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Abstract 

 
 Two attitude determination procedures based on GPS 
carrier phase interferometry for spin stabilized satellites 
are revisited. Especially their algorithm to solve the 
integer ambiguity problem is reformulated in order to 
overcome a restriction to non-slow spin rates. The 
approach is based on the kinetic constraint due to the 
spin stabilization. Also a closed-form is presented to 
solve the signal ambiguity which appears when 
processing the double-difference of carrier-phase. It is 
obtained from invariant properties of vectors under  
finite rotations. Numerical results are presented using 
simulated data and real data from a ground experiment. 
 
Key words: GPS, Spin Stabilized Satellites, Attitude 
Determination. 
 

Introduction 
 

 On a previous paper1 a procedure for attitude 
determination of spin stabilized satellites from GPS 
interferometry was presented. The approach is based on 
the single-difference of carrier-phase measured by a pair 
of antennas linked to a single GPS receiver. Due to 
operational constraints on the available ground test 
facilities, a variation of the procedure was later 
developed2 based on double-difference of carrier-phase, 
which is able to process measurements from a pair of 
antennas linked to distinct receivers. Both procedure 
versions take profit of the sinusoidal pattern of the 
observed signal to get attitude information from its 
amplitude and phase. The concept was thus proved by 
ground tests3 carried out at the Instituto Nacional de 
Pesquisas Espaciais – INPE, in the context of a 
cooperation agreement between INPE and Universidade 
Federal do Paraná, UFPR.  

 The way adopted in Refs. 1-3 to cope with the integer 
ambiguity, which is always present on carrier-phase 
observations, is quite simple and efficient but imposes a 
given upper bound to the satellite spin rate4. 
Unfortunately, for sampling rates offered by current 
GPS receivers and typical values of antenna baseline 
length, that requirement represents a strong limitation 
for practical applications. 
 In this paper, one removes such limitation provided 
the spin rate is known within a given uncertainty 
boundary. A triplet is selected from the data sample and 
tested with every admissible integer ambiguity solution. 
The optimal solution is found by checking the goodness 
of fitting of the triplet-based sinusoidal with respect to 
the whole sample. 
 One also presents a new approach to solve the signal 
ambiguity on the double difference based solution. It is 
based on two invariant properties of vectors under 
rotation and it avoids the time consuming numerical 
search of the original procedure2. 
 A proof of the concept algorithm was implemented 
and tested using both simulation and ground test data. 
The results are presented and analyzed. The study 
intends to be a preparatory step to further analysis of the 
procedure performance using the DLR ground test 
facilities. 
 

The Integer Ambiguity Resolution Algorithm  
for Slow Spin Rate 

 
 Only the fractional part of the carrier-phase is reliable 
for attitude determination, not subjected to cycle slips. 
In this case, the between-antenna, single-difference of 
GPS carrier-phase observable5 for the p -th GPS 

satellite for a pair of antennas )2,1( over a spinning 

baseline at a given time t may be modeled as: 
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where ω is the spin rate; 0t is a reference time; 2,1τ is 

the time difference between receivers due to clock 

instability; pN is the integer ambiguity;pv is a random 
white sequence with standard deviation σ; b  is the 
baseline length; λ  is the GPS carrier wavelength; and 

pA and pB are coefficients related with the p -th GPS 

line of sight aspect angle pθ and its phase angle pα at 

0t : 

 

,  cossin pppA αθ=                  (2) 
 

.  sinsin pppB αθ=                  (3) 
 
