sin u,

3B

i i
—_ = =2 cos u. 2 sin u,
aq, 9y it i

Bﬁi

EE; = —2q3 cos u, - 2q4 sin u,

The system of Equations {13) consists in one
differential system of 8 equations of first
order, and may be solved by a classical numeri-
cal method.

A numerical study of this system and a compar-
ison of the method above exposed and the given
by Elipe (Ref. 8) will appear elsewhere.

5. CONCLUSIONS

The use of Euler parameters in the study of the
rotation of a satellite near a Lagragian point
has been introduced. This has some interesting
advantages; the resonant cases are eliminated,
equatjons of motion are differential equations
of 1 order with simple algebraic combinations
of the variables; there is not more complexity
in the triaxial case in relation with the
axisymetric.
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