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Abstract 
 
 Newton’s method is applied to solve a  minimization 
problem for general attitude functions and also for least 
squares type attitude functions. Simple solution 
formulae are derived and those results are examined 
with various three-axis attitude determination problems. 
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1. Introduction 
 
  A minimization problem for attitude functions is 
typically encountered in the attitude determination of 
the spacecraft. Difficulties of those problems are mainly 
in the fact that the totality of the attitude is a compact 
manifold and no global coordinates with the number of 
the freedom of the attitude (three for three-axis attitude) 
are available. Therefore much effort has been devoted to 
the treatment of the attitude representation method. 
Two major attitude global representations are; the 

quaternion and the direction cosine matrix (DCM)1,2. 
Quaternion is a four-dimensional vector and one 
constraint is attached to it. The direction cosine matrix 
which is regarded as attitude itself comprises a set of 
nine elements with six orthonormal constraints. One 
from these two representations is selected and applied to 
a real application comparing their advantages and losses 
under the given situation. In recent analyses local 
coordinates such as Euler angles are rarely used for a 
global attitude analysis. 
An important attitude determination problem was set 

by Wahba in 1965 and it requires minimization of 
squares of residuals in vector observations3. The 
problem was solved by various algebraic methods, 
among which the q-method1 and the QUEST6 utilizing 
the quaternion converted Wahba’s problem to an 
eigenvalue problem of a 4x4-matrix and solved it. Also 
QUEST gave a covariance matrix to the solution. 
Another efficient solution to Wahba’s problem was 

given by Markley7 who treated the problem in the DCM 
formulation and made use of the singular value 
decomposition of a 3x3-matrix. 
  Historically Wahba’s problem was algebraically 
solved shortly after the problem was announced. Among 
them Brock’s necessary condition4,5 which a solution 
must satisfy is important and strongly related to the 
present work. 
  Recently another type of problem was defined relating 
to the attitude determination using GPS phase difference 
measurements8,9. The problem is different from 
Wahba’s problem and an iterative solution was derived 
in the quaternion formulation. 
  This paper first deals with general minimization 
problems of attitude functions with both the quaternion 
and the DCM representations. We set both a general 
type minimization problem and a least squares (LSQ) 
type minimization problem. Our intention is to derive 
simple iterative solutions assuming no explicit function 
forms. For this purpose we apply Newton’s method. 
After that the obtained formulae will be examined by 
applying them to the above-mentioned attitude 
determination problems. 
  Among the previous works one of the most relevant 
methods to the present work was that of Gray10. He 
treated a least squred type minimization problem in the 
DCM representation and adopted local coordinates. He 
demonstrated that his method was very effectively 
applicable to many attitude determination problems. 
This paper generalize his method with explicit 
expressions for itetative solution in the DCM 
formulation. 
Another very efficient iterative solution to Wahba’s 

problem in the quaternion formulation was derived by 
Yoshikawa and et al.11. They applied Newton’s method 
together with quaternion operations for multiplication. 
The present paper, however, does not refer to such 
quaternion operations and use rather the unit length 
condition of quaternion only. 
 
 

2. Problem Description 
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2.1.  General Minimization Problem 
 
This paper first deals with a minimization problem for 

attitude functions in various forms. 
 
2.1.1. Quaternion Formulation 
 
A.1. General Type Formulation 
 
        minimize  f q( )  (1) 
 
subject to 
 

        q q q q q ST≡ ∈( , , , )1 2 3 4
3  or q qT = 1 (2) 

 
A.2. LSQ Type Formulation 
 

   minimize f q q qT( ) ( ( )) ( ( ))= − −y h W y h   (3) 
 
subject to (2). Here y  is an n-dimensinal vector, h  is a 

vector-valued function of  attitude quaternion q , and 

W  is an nxn-matrix. 
 
2.1.2. DCM Formulation 
 
B.1. General Type Formulation 
 
        minimize  f ( )A  (4) 

 
subject to 
 

        A (3x3-matrix)∈SO( )3  or A A IT =  (5) 

 
B.2. LSQ Type Formulation 
 
        minimize 
 

       f T( ) ( ( )) ( ( ))A y h A W y h A= − −  (6) 
 
subject to (5). Here y  is an n-dimensinal vector, h  is a 

vector-valued function of  attitude matrix A , and W  
is an nxn-matrix. 

2.2. Attitude Determination Problem 
 
The general iterative solutions to the above formulated 

problems are then applied to two attitude determination 
problems which are also formulated in various forms. 
 
