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LONG-TERM ORBIT PREDICTION OF HIGH-ALTITUDE EARTH SATELLITES
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ABETRACT

The paper presents the results of an investigation
into the long-period evolution of the orbital plane
of uncontrolled high-altitude Earth satellites, un-—
der the luni-solar gravitational effects, which can
be independently treated with a good approximation
from the other long-term perturbative eifcosis. Since
the computer programs, usually employed for orbit
prediction during the satellite operational life,
result very time-consuming it was previously deve-
loped a semi-analytical model for geostationary or-
bits, that, beside of the noticeable computer time
reduction, provides sufficient accuracy over very
long periods. The model has been extended to any or
bital .inelination for high altitude satellites; in
particular, orbits highly affected by the motion of
the lunar orbital plane have been investigated.

Keywords: luni-solar perturbations, circular orbits,
long-term orbit prediction.

1. INTRODUCTION

The perturbations acting on the orbital plane of re
latively distant satellites (altitude greater than
two Earth radii), due to the gravitational attrac-
tions of the Sun and Moon, become comparable ic that
one due to the Earth oblateness. Then the satellite
pole moves from its initial position according to:

i) two short-term periodic evolutions caused ty the
different temporal orientation of the satellite
orbital plane with respect to the distant per-
turbing body positions; the corresponding pe-
riods are about one half of the evolution time
of the perturbing body relative motion with re-
spect to the Earth. For 2h-hour satellites the
maximum amplitude in inclination is about 0.025
deg for the solar effect, while values around
0.0035 deg are found for the lunar one (Ref. 1);

ii) a long-term "periodic" motion with periocds from
5 to about 400 years depending on the satellite
altitude and on the initial conditions of the
orbital pole. For no longer controlled geosta-

tionary satellites a period of about 53 years and a
maximum inclination of about 15 deg are found.

While the short-term evolution can be evaluated by
an accurate numerical integration of the equations
of motion, the long-term evolution of the orbital
plane has been facad by approximated approaches,
which allow a significant computer time reduction.
Although most of them are oriented to geostationary
orbits and valid for small inclinations (i < 18°)
(Refs. 2-5), general but gqualitative results can be
obtained in closed form if the lunar orbital pole
is assumed coincident with the ecliptic cne (Ref. 6).

A geometrical model, including the effect of the lu
nar plane motion, has been developed by the authors
in a previous work for predicting the long-term evo
lution of geosynchronous orbits (Ref. T). The re-
sults have shown a satisfactory agreement with cor-
responding orbital predictions obtained by accurate
numerical computations. This simplified model, that
averages the disturbing functions over the mean ano
malies of the satellite and of the perturbing bo-
dies, does not take into account otk“er Jong-term
perturbative effects, such as the sclar radiation
pressure and the higher terms of terrestrial gravi-
tational field, which significantly affect the pole
motion only after a few decades. On the other hand
the disturbing function includes the n lower term
of the gravitational attractions of the Sun (n = 3)
and the Moon (n = 6). With the same assumptions, the
long-term orbital pole evolution of distant circu-
lar orbits for any initial conditions has been in-
vestigated in this paper; in particular, the trajec
tories highly affected by the lunar plane motion
have been considered.

The results, whose accuracy has been verified by ac
curate numerical predictions, show significant dif-
ferences from the trajectories obtained by means of
methods considering a fixed geometry.
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2. THE ORBITAL POLE EVOLUTION

2.1 Geometrical considerations

With the aforesaid assumptions, the long-term mo-
tion of the satellite orbital pole (K) is decrribed,
in an inertial frame, by the vectorial equation, on
ly valid for circular orbits:

L
K=K=*R (1)

where ﬁ is the resultant of regressions arowd tiree
axes corresponding to the solar and lunar orbital
poles and to the terrestrial polar axis. Whereas the
ecliptic pole can be considered fixed, the Moon or-
bital pole is regressing around the ecliptic one
with a period of 18.61 years at a constant inclina-
tion of 5.145 deg.