 The first step to estimate the satellite spin-axis attitude 

and its phase angle is to estimate pA  and pB  from a 

given data sample { })(,),( 2,112,1 n
pp tt φφ L  for each GPS 

satellite. The model equation (1) is affected by four 
different kind of disturbances: the first one is 
represented by the term 2,1τ  which may be eliminated 

by connecting both antennas to the same receiver or by 

taking the double difference op,
2,1φ  between p -th and o -

th GPS satellites; the second one is the integer 

ambiguity pN , which needs to be resolved; the third 

one is the random noise pv , which asks for a statistical 
approach such as curve fitting, for instance; and the last 
one is an unknown bias δω at the spin rate, which must 
be considered but not necessarily estimated. 
When the spin rate is slow enough that assures that the 
relative motion of the antennas during the sample 
interval is smaller than a half-wavelength, then the 
carrier phase difference splits in a discontinuous, two-
folded sinusoidal pattern. So, the integer ambiguity can 
be easily removed1 by adding to each data the necessary 
integer amount that makes it as close as possible to the 
already corrected value of its immediate previous data 
(see Fig. 1). The first integer ambiguity may be 
regarded as a third coefficient to be estimated together 

with pA  and pB , and is indeed meaningless to the 
problem. 
  
 

 
 

Figure 1: Preprocessing GPS carrier-phase - 
Ground experiment data, slow spin rate 

 
 This algorithm works if the following empirical 
condition is satisfied4: 
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If Cond. 4 is not fulfilled the split sinusoidal pattern is 
lost and the algorithm fails to retrieve the original 
information. This means for instance that for a typical 
baseline of 1 m and a sampling rate of 1 Hz the spin rate 
should be smaller than 1rpm. Even considering the state 
of the art GPS receiver with a sampling rate of 10 Hz 
and a small baseline of 0.5 m it could be acceptable for 
some satellites like the Scientific Applications Satellite 
SACI (designed to spin at 6 rpm), but not for many 
others, like the environment Data Collecting Satellite 
SCD1 (currently at 50 rpm) or his twin brother SCD-2 
(about 30 rpm). Indeed Cond. 4 restricts considerably 
the use of this algorithm in real missions. 
 

The Integer Ambiguity Resolution Algorithm  
for Arbitrary Spin Rate 

 
 In this section a new algorithm is presented to solve 
the integer ambiguity problem for a spinning baseline at 
arbitrary spin rate. The approach is based on the 
assumption that the spin rate is known accurately 
enough to establish a kinetic constraint, which 
eliminates false solutions. The necessary mathematics 
derived below is cumbersome but the approach itself is 
comparatively simple and may be shortly explained as 
follows. In a first step, the domain of candidate triplets 
from the data sample is scanned. The triplet that 
minimizes the residual covariance of the triplet-based 
curve fitting is selected as the optimum triplet. Then, the 



domain of admissible integer ambiguity on the optimum 

triplet in a given range limlim )( NtNN p ≤≤−  is 

scanned. The values that minimize the weighted average 
of the optimum-triplet-based curve fitting are selected. 
Once the model is fitted the whole set of integer 

ambiguity )( k
p tN  is resolved by minimizing the 

correspondent absolute value of the residual for every 
sample time kt . 

 
The Least-Squares Approach 
 
 Both antenna and GPS indexes will be omitted in this 
section for the sake of clarity. In this way, regardless the 
application case uses either single or distinct receivers, 
one may write: 
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where φ  is the fractional observable; f  may be 

thought as a full observable; and limN is the integer such 

that: 
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for the single difference case, and: 
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for the double-difference case. 

 Let if and i
kN  be the i -th reference values of the full 

observable and its integer ambiguity respectively; and 
ic  the related coefficient vector respectively defined as: 
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where •′  denotes transpose. From Eqs. (7) and (9) one 
may write: 
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 Let Φ be the fractional observable vector; iF  the full 

observable vector; iη  the integer ambiguity vector; V  

the noise vector; and Ψ  the base-function matrix 
defined respectively by: 
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So, Eqs. (5) and (6) may be rewritten in matrix 
representation: 
 

iiF η+=Φ   ,                (18) 

 

VcF i +Ψ=   .                (19) 
 