2.2.1. Vector Observation Problem (Wahba’s  
           Problem3) 
 
C.1. DCM LSQ Type Formulation 
 

    minimize    f ai i ii

n
( )A w Av= −

=∑ 1

2

 (7) 

 
where ai  are positive constants, v i  are known unit 

vectors in the reference space (inertial frame for many 
applications) and w i  corresponding to obeservations 

are also known unit vectors in the spacecraft body 
frame. 
This problem can be treated as this form, but it can be 

still rewritten in various forms. The first is to convert it 
to a matrix form; 
 
C.2. DCM General Type Formulation7 
 

    minimize     f tr T( ) ( )A AB= −  (8) 

 
where 

           B w v≡
=∑ ai i i

T

i

n

1
 (9) 

 
C.3. Quaternion LSQ Type Formulation 
 
The attitude matrix A  is related to the quaternion q  

by 1,2 
 

    A q I qq q= − + +×( ) [ ]q qT
4

2 2
3 3 2 2

4
 (10) 

 

where q q q q q qT T T≡ ≡( , , , ) ( , )1 2 3 4 4q , q  is a 

three-dimensional vector, and []  is a notation to convert 

a  three-dimensional vector to a skew symmetric matrix. 
Any function f ( )A can be regarded as a function of 

quaternion as f q( ( ))A . Then Wahba’s problem is 

also regarded as a quaternion LSQ type problem 
 

  minimize  f q a qi i ii

n
( ) ( )= −

=∑ w A v
1

2

 (11) 

 
C.4. Quaternion General Type Formulation 
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  It is well known that Wahba’s problem is also 
rewritten as1,5 
 

    minimize     f q q qT( ) = − K  (12) 

 
where K  is a 4x4-matrix defined as follows; 
 

        K
S I Z

Z
≡

−









σ
σT  (13) 

 

        σ ≡ =
=∑tr ai i

T
ii

n
B w v

1
 (14) 

 

    
S B B w v v w≡ + = +

=∑T
i i i

T

i

n

i i
Ta ( )

1  (15) 

        Z B B w v≡ − = ×
=∑[ ]T

i i ii

n
a

1
 (16) 

 
In (16), tr  means the trace operation for matrix, and the 
notation [] means a conversion from a skew matrix to a 
corresponding three-dimensional vector. This bracket 
will be introduced in detail later (see 6.1). 
 
 
2.2.2. Scalar Observation Problem8,9,10 
 
The general form for the scalar observation problem is; 

 
D.1. DCM LSQ Type Formulation 
 

    minimize  f a yi i i
T

ii

n
( ) ( )A w Av= −

=∑ 1

2   (17) 

 
In these two problems, explanations on ai , v i , w i  are 

the same as in (7) and yi  are measrured data. The 

problem (17) is more general than Wahba’s problem. 
 
D.2. Quaternion LSQ Type Formulation 
 
  This can be also regarded as a quaternion problem.  
With the relation (10) we have a problem 
 

minimize f q a y qi i i
T

ii

n
( ) ( ( ) )= −

=∑ w A v
1

2   (18) 

 
 
In the recent GPS attitude determination problem8,9 all 

combinations of v i  and w i   appear in (17) and for this 

case we have slightly different problems 
 
E.1. DCM LSQ Type Formulation (GPS case) 
 

minimize f yij i
T

jj

n

i

m
( ) ( )A w Av= −

== ∑∑ 1

2

1
(19) 

 
Here we assumed that all aij  are independent of the 

indeces and omitted in the right-hand side. 
 
E.2. DCM General Type Formulation (GPS case) 
 

minimize f tr T T( ) ( )A AB AVA W= − +      (20) 
 
where the matrices in the right-hand side are; 
 

        B w v≡
== ∑∑2 11 i i j j

T

j

n

i

m
y  (21) 

 

        V v v≡
=∑ j j

T

j

n

1
 (22) 

 

        W w w≡
=∑ i i

T

i

m

1
 (23) 

 
  We do not formulate this case using quaternion, since 
no more efficient solution than the solution to (18) was 
obtained this time. 
 
 

3. Gray’s Method 
 
From the previous works we review Gray’s method10. 

We rewrite the DCM LSQ type problem B.2 or (6) as 
 

       minimize    h A Wh A( ) ( )T  (6)’ 
 
The attitude matrix A  is locally parametrized by a 
three-dimensional vector  Θ  as; 
 

      A A= −
0e

[ ]Θ  (24) 

 
where A 0  is an approximate solution. (Notations have 

been blended with those of this paper.) Then any 
function of attitude is considered as defined in the three-

dimensional space R3 . Utilizing an approximation of 

e−[ ]Θ  as 
 

      e− ≈ −[ ] [ ]Θ ΘI  (25) 
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any attitude function can be differentiated with respect 
to Θ . Those derivatives are three-dimensional vectors 

and the Jacobian J ∈ ×Rn 3  is calculated at A 0  as 
 

      J
A

≡ 







∂
∂

hi ( )

Θ
 (26) 

 
Then the Newton-Gauss update scheme becomes the 
pair of (24) and 
 

      Θ = − −( ) ( )J WJ J Wh AT T1
0  (27) 

 
  This method was applied to both Wahbas’s problem 
(7) and the scalar observation problem (17). In Wahba’s 
problem h A( )  is 3n-dimensional and is a set of 

h A1( ) = Av 1 , ..., h A Avn n( ) = . For function 

h A Avi i( ) =  its derivative with respect to ξ  was 

calculated as a quite simple form of 
 

      
∂

∂
( )

[ ]
Av

A vi

Θ
= 1  (28) 

 
and the Jacobian J  was derived in the form of 
 

      J

A v

A v

=
















[ ]

...