For short-time intervals, the lunar orbital pole
can be assumed in a time-averaged fixed position
and then the simultaneous precessions are performed
around fixed axes and the differential equations of
motion can be solved in closed form. Two prime in-
tegrals can be found: the first giving the known
condition that the magnitude of the satellite angu-
lar momentum is a constant (which reduces to unity
with a suitable normalization), while the second
one implies that the disturbing function is a cons-
tant of the motion (A,). This latter condition, re-
ferred to an inertial rectangular frame represents
a quadric surface, which is generally an ellipsoid
but becomes an elliptic cylinder when the three re-
gression poles are Eoplanar. For any fixed position
of the lunar pole, K moves on a spherical ellipse,
intersection of the ellipsoid (or elliptic cylin-
der) with the unit sphere, and its temporal evolu-
tion is given by an elliptic integral of the first
kind.

As a consequence of the lunar plane regression, the
intersection is time-varying and the motion of the
satellite orbital pole, starting from the initial
conditions, can be faced by means of a step-by-step
procedure (Ref. T).

The principal axes of the guadric surface (£, n, Z)
move, with the same period of the lunar pole motion,
around three directions corresponding to the princi
pal axes (x, y, z) of the elliptic cylinder obtain-
ed when the lunar plane is assumed coincident with
the ecliptie. While y is always coincident with the
Vernal axis, the directions of the other two axes
(the rectangular frame being right-handed) are de-
termined by the angle § measured counterclockwise
from the terrestrial polar axis; 6 increases with
the satellite altitude (h), going from almost zero
for h = 2Rg to about 18 deg at h = 9Rg (being Ry
the Earth's radius) (Fig. 1).

If the eigenvalues of the matrix associated to the
quadric surface are coniidered in inecreasing order
Ay < X; < A3, the pole K will performe a long-term
trajectory encircling the z axis if X, < Ay < Ay, 0r

y axis if Ay € Ag € A,3 on the contrary no trajec-
tories are performed around the x axis (A, = Az}.

The two allowable families of trajectories are sepa
rated by the circles deriving from the intersections
of the unit sphere with "1imit" planes, whose common
straight line is the £ axis and whose inclination
with respect to the £n plane is a (Fig. 2), varying
also with the satellite altitude (Fig. 1).
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Fig. 1 - The inclinations, &, of the x-y plane
with respect to the equatorial one, and
a, of the "limit" planes with respect
to the E-n plane as functions of the or
bital semi-major axis (in Earth radii).
The dashed wvertical line is relative to
the 2h-hour orbit.

Fig. 2. Trajectories of the satellite orbital pole
on the unit sphere relative to a generic

position of the lunar orbital plane:

A,<x,;@xu>xz.
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2.2 Tempor:l evolution

The quadric surface equation written in its canoni-
cal form is

Xo B2 X n?k Xy 22 m iy (2),

however the position of the satellite pole on the
performed trajectory, for the sake of convenience,
is determined by the two polar coordinates: the =re-—
length from the axis around which the pole is mov-
ing (n or C) and the dihedral angle measured from
the plane on which the semi-major axis of the sphe-
rical ellipse lies (Fig. 2). The sphero-conic, in-
tersection of the quadric with the unit sphere. can
so be written

sin® p cos?y sin’p sin’y
A2 B?

> L (3)

where the coordinates (p,¢) and the semiaxes (A,B)
are expressed in Table 1 for the two cases respec-
tively. For any fixed position of the prineipal
axes, the temporal evolution of K on the sphero-co
nic is described by the equation

g
3y

()

a
S (cosp) = -

which becomes

dp
v 1 - k? sin?p

after introducing an auxiliary angle u defined by

Hdt = (5)

Crgns sinp cosy¢
A
(6)
Sinp eine
B

"

cos |

The expressions assumed by the angular velocity H
and by the modulus k are shown in Table 1.

In order tc sclve the elliptic integral of tie first
kind (5) for any value of k (0 £ k < 1 according to
the initial position of the pole ﬁ}, the Landen
transformation and thke Gaurs limit, linked with
arithmetic and geometric means, have been used (Ref.

8).

3. EXAMPLES OF K EVOLUTIONS

The lunar plane motion can remarkably influence the
long-term orbital plane evolution of high altitude
satellites; the results, obtained either when the
lunar pole is assumed coincident with the ecliptic
one or when the effect due to the motion of the lu-—
nar pole is considered small, do not turn out to be
acceptable for any initial condition and satellite
aititude. The use of the geometrical model allows
instead to predict the satellite pole evolution with
a sufficient accuracy.