 The problem of estimating ic  by the least-squares 

method given iF  is straightforward and gives: 
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where •̂  denotes the least-squares estimate. The 

estimation error icδ  and its covariance matrix iC  
considering the uncertainty in ω  due to an unknown 
bias with standard deviation ωσ are given by: 
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where Θ  is a diagonal matrix and D  is a skew-
symmetric matrix respectively given by: 
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 Unfortunately this solution relies on the knowledge of 

the full observable vector iF  which due to cycle slips is 
not observed indeed. If the integer ambiguity were 

known, iF  could be retrieved from Φ  and 

consequently ic  could be so estimated from Eq. 20. 
 The spin axis attitude and its phase angle may be 

estimated from the first two elements of ic  for single1 
and double2 difference cases. The whole problem is 
therefore depending on the integer ambiguity resolution. 
 
The Triplet-Based Solution 
 

 Instead of trying to find out the entire vector iη whose 

domain contains 1
lim )12( −+ nN  unknown elements (for 

iN i
i ∀=  ,0 ), it is more reasonable to start by guessing 

only two of their values. 

 Let kji ,,~η  be the reduced integer ambiguity vector 

associated with the triplet ),,( kji : 
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and nxkjiH   3,, ℜ∈  a related sparse matrix with element 
),( sr  given by: 
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where ji ,δ is the Kröenecker symbol. The matrix kjiH ,,  

is designed to extract a triplet ),,( kji  from an arbitrary 

vector on nℜ . 

 In view of Eqs. 15, 26-27 one may write: 
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 The ),,( kji  triplet-based least-squares estimate of ic  

is given by: 
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and the estimation error is: 
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Residual Analysis 
 

 Once kjic ,,  is estimated, the ),,( kji  triplet-based 

estimate of iF  may be retrieved: 
 

kjikji cF ,,,, ˆˆ Ψ=   ,               (32) 
 
with its associate residuals: 
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 The residual uncertainty is: 
 








 +
ω

δωΘΨ=δρ VcDG kjikjikji ,,,,,, ˆ   ,             (34) 

 

( ) ,  ,,1,,,, kjikjikji HHIG
−

ΨΨ−=               (35) 

 

where I  is the identity matrix on 3ℜ . Therefore the 
residual covariance matrix is: 
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 The optimal triplet should minimize the trace of 

kjiR ,, . Nevertheless, at this point kjic ,,ˆ  is still 



unknown. So, a sub-optimum triplet is selected which 

minimizes the following superior limit of kjiR ,, : 
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where {}⋅tr  denotes the trace of a matrix. 

 
 The cost function can be finally defined as the 
weighted square average of the residuals of the selected 
triplet: 
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 The entire domain of 2
lim )12( +N  integer possibilities 

for the pair ( )i
k

i
j NN ,  is searched and their respective 

cost functions are evaluated. The optimum solution 
corresponds to the minimum value of the cost function, 
whose expected value is given by the number of degrees 
of freedom of the problem: 3−n  
 
Some Practical Aspects 
 
 In practice it was observed that the optimal solution 
always corresponds to symmetric triplets with respect to 

it . This means that only the triplets of the form: 
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 Also some possible pairs ( )i
k

i
j NN ,  are mutually 

exclusive. This eliminates about 25% of the search 
domain. Therefore, the total number of required cost 
function evaluations is nearly given by: 
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 From Eqs.41-42, the number of candidate solutions to 
be tested grows with the square of the sample size and 
the baseline length. This may represent a considerable 
time consuming task especially for on-board 
applications, although still feasible in view of currently 
available microprocessor technology. In this concern 
one should note that the algorithm is supposed to be 
needed only to initialize the process, when no a priori 
information is available. Afterwards the estimated 
coefficients could be used to extrapolate )(tf  and thus 

propagate the integer ambiguity in a recurrent way. 
 