[ ]

1

n

 (29) 

 
Also in the scalar observation problem D.1 or (17) the 

function hi i
T

i( )A w Av=  was differentiated as 

 

      
∂

∂Θ
w Av w A vi

T
i i

T= − [ ]1  (30) 

 
and the Jacobian J  was derived in the form of 

      J

w A v

w A v

=
−

−

















1 1
T

n
T

n

[ ]

...

[ ]

 (31) 

 
Notations were largely altered here, and therefore for 
citing purpose referring the original paper is 
recommended. 
 

 
4. General Solutions to Quaternion Formulation13 

 
In this section we deal with attitude function’s 

minimization problems with quaternion formulation. 
While the method of Yoshikawa et al.11 used the 
algebraic nature of the quaternion very effectively, our 
method does not do so. We use the quaternion only as a 
four-dimensional vector but with a constraint of unit 
length. This can be said that the totality of the attitude 

quaternion is just the unit sphere S 3  as a smooth 

manifold in the Euclidean space R4  . 
 
4.1. Solution to General Minimization Problem  
 
  From the well-known Kuhn-Tucker’s condition12 any 
solution to A.1 or (1) and (2) is a stationary point of the 
following Lagrangian function f qλ ( )  with a Lagrange 

multiplier λ : 
 

        f q f q q qT
λ λ( ) ( ) ( )≡ + − 1   (32) 

 
or it satisfies 
 

        
∂

∂
∂

∂
λλf q

q

f q

q
q

( ) ( )= + =2 0 

 
Applying the unity condition (2) we have 
 

        2λ ∂
∂

= −q
f q

q
T ( )

 

 
Deleting λ , we have a necessary condition which any 
soluton must satisfy as 
 

        ( )
( )

I 4 4 0× − =qq
f q

q
T ∂

∂
 (33) 

 
Since the function f  is not specified, no explicit 

algebraic solution is applicable. According to Newton’s 
method, solution is sought near an approximation 
solution q0  as 

 
        q q q= +0 δ  (34) 

 
where δq  is a sufficiently small vector. Hereafter we 

write equations within the equivalency of o q( )δ . 
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Then the constraint (2) is equivalently rewritten as 
 

        q qT
0 0δ =  (35) 

 
And this is still equivalent to 
 
        I q q q

0
δ δ=  (36) 

 

        I Iq
Tq q

0 4 4 0 0≡ −×  (37) 

 
The matrix I q0  works as a projection to the tangential 

plane to S 3  at q0 . 

Substituting (34) into (33), we have 
 

{ }I − + + +








=( )( )q q q q
f

q

f

q
qT

0 0

2

2
0δ δ ∂

∂
∂
∂

δ  

  (38) 
 
This is rearranged as 
 

        H Iδ ∂
∂

q
f

q
qq= − 0 0( )  (39) 

 

      H I≡ −q
Tf

q
q q

f

q
q0

2

2 0 0 0

∂
∂

∂
∂

( ) ( ( ))  

        (4x4)                                      (4x1)   (1x4) 
 

                − q
f

q
qT

q0 0 0

∂
∂

( )I  (40) 

 
We see that the second term of the right-hand side 
becomes a higher-order term when multiplied by δq  

and therefore it can be dropped in (40). Also taking (36) 
into account brings (39) and (40) to the following 
simple expressions. 
 

        H I* ( )δ ∂
∂

q
f

q
qq= − 0 0  (41) 

 

        H I I I* ( ) ( )≡ −q q
T

q

f

q
q q

f

q
q0

2

2 0 0 0 0 0

∂
∂

∂
∂

  

  (42) 
 
  Eq. (41) can be regarded as a linear equation in a three-

dimensional hyper plane (35), which is hereafter 
denoted as π . The 4x4-matrix H *  is not singular if its 

domain is restricted to π . Then the inverse H * +  of 

H *  in π  is defined as a 4x4-projection matrix on the 
hyper plane π  which satisfies 

 
        H H H H I* * * *+ += = q0  (43) 

 

One calculation procedure of H * +  can be written as 
 

        H H* ( * )+ − −= + −ε εq q q qT T
0 0

1 1
0 0  (44) 

 
where any non-zero number, e.g., unity, is applicable to 
ε . Using this inverse matrix we obtain a solution 
formula as; 
 

        δ ∂
∂

q
f

q
q= − +H * ( )0  (45) 

 
Substituting (42) here yields the solution formula as 
 

δ ∂
∂

∂
∂

q
f

q
q q

f

q
qq q

T
q= − −









+

I I I0

2

2 0 0 0 0 0( ) ( )  

