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ABSTRACT

In this article we present a new canonical trans-
formation which is useful to describe the orbital
motion of a particle, and involves redundant va-
riables. We show that it shares interesting pro-
perties with the KS transformation. When the per-
turbation comes from the oblateness of the prima-
ry body, it seems reasonable to use the canonical
equations , because their right hand parts re-
sult into polynomial expressions. In any case, we
can use the transformationto reduce the two-body
problem to four harmonic oscillators. Even more,
their common fregquency is equal to one if we use
a new time coincident with the true anomaly. We
think that this transformation could be used as
an alternative method for an efficient calcula-
tion of orbits.
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1. INTRODUCTION

The use of the KS transformation is a proper way
to get high accuracy solutions for orbital problems.
We refer only to some of the many properties of
this transformation which are extensively treated
in the book of Stiefel and Scheifele (Ref. 1). If
the orbit is a perturbed ellipse and we introduce
a time proportional to the eccentric anomaly ,
the KS transformation reduces the two-body pro-
blems to four perturbed harmonic oscillators.
Even more, the canonical KS version allow us to
take advantage of the Hamiltonian formalism.

It would be highly desirable to have a canonical
transformation to reduce any kind of orbital mo-
tion to perturbed oscillators, without #osing
certain properties of the KS-transformation. Such
is the main purpose of this paper.

We first define a transformation from the Carte-
sian canonical variables to a set of eight redun-
dant variables which we prove is canonial. The de
finition of the new coordinates is very simple,
since they can be considered as homogeneous Carte
sian coordinates in a projective space. The expan
sions of the potential are far more simpler in

our case than if one uses the KS variables. Howe-
ver, the definition of the momenta turns out to be
complicated, and the transformed Hamiltonian is not
a..- harmonic oscillator one. As it happens
with the KS transformation, the new variables
satisfy a sort of bilinear r_elationship that
may be used as a check in the numerical integra-
tion of the canonical equations.

In the third section we introduce a ficticious ti-

me proportional to the true anomaly. In this way

we obtain canonical equations that have polynomial

rigth hand sides when the potential is due to the

oblateness of the primary.The problem, formilated in the
new variables, has three first integrals, which can
be used to transform the canonical equations in ma

ny possible ways. This section ends up with a geome
tric interpretation of these variables.

Further on, we derive second order equations for
the coordinates, that are four perturbed harmonic
oscillators. Their common frequency can be taken
either as the magnitude of the angular momentum or
as one, if the new time coincides with the true
anomaly.

We finish this communication showing that we can mo
dify our canonical set insuch a way that the ra-
dius becomes a coordinate, and we obtain eqguations
with polynomials in the rigth hand sides if the po
tential does not contain negative powers of the ra
dial distance.

2. DEFINING A NEW SET OF CANONICAL VARIABLES

Let us consider the motion of a particle under a
potential V that depends only on its position. We
denote by X = (X , X,, K3) the location vector,
P = (P,, P2 P.) ]the %artesian conjugate momenta
vector, and” |P[ the norm of P. The particle's or-
bit: is the solution of the canonical equations

for the Hamiltonian.
H=% |P|% + ¥(x) (1)

Let x_, Xyy X and z four new coordinates of the
particle's pcs%.ticm related to the original X by

X, = xi/z

" (1 =1,2,3) (2)

Equations (2) define a maximum rank transformation
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mapping the space of vectors x = (o 0o, 3., 2),
with 240, on the ordinary space; the pre-image
of a point X being the straight line {z(xl,xz.x ,1);

240} . Let us define a vector p = (pﬁf Pyr Py ef )
following = rela-

of new momenta verifying the
tionships
X2
P, = p;2 - o (e p) . E=71,2.3) (3)

where x = (xl, X5 x3) and (x, p) stands for the

doot product.

To simplify the simbolisms, we occasionally write z
and p_as X, and p,. The roman indexes will be zs-
sumed to range rom 1 to 3, the greek ones
from 1 to 4, and we use Einstein's convention.

Taking Eqs. (2) and (3) into (1) we get a new

function
2 4
Pz 22

Helpl%? vy —2p - oBLZ Ly ()
[x| x|

where (x,p) = XPis and

vix) = G(xllz, x2/z. x3/z} (5)

We shall see later on that using Egs. (3) we
can extend the change of coordinates (2) to
a canonical transformation increasing the number
of variables, the function (4) being the new
Hamiltonian. In fact, when we substitute into
Egs. (2) and (3) a solution of the canonical

equations
s _am g _aH 6)
= % ==
dt apa dt axu
we pget a solution to the original problem,
as long as the initial values x°, p° satisfy
certain conditions.
Let us prove the following lemmas.
Lemma 1.- The bilinear expression
T(x, p) = {x, p) (7)

is a first integral of the new canonical equa-
tions (6).