The lunar pole regression around the ecliptic in-
fluences the trajectories of ﬁ, expecially when the
initial conditions are close to the evolutions of
the n and T axes. Whereas [, inclined of an angle Yy
with respect to z, performes almost circular trajec
tories on the unit sphere, n evolves as in Fig. 3.
Table 2 shows, for several orbital semi-major axes
(in Earth radii), the corresponding values of &, of
the maximum amplitude (Emax} assumed by n with re-
spect to y and of the mean value of y (¥).

For 2k-hour orbits (r/Rg = 6.6), typical evolutions
of ¥ have been considered with different initial
conditions. Figures 3 and U represent {wo evolu-
tions around the y axis; the effect due to the lu-
nar plane motion appears significant even when t&e
initial position of the satellite orbital pole (K,)
is rather distant from the trajectory of n (Fig. 3).
This stems from the large values assumed by €.

Table 1.

n axis L axis
A [}o = h]lh [M] i

2~ M Ay = A
; [J\O—MJ'/' [Aa-xg]‘“

Ay - 4 Az - A
H Lk = Xed 100 i S ) R (OB DS Y
: [u! R Ai]”' [u, g = A) ]"*

()‘3 = AD} (k; 3 )lil ()lg = Alj (k; = A;}

P n' ok
) Q! ‘pll




342 C ULIVIERI & A AGNENI

2R
N

Fig. 3 - a) - Time evolution of the n axis around y
on the unit sphere; its inclination
on the plane x-y is almost §;

b) - 200 year evolution of a 2h-hour satel
lite orbital pole, whose initial con-
ditions are: i, = 88.3 deg, 2, = 98.2
deg and epoch Jan. 1985.

Fig. 4 - Evolution of a 2i-hour satellite pole,
whose initial conditions are: i, = 90.1
deg, 1, = 90 deg and epoch March 1969.

Table 2.
r/Ry | 6 (deg) | e, (deg) | ¥ (deg)
3.0 0.19 8.939 0.026
L.5 1.47 8.9k2 0.20k
6.6 7.40 8.961 1.092
10.0 | 18.83 9.298 2.892
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Fig. 5 - Time evolution of K for a geostationary

satellite:
i, = 0.33 deg, R, = 94.1 deg and epoch
July 1983,
x z __-uﬁﬁa\q\\\\\ij\\\I.zo
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Fig. 6 - Time evolution of K for a 2h-hour satel
lite with the following initial condi-
tions:

i, = 7.4 deg, 2, = 0.5 deg and epoch Jan.
1969.

On the contrary, the small values of Y and the al-
most circular trajectories of [ make ' perform smoo
ther evolutions, which are rather similar to sphe-
rical ellipses when the initial position of the sa-
tellite orbital pole is far enough from z (Fig. 5).
When Ro is+close to the C trajectory (in particular
in Fig. 6 K, is inside it) the K evolutions Lecome
strongly deformed.
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For semi-major axes different from 2L-hour orbits
the evolution of K is simikar; Figure T shows the
evolution for r/Rg, = 10 and K, located inside the f

trajectory.
J
|

Fig. 7 - Temporal evolution of K for the conditions:
i, = 18.89 deg, §p = 4.55 deg and epoch
Apr. 1978.
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A different behaviour has been found when the angu-
lar velocity H becomes almost equal to the lunar po
le regression rate (19.3l4 deg/year). This happens,
for example, if the satellite is placed at r/Rqg = L.5kL,
Figures 8 and 9 represent the K evolutions for two
different initial conditions; one can see that, af-
ter an initial approach to z axis due to the relati
ve initial positions of K and z, in the long run
the satellite orbital pole assumes a spiral-shaped
trajectory. Because of the small value of ¥, almost
circular evolutions have been found for initial con
ditions distant from z.
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Fig. 8 - Temporal evolution of the orbital pole
for the initial conditions: i, = 1.5 deg,
f; = 11.01 deg and epoch Apr. 1978.
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Fig. 9 - Temporal evolution of % for the initial
conditions: i, = 0.1 deg, @, = 0.1 deg and
epoch Jan. 197k,

The long-term orbit predictions, obtained with the
geometrical model, have been compared with the re-
sults of a propagator, which numerically integrates
the equations of motion, over almost two decades.
The comparison, made for evolutions highly affected
by the lunar plane regression (cases in Figs. 3, 8
and 9), has shown a satisfactory agreement as for
the geostationary orbits.
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