                                                ⋅ ∂
∂
f

q
q( )0   (46) 

 
 
4.2. Solution to LSQ Type Problem 
 
  While the previous solution needed derivatives of the 
second-order or the Hessian matrix, the solution to this 
case needs only those of the first-order. If the function 
h( )q  in (3) can be appropriately linearized with 

respect to δq q q= − 0 , then the whole function is 

rearranged as quadratic and an iterative solution will be 
obtained (the Newton-Gauss method). 
  Firstly we deal with a linearization of a function 

h q( ) : S R3 1→  and introduce a notation of the first-

order derivative as ∇ S h q( ) . In this section we define it 

as a row vector or 1x4-matrix which satisfies both 
 

h q q h q h q q o qS( ) ( ) ( ) ( )0 0 0+ = + ∇ +δ δ δ    (47) 

 
and 
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        ∇ = ∇S q Sh q h q( ) ( )0 0 0I   (48) 

 
where I q0  is the same matrix as defined by (37). Eq. 

(48) requires that  ∇ S h q( )0  is tangential to S 3  at q0 . 

This gradient is calculated from the conventional 
derivative ∂ ∂h q/  (this is also treated as a row vector)  

as 
 

        ∇ =S qh q
h

q
q( ) ( )0 0 0

∂
∂

I  (49) 

 

For a vector  function h( ):q S R n3 → , its gradient 

∇ S qh( )  is defined as an nx4-matrix by 

 

        ∇ ≡
∇

∇

















S

S

S n

q

h q

h q

h( )

( )

....

( )

1

 (50)  

 
Then we have 
 

h h h( ) ( ) ( ) ( )q q q q q o qS0 0 0+ = + ∇ +δ δ δ  

  (51) 
 
Substituting Eq. (51) into (3) yields 
 

     ( ) ( )f q q q
T

i

n
( ) ( ) ( )= − −

=∑ y h W y h01 0  

 

    ( )− − ∇
=∑2 01 0y h W h( ) ( )q q q

i

n

S δ  

 

    { }+ ∇ ∇
=∑δ δq q q qT

S
T

i

n

Sh W h( ) ( )01 0  

 
        + residual   (52) 
 
The residual in (52) can be neglected to derive iterative 
solution to minimize f q( )  as 

 

        { }δq q qS
T

i

n

S= ∇ ∇
=

+

∑ h W h( ) ( )01 0  

 

                ( )⋅ ∇ −
=∑ S

T

i

n
q qh W y h( ) ( )01 0   (53) 

 
where the notation  + is used to mean the same inverse 

as H * +  in Eq. (43). 
 
 
4.3. Quaternion Update 
 
When δq  is obtained as an increment vector in the 

tangential plane π  and substituted into (34) to obtain a 
new quaternion q , it will violate the condition (2). 

Therefore a normalization step is to be taken at every 
update. The following conventional normalization is 
applicable with a small load. 
 

        q q q q q= + +−
0

1

0δ δ( )  (54) 

 
 

5. Attitude Determination in Quatrernion 
Formulation 

 
  The results of the previous section with quaternion are 
immediately applicable to the attitude determination 
problems. Since general formulae are already derived, 
the task here is quite straightforward. 
 
5.1.  Solution to Vector Observation Problem 
 
5.1.1. Application of General Type Formula (46) 
 
The problem C.4 or (12)  is treated with the iterative 

formula (46), to which we can substitute 
 

         
∂
∂
f

q
q= −2K  (55) 

 

         
∂
∂

2

2
2

f

q
= − K  (56) 

 
Then an iterative solution is obtained as 
 

    { }δq q q qq q
T

q= − −
+

I KI K I K0 0 0 0 0 0( )    (57) 

 
 
5.1.2. Application of LSQ Type Formula (53) 
 
The problem C.3 or (11) is rearranged to (3) with the 

following correspondence 
 

        y w w≡ ( ,..., )1
T

n
T T  (58) 
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        ( )h Av Av( ) ( ) ,..., ( )q T
n

T T
≡ 1  (59) 

 
        W I I≡ × ×diag a an( ,..., )1 3 3 3 3  (60) 

 
Of course A  must be replaced by (10) for quaternion 
representation. Then in order to apply the iterative 
formula (53), we need to calculate ∇ S iAv . Using (10) 

we have an expression for Av i  as 

 

Av q v q q v q vi i
T

i iq q= − + +( ) ( ) [ ]4
2 2

42 2  

 
  (61) 
 
The conventional gradient ∇Av i  with respect to q  is 

calculated as 
 

(∇ = − + −Av qv v q q v I vi i
T

i
T T

i iq4[ ],  

   (3x4                           (3x3) 
 

                        )v v qi iq4 + [ ]  (62) 
                                    (3x1) 
 
Then we have ∇S iAv  as 

 
        ∇ = ∇S i i qAv Av I  (63) 

 
All the necessary quantities are derived and the iterative 
formula (53) is now applicable. 
 