The Signal Ambiguity Resolution 
 
 The p -th GPS line of sight unit vectors in the rotating 

body frame coordinates pW  obeys2: 
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where { }1,1+−∈ς p  is a signal ambiguity; and pψ  is 

such that: 
 

pop UU ψ=
′
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where pU  is the p -th GPS line of sight unit vectors in 

the reference frame. Attitude may be determined from 
pW  and pU  using, for instance the algorithm 

QUEST6. pW  could be called a GPS “pseudo-attitude” 
observation vector. Since they are unit vectors, in view 

of Eq. 42, oW  must obey: 
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Therefore, given popop BA ψ  and  , ,, , oW  is the 

solution of the linear system 46. 
 The signal ambiguity could be resolved empirically by 

checking the unit vector condition for all n2  possible 
signal combinations2. In this section an analytical, 
closed form solution for the signal ambiguity is 
presented though. The method is based on the properties 
that scalar products and determinants remain invariant 
under rotations. At least 4 GPS satellites are required to 
be at sight. 



 By the scalar product invariant property, neglecting 
the effect of uncertainty one may write: 
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which in view of Eq. 44 yields: 
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 By the determinant invariant property one may write: 
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which in view of Eqs. 44,47 yells: 
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where the superscript +  denotes a variable with 1+=ς . 

This completes the algorithm. 
 

Numerical Results 
 
 The proposed algorithms for both integer ambiguity 
resolution and signal ambiguity resolution were 
implemented and tested. From simulation tests it was 
found that the procedure is able to estimate the correct 
value of the integer ambiguity with 95% of confidence 
level if the following empiric condition applies: 
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The condition is similar to Cond. 4 and means that the 
total motion of the antennas during the sample period, 
away from their predicted position must be smaller than 
the carrier-phase half-wavelength. 
 For the double difference case, data from a ground 
experiment3 using distinct receivers were processed. A 
summary of the results is given in Table 1 and a 
representative case is shown in Fig.2 (compare with Fig. 
1). The ability to resolve the integer ambiguity even 
when Cond. 4 was not satisfied was clearly 
demonstrated. The algorithm was able to retrieve the 
integer ambiguity even with ten times less data then the 
original sample shown in Fig. 1. 

 One should mention that the aim of UFPR & INPE’s 
first GPS experiment campaign was to investigate the 
feasibility of spin-axis attitude determination from GPS 
interferometry in the primary level of proof of concept. 
There were not any concern about accuracy related 
aspects, which were reported secondarily only.  
 

Table 1: Summary of Attitude Errors of ground 
experiment with τ >0.4 

 
GPS 

Frequency 
Attitude Error [arc min] τ  

x-axis y-axis z-axis 
L1 53 60 7.1 2 
L2 -31 46 -1.3 1.5 

 
 For the single difference case data simulating the 
antennas linked to a single GPS receiver were 
processed. The results illustrated in Fig. 3 are similar to 
those obtained when the spin rate was in agreement with 
Cond. 4. The attitude determination procedure for this 
case includes a Kalman filter and is fully described in 
Ref. 1. The purpose of including it here is only to show 
the validity of the integer ambiguity resolution 
procedure for arbitrary spin rates. 
 

 
 

Figure 2: Preprocessing GPS carrier-phase - 
Ground experiment data, arbitrary spin rate 

 
Conclusions 

 
 An algorithm to solve the integer ambiguity problem 
for a spinning baseline with arbitrary spin rate was 
proposed. The algorithm was first tested using simulated 
data from two antennas linked to a single GPS receiver. 
Later on it  was  tested  using  real  GPS  data  from  two 
antennas linked to distinct receivers on a ground 
experiment. 



 
 

 
Figure 3: Summary of Procedure Performance: Simulated Data 



 The results show that the algorithm overcame 
successfully the spin rate constraint reported by 
previous works. A spin rate accuracy constraint 
applies instead. 
 A closed form to quickly resolve the signal 
ambiguity present in the double difference 
application case was also tested successfully. 
 These contributions intend to represent a step 
forward towards future space applications of the 
algorithm. As a next step, accuracy and operational 
aspects shall be carefully addressed with the aid of 
the DLR test facilities, in the frame of the Brazilian-
German Government Agreement for Scientific and 
Technological Cooperation.  
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