Proof.- It is sufficient to show that the Poisson
bracket {T,H} , defined in the new variables
X, p, becomes zero.

Let H, = H-V. A trivial calculation leads to
the equality ({T,Hj= 0.
On the other hand,

since the function V was

generated from V according to the identity
(5), it follows
X = =
3 N TI ) (8 v _ 1 a8V (8)
3z 2 ax. A ax.,. & ax.
z i i i
From (8) and (9) below
) SR | B .| (9)

3z i A,
i

we get T,V) = O. This completes the proof.
Lemma 2.- For any set of initial conditions X°, P°
in the original problem (1), one can choose a set

of initial values x°, p° for the new variables

to satisfy
™Mx ,p)=(x,p)=0 (10)
Proof.- Let us relate the new and old initial

values for the coordinates by

X3 = x;/z° (11)

If we take p; and p; to be

B2 = P8/zP , P = —(X°,PR)/2° (12)

it is obvious that Eq. (10) holds.

Using the above Lemmas we can prove our main result

Theorem.- Assume that the initial values
b for the new variables. obtained from
original initial wvalues X° , P? , satisfy the
relation (10). If the corresponding solution

x(t), p(t) of the canonical system (6) is trans-
formed by Egs. (2) and (3), it will give us
the solution of the original canonical system,
with the given initial wvalues X°, P?.

Proof.- Functions x(t), p(t) are the solution
of the Pfaff's system associated with the form

w= pdx - H(x,p)dt (13)
for the initial values x°%,p°.
If we substitute into (13) the equations

. de .. (%P
B EER wily =0 By SR ()

we get the new expression for w

w= P.dX - H(X,P)dt (15)

where H turns out to be the Hamiltonian given
in Eq. (1).

It is obvious that x(t) and p(t) are transformed

through (14) into a solution of the Pfaff's
system associated to the form (15), satisfying
Xi(t} = xi(t)IZ(ti » Po(t) = py(t)z(t) (16)

Functions X(t), P(t) are,in this way, solutions to the system
(1).Lemma 1 and condition (10) allow us to write T(E(t),g(t)]:ﬂ
for all t. Accordingly, (16) are precisely the finctions
that one would get putting the curves x(t), p(t) into ex-
pressions (2) and (3). il

Q.E.D.

Finally, let us remark that since T=0 along the solution
to Egs. (%). we can simplify the Hamiltonian (4). Those
terms in T can be removed, and we can write the equivalent
Hamiltonian K

(x,p)zapz
= 2
|

2
22 x,p)z
|p|2 = ( m

i
|
2 2
Ix| Ix

+V (17)
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3. EQUATIONS OF MOTION WITH RESPECT
TO A FICTICIOUS TIME

Assuming a Newtonian attraction, the potencial V
can be split into the Keplerian potential plus
a perturbing term U,

V(x) = — 22 4 u(x) (18)

3 x|
with p the reduced mass of the particle.

In what follows it would be convenient to introdu-
ce the homogeneous formalism. Let x, be the
extra coordinate coinciding with the physical
time, and p, its conjugated moment, with values
defined in order to satisfy

Ho=H+p, =0 (19)

in the new homogeneous Hamiltonian H

h

To simplify the equations of motion in the
new variables, we will introduce a suitable
ficticious time, proportional to the true anomaly.
We choose the new time s as a solution of the
differential equation (20)

z  ds (20)
The resulting Hamiltonian is

f, = 51p1%1x1% + 502 2% - xip)® -
Cha 5:fy g\,

2
—-lgl o+ Wt pulfé— = 0 (21)
z
with
w=[x2z2y (22)

If one uses (.)' for the derivatives with respect
to s, the canonical equations from (21) are

A 2
xi = | x| p; - (x.p)xi
A 22
= pz
¥l - lezz_2 (23)
2p.X.,
] 2 I‘xi aw 873
ph== Ipl X; ¥ (X.D)Di e e e
z x|
2
oy p2 o ulx]_ _aw " 2p, | x|
& z 2 3z 3
z z
pl =0 (2a)

Eq. (24) for p, shows that we are dealing with
a conservative system. We use this restriction all
along the paper for simplicity, since the main re-

sults will still verify without such a restriction.

It is useful to note that the following simple
statement holds.

Proposition.- lx12 is a constant of motion,
which can be taken as 1.