5.2. Solution to Scalar Observation Problem 
 
  For this case we apply the LSQ type formula only. We 
have expression 
 

w Av q w v w q q vi
T

i i
T

i i
T T

iq= − +( ) ( )( )4
2 2 2  

 

                        + 2 4q i
T

iw q v[ ]  (64) 

 
Using (62) and (63) we can calculate 
 

        ∇ = ∇S i
T

i i
T

S iw Av w Av  (65) 

 
Then the iterative solution formula (53) is applicable. 
 
 

6. General Solution to DCM Formulation 

 
The direction cosine matrix (DCM) is the most direct 

attitude representation and in this section we deal with 
minimization problems expressed by DCM. The basic 
idea is to use a local representation of attitude matrix by 
a three-dimensional vector around any fixed attitude. 
The procedure is the same as that adopted by Gray10, 
while the development here derives an explicit 
expression for the gradient of any function with respect 
to the local variables. 
  We have already used the bracket operator []  to the 

mutual conversion between a three-dimensional vector 
and a skew symmetric matrix. Although the usual usage 
is to place a vector inside the bracket, we use this 
bracket also to the reverse conversion like [ ]X  where 

X  is a 3x3 skew symmetric matrix. Some natures of 
this bracket  which are used in this paper are briefly 
summarized. 
 
6.1. The bracket operator []  
 

For a three-dimensional vector u = ( , , )u u u T
1 2 3 , 

[ ]u  is defined as a skew symmetric matrix1,2 

 

        [ ]u ≡
−

−
−

















0

0

0

3 2

3 1

2 1

u u

u u

u u

 (66) 

 
With  Levi-Civita symbol ε ijk  this is expressed by2 

 

        [ ]u ij ijk kk
u=

=∑ ε
1

3
 (67) 

 
This matrix [ ]u  works as a cross-product operator as  

 
        [ ]u v u v= − ×  (68) 

 
where v  is any three-dimensional vector. 
  Using the same bracket we write [ ]X  for a 3x3 skew-

symmetric matrix X  to denote a three-dimensional 
vector 
 

        [ ]X ≡
















X

X

X

23

31

12

 (68) 
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which is expressed by using ε ijk  as 

 

        [ ]
,

X i ijk jkj k
X≡

=∑
1

2 1

3 ε  (69) 

 
This bracket satisfies the following natures and will be 

freely used hereafter 
 

        [ ][ ]u u=  (70) 

 
        [ ][ ]X X=  (71) 

 

        [ ]u v uv vu× = −T T  (72) 

 

        [ ]uv vu u vT T− = ×  (72)’ 

 

        { }tr T T TCX C C X= −[ ] [ ]  (73) 

 

        [ ]XC C X− T T  

 

                { }= −×tr( ) [ ]C I C X3 3  (74) 

 
Here u  and v  are three-dimensional vectors, X  is a 
3x3 skew symmetric matrix, and C  is any 3x3-matrix. 
The relations (73) and (74) may be new with this 
bracket, but their derivation is directly possible from the 
definition and omitted here. 
 
6.2. Solution to General Minimization Problem 
 
We treat  the general minimization problem expressed 

by the DCM, B.1 or (4). Rewrite (24) 
 

      A A= e[ ]ξ
0  (24) 

 

where ξ  is a three-dimensional vector. Then any 

attitude function can be considered as a function of ξ  

as f e( )[ ]ξ A 0 . To A 0   corresponds ξ = 0 . Also it is 

necessary to note that this representation is not global 
and depends on the fixed attitude A 0 . If the function 

f ( )A  has a local minimum at A 0 , then the derivative 

with respect to ξ  must vanish there or 

 

        
∂
∂ξ

ξ

ξ
f e( )[ ] A 0

0
0

=
=  (75) 

 
Considering no constraint on A ≡ ( )Aij  (3x3-

matrix), we define the derivative of any function 
f ( )A  with respect to A  as a 3x3-matrix 

 

        
∂

∂
∂

∂
f f

Aij

( ) ( )A
A

A≡








  (76) 

 
Using this expression we can expand f ( )A A0 + δ  as 

 

f f
f

A
A

ij
iji j

( ) ( ) ( )
,

A A A A0 0 01

3+ = +
=∑δ ∂

∂
δ  

 

      + = + 







o f tr
f T( ) ( ) ( )δ ∂

∂
δA A

A
A A0 0  

 

                             + o( )δA  (77) 

 
Substituting an evaluation 
 

A A A A A0 0 0 0+ ≡ = + +δ ξ ξξe o[ ] [ ] ( )  (78) 

 
into (77) yields 
 
 

      f e f( ) ( )[ ]ξ A A0 0=  

 

               ( )+ 







+tr
f

oT∂
∂

ξ ξ
A

A( )[ ]0  (79) 

 
Here utilizing the formula  (73), we can rewrite (79) as 
 

      f e f( ) ( )[ ]ξ A A0 0=  

 

      + − 



















∂
∂

∂
∂

ξf fT
T

A
A A A

A
A( ) ( )0 0 0 0  

 
                             + o( )ξ  (80) 

 
Then we have for the left-hand side of (75) 
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∂
∂ξ

ξ

ξ
f e( )[ ] A

0
0

=
 

 

    = − 



















∂
∂

∂
∂

f fT
T

A
A A A

A
A( ) ( )0 0 0 0   (81) 

 
Since the attitude A 0  is arbitrary, dropping the index 0 

is possible and it yields a general expression 
 

        
∂
∂ξ

∂
∂

∂
∂

f f fT
T

( )A
A

A A
A

= − 



















 (82) 

 
This formula is so general to enable us to calculate the 

gradient vector with respect to ξ  only from the original 

function itself. When we conduct an attitude analysis on 
ground, the program memory size is not a large concern 
and this kind of general formula will be very useful. 
Then finally we have reached a necessary condition 
which any local minimum must satisfy 
 

        
∂
∂

∂
∂

f fT
T

A
A A

A
− 






 = 0  (83) 

 
  The condition (83) comprises only three independent 
relations from its symmetry. Together with the 
condition that A  is a matrix in SO( )3  or must satisfy 

(5), all nine elements of A  are determined. 
It is necessary to adopt some technique in applying the 

Newton-Gauss method to derive a simple iterative 
formula. It is because we did not succeed to obtain a 
simple expression for the second-order derivatives or 

the Hessian matrix ∂ ∂2 2f / A  which intrinsically 

contains 81 elements. We here adopt two approximation 
methods. 
 
Case that ∂ ∂f / A  is nearly constant  

  We assume that ∂ ∂f / A  is constant or almost 

constant. For example, assume that f tr T( )A AB= , 

where B  is constant. Then ∂ ∂f / A B= , and the 

assumption is met. Also assume that 

f tr T( ) {A AB=  + εA B2 } . Then 

∂ ∂ εf T T/ ( )A B BA A B= + +  is almost constant, 

if  ε  is small. However,  in case of 

f ( )A = tr TA B2 , ∂ ∂f T T/ A BA A B= +  , the 

derivative can not be regarded as nearly constant. 
  Around an approximate point A 0 , we linearize (83) as 

 

        ( )∂
∂

ξf T

A
A A A( ) [ ]0 0 0+  

 

               ( )− + 





 ≈A A

A
A0 0 0 0[ ] ( )ξ ∂

∂
f

T

 (84) 

 
where no second-order derivatives are kept under the 
present assumption. Writing 
 

        C
A

A≡ ∂
∂

f
( )0  (85) 

 
yields 
 

( )[ ] [ ]ξ ξA C CA CA A C0 0 0 0
T T T T T− ≈ −  

 
  (86) 
 
Applying (74) to the left-hand side we have 
 

{ } [ ]tr T T T T( )A C I A C CA A C0 0 0 0− ≈ −ξ  

 

which is solved with respect to ξ  as an iterative update 

formula 
 

{ }ξ = − −−
tr T T T T( ) [ ]A C I A C CA A C0 0 0 0

1
 

 
  (87) 
 
This iterative algorithm depends strongly on the above 

assumption, and it must be noted that a general 
convergence condition is not guaranteed. 
 

Method to calculate ∂ ∂ξ2 2f /  numerically  

Since an explicit expression for ∂ ∂ξf /  is available 

by (82), there is a way to calculate ∂ ∂ξ2 2f /  

numerically. With an appropriate small number ε  we 

can numerically calculate ∂ ∂ξ2 2f /  by using two 

discrete evaluations  for i = 1 3,...,  as 
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∂
∂ξ

∂
∂ξ

ε ∂
∂ξ

∂
∂ξ

ε

i

f f
e

fi≈ 

 


 −









−1
0 0

[ ] ( )e A A  (88) 

 
Here e e e1 2 3, ,  are three orthogonal unit vectors and 

ε  is an appropriate non-zero number. As an example 

10 5−  is applicable to ε . Then we can apply Newton’s 
method  and obtain an update scheme 
 

        ξ ∂
∂ξ

∂
∂ξ

= −










−2

2

1
f f

 (89) 

 
  It should be noted that the above two methods will 
give an exact solution, if we have a convergence. This is 
because we are using an accurate expression (82) for 

∂ ∂ξf / . 

 
 
6.3. Solution to LSQ-Type Minimization Problem 
 
The minimization problem of the least squares 

formulation B.2 or (6) is treated. In this case for a 

function h S R( ):A 3 1→ , we define the derivative of 

the first-order derivative ∂ ∂ξh /  as a row vector, and 

from (82) it has an expression of 
 

        
∂
∂ξ

∂
∂

∂
∂

h h hT
T

( )A
A

A A
A

= − 



















 (90) 

                                       (1x3) 
 

For a vector observation  function   (h A A( ) ( ),≡ h1  

)..., ( )hn

T
A ,  we define the gradient as 

 

        C
h

A

A

A

≡ =





















∂
∂ξ

∂
∂ξ

∂
∂ξ

( )

( )

....