Proof.- From Eq. (20) we deduce that xixi = 0.

X -1
If we determine x°, p® to . satisfy z° = [X°| ,

plus relation (9), then |x]® = 1. This is always
available if we exclude the unlikely possibility
of colission at the initial time.

With this choice, variable x can be seen as
the wunitary wvector in the direction of the
particle, whereas z is the inverse of the radial
distance. In the same vein, Egs. (14) show
that Py has the dimension of an angular momentum.
With regard to s the bilinear relationship
T = 0, plus Eq. (16), lead us to Eg. (14),
indicating that P, is the velocity of variation
of z.

We finally point out that the equations of
motion (23), (24) can be modified by introducing
in their right hand sides some of the first
integrals for our 2problem which we have refered
above: T = 0, |x|® = 1 and the energy integral,
which can be written as in Eq. (21) or alternati-
vely as

p
e R 20
—¢ + 52 ot (25)

where ¢ is the norn of the angular momentum.
This statement follows from the identity

? = 1x1%1p1® - (x,p)? (26)

From the last two integrals, we come to the
transformed equations

x! = p; - (xp)x;
| Hp—
2! =zip,
x! = 1/22 (27)
and either
e B e +“xi _ AW _Ep""i
By TRl +BIPG z ax, 2
1 A
2p
2 u aw o
| ety —— -—
iR 2 2z 3 (28)
A A

or
o B R
2= (x.p)pi z ‘i 2

A 1
T 2 p, g 1 @&d
p) =-2p, + —5 —Ipl e (29)

z z 2k

Some other systems are similarly available. The fi
nal choice of one of such systems will depend
upon proper numerical simulations.

4. REDUCING THE PROBLEM TO THE OSCILLATOR FORM

The canonical equations for the coordinates
and the momenta can be substituted alternatively
for a set of perturbed second linear equations.
In fact, if we substitute Egs. (23) and (24)
into the derivaE}ves of Egs.(23), and consider
the integral [x|® = 1 and the integral of the
energy (25), the following equations are obtained

x" + czx, FPs 01 ( 2N
i 1 axi ax

,x)xi (30)
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au

32 (31)

2" + ¢’z = T

where 9W/ 3x is the gradient of W with respect
to x.

The frecuency of the perturbed oscillators
(30) and (31) varies according to the law

1, 3w
===

') (32)

c' =

and is not constant but in rather particular
cases.

For instance, in the Keplerian case, W= U =0
and our problem reduces exactly to four harmonic
oscillators. The frecuency will be also constant
if the potential only depens on the radius.

In the general case, when ¢ is not constant,
the wuser will have to make his choice, and
perhaps use Egs. (27) and (28). They are simpler
when the perturbations are due to the oblateness
of the primary, since then their right hand
sides are polynomials except for a few terms.

We can get alternative but similar equations,
in which the frecuency turns out to be the
unity.. Defining a time v by means of relation

2
dt = J%I—d\r. (33)
z [+

it will coincide with the true anomaly.

The reader can obtain those equations by simply
noting that (.)" = (1/¢)(.)', where (.)' means
the derivative with respect to v.

A line of argument similar to the one used
at the opening of this section will lead us
to the following second order equations

——-)fci ] (34)

£ zm i—[u-ﬂ—u.—"%u] (35)

Let us finally comment that all the equations
obtained are independent of the type of the
orbit, and so are particularly interesting
when the trajectory is not necessarily elliptic.

5. AN ALTERNATIVE SET OF EQUATIONS

It is advantageous to have equations of motion
with right hand side members being polynomials
in the wvariables, since it will decrease the
local error in numerical integrations. In the
case of interior three body problems, we can
get equations with this property using canonical
variables (x, r, p, p_) obtained from (x,z,p,p_ )
by defining r =

X stz ., Py == pz/zz (36)

It is obvious that this change of variables
gives a canonical transformation, which leads

to the Hamiltonian

1 2, .2 1 2 2 1 2
* = — — — —
HE = =l tIx|T s e > (Pyx)
—ux|r + we 4+ p°|x[2r2 (37)
where
w* = r2|x!2U, (38)

and we use the time s introduced in Eq.(20).

The resulting canonical equations are

Xy =py - (x,p)x;
Pl P
=r pr
2 r2 (39)
2 o wW* 2
pi = - |pl X, + (x,p)xi + HTX, - = 2p,r x5
i
b i D awx
P, = -FP_ + B = 35— = 2p,T (40)

They have polynomial right hand side expressions,
whenever W* does not contain negative powers
of r.
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