( )

h

hn

1

 (91) 

                                                  (nx3) 
 
Then applying the Newton-Gauss method, we obtain an 

update formula for ξ  as 

 

        ( )ξ = −−( ) ( )C WC C W y h AT T1
0  (92) 

 
where C  is evaluated at A A= 0 .  

 
 
6.4. Attitude Update 
 
  The attitude update is calculated by (24) or 

A A= e[ ]ξ
0 . Then practically it is necessary to 

calculate the exponential function of a skew symmetric 

matrix. Since it can be expected that ξ  is small, one 

candidate for the calculation procedure is (25) or 

e[ ] [ ]ξ ξ≈ +I . But this formula violates the 

requirement that e[ ]ξ  must be an orthogonal matrix or 
in SO( )3 . 

  Therefore it is desirable to find a simple calculation 

formula for e[ ]ξ  under the condition that the result is 
still in SO( )3 .  

One is to use a well-known expression which utilize 
the trigonometric functions1,2 
 

  e T[ ] cos ( cos ) sin [ ]ξ θ θ θ= + − +I uu u1      (93) 

 
where θ  and u  are defined by 
 

        θ ξ≡  (94) 

 

        u ≡ ξ ξ/  (95) 

 

When the iteration is repeated, ξ  will vanish and the 

calculation (95) will diverge. In such a case the next 
formula is applicable; 
 

    ( )e T[ ] [ ]ξ ξ ξ ξξ ξ≈ − + + − +
−

1 1 12 2
1

I  

 
  (96) 
 

Although ξ  must not exceed unity, the right-hand side 

stays for any case in SO( )3  and the difference of both 

the sides is the order of ( )o ξ 2
. 

 
 

7. Attitude Determination in DCM Formulation 
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  We would like to demonstrate that the resulted general 
iterative formulae in the previous section are efficiently 
applicable to the attitude determination problems. 
 
 
7.1. Solution to Vector Observation Problem 
 
7.1.1. Application of General Type Formula 
 
Wahba’s problem is treated in a rewritten form C.2 or 

(8) and (9) 
 

        minimize      f tr T( ) ( )A AB= −  (8) 

 
where B  is a constant matrix defined by (9). For this 
case the first-order derivative ∂ ∂f ( ) /A A  becomes 

constant as 
 

        
∂
∂

f

A
A B( ) = −  (97) 

 
Then the necessary condition for local minimum (83) is 
expressed as; 
 

        AB BAT T− = 0  (98) 
 
This condition is very basic for Wahba’s problem and 
was derived by Brock4,5. He did an algebraic treatment 
of this condition to derive a simple calculation formula 
which we do not further enter. 
  Now the iterative solution formula (87) is applicable 
and we obtain 
 

{ }ξ = − −−
tr T T T T( ) [ ]A B I A B BA A B0 0 0 0

1
 

  (99) 
 
This result is already very simple, but we try to find 
simpler expressions. 
 
No Update of Gain Matrix 
  If the initial attitude matrix A 0  is already near the 

solution, then the first factor of the right-hand side of 

(99), { }G A B I A B≡ −
−

tr( )0
T

0
T 1

, which we call 

here the gain matrix, will stay almost constant during 
the iteration. Then it is feasible to stop the calculation of  
this factor if it is once obtained. This procedure will 
serve for saving the calculation time in a real 
application. Program code is sill needed. 

 
Utilization of the Original Vectors 
The matrix B  was defined by (9) using the original 
vectors v i   and w i . Returning to these vectors we can 

write 
 

        A B A v w0 1 0
T

ii

n

i i
Ta=

=∑  (100) 

 
If the observation is made under a condition of low-
level noises, then A v0 i  must be near w i  or 

A v0 i ≈ w i . Then we have 

 

        A B w w0 1

T
ii

n

i i
Ta≈

=∑ . (101) 

 

        tr a trT
ii

n

i i
T( ) ( )A B A v w0 1 0=

=∑  

 

                = ≈
= =∑ ∑a aii

n

i
T

i ii

n

1 0 1
w A v  (102) 

 
These two relations state that the Gain matrix G  can be 
evaluated without using a priori attitude estimate as 
 

( )G G I w w≈ ≡ −





= =

−

∑ ∑0 1 1

1

a aii

n

i i ii

n T

 

   (103) 
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Using this G0  we obtain one of the simplest iterative 

solution formula as 
 

        ( )ξ = −





= =

−

∑ ∑a aii

n

i i ii

n T

1 1

1

I w w  

 

                [ ]⋅ −A B BA0 0
T T

 (104) 

 
In the real application this formula requires the 
summation and inverse operation only at the beginning 
to obtain both the gain matrix and the matrix B . After 
that during the iteration very small amount of matrix 
calculation is required. 
 
 
7.1.2. Application of LSQ Type Formula 
 
The iterative solution to Wahba’s problem here 

becomes the same one as that of Gray (see 3). However, 
we demonstrate that our general formula is 
automatically applicable to this problem. And also we 
try to see how simpler the result can be reduced. 
For applying the LSQ type solution formula to Wahba’s 

problem, it is necessary to calculate ∂ ∂ξAv i / .   
We demonstrate the derivation of this derivative by our 

present method. As is needed in (86), we first derive the 
derivatives of Av i  with respect to A . Av i  is 

expressed as 
 

    ( )Av e Av e Av e Avi
T

i
T

i
T

i

T
= 1 2 3, ,  (105) 

 

where e e e1 2 31 0 0 0 1 0 0 0 1≡ ≡ ≡( , , ) , ( , , ) , ( , , )T T T . 

Then we can calculate ∂ ∂e Av Ak
T

i /  as; 

 

        ( )∂
∂

∂
∂A

e Av
A

A e vk
T

i k i
T Ttr= ( )  

 

                               = e vk i
T

 (106) 

 

and then ∂ ∂ξe Avk
T

i /  as 

 

        ( ) ( )[ ]∂
∂ξ

e Av e Av Av ek
T

i k i

T

i k
T= −  

 

                [ ]= × = −e Av e Avk i k
T

i  (107) 
                                                      (1x3) 
 
The result is expressed as a row vector. Then we have 

the same expression for ∂ ∂ξAv i /  as  

 

       [ ]∂
∂ξ

Av Avi i= −  (108) 

 
Substituting the expression (108) into (91) and (92), 

we have an update formula 
 

        [ ] [ ]( )ξ = −
=

−

∑ ai i

T

ii

n
A v A v0 01

1

 

 

                [ ]⋅ −
=∑ ai i

T

i

n

i iA v w A v01 0( )  

 

          ( )( )= −×=

−

∑ ai i i
T

i

n
I A v A v3 3 0 01

1

( )  

 

                ⋅ ×
=∑ ai ii

n

iw A v
1 0  (109) 

 
We see that this result has a very similar form as the 
previous result (104). We can show the two formulae 
are basically equivalent as follows. 
Firstly A v0 i  in the first factor can be replaced by  

w i , since these two are near each other. And the 

second factor can be calculated as 
 

    [ ]a ai i ii

n

i i ii

n
w A v w A v× = ×

= =∑ ∑01 01
[ ]  

 

        ( ) ( )[ ]= −
=∑ aii

n

i i

T

i i
T

1 0 0w A v A v w  

 

        [ ]= −A B BA0 0
T T

 (110) 

 
Then we have again the formula (104). Therefore, one 
can select the simplest formula from these several 
variations in any real application considering its specific 
condition. 
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7.2. Solution to Scalar Observation Problem 
 
For the scalar observation problem D.1 and E.2, our 

method is also automatically applicable. 
 
7.2.1.  Application  of General Type Formula 
 
The attitude determination problem E.2 or (20) is 

treated. We differentiate (20) first by A  as 
 

        
∂

∂
∂

∂A
A

A
AB AVA Wf tr T T( ) ( )= − +  

 
                         = − +B WAV2  (111) 
 

Then substituting this into (82) we have ∂ ∂ξf ( ) /A  

as 
 

        [ ]∂
∂ξ

f T T( )A BA AB= − +  

 

                [ ]+ −2 2WAVA AVA WT T  (112) 

 
This expression can be used in the iterative solution 
formula (89) with numerical differentiation (88) for 

∂ ∂ξ2 2f ( ) /A . 

 
7.2.2.  Application  of LSQ Type Formula 
 
 The problem D.1 or (17) is treated. What is needed in 

applying the formula (92) is only to differentiate the 
function 
 

        h i
T

i( )A w Av≡  (113) 

 

with respect to ξ . The main process was already done 

to derive (108) and we have 
 

  [ ]∂
∂ξ

∂
∂ξ

w Av w
Av

w Avi
T

i i
T i

i
T

i= = −  

 

                         ( )= ×w Avi i

T
 (114) 

                                                     (1x3) 
 
where the result is expressed as a row vector. 
If we write the whole update formula, it becomes 

 

    ( )( ){ }ξ = × ×
=

−

∑ aii

n

i i i i

T

1 0 0

1

w A v w A v  

 

      ( )( )⋅ × −
=∑ a yi i i i i

T
ii

n
w A v w A v0 01

 (115) 

 
 

8. Comments on Covariance Analysis 
 
We focused our attention on solving minimization 

problems. If the problem arose from some statistical 
estimation problem, then a necessity of covariance 
analysis must accompany it. We briefly comment on it. 
The covariance analysis is related to least squares 

(LSQ) type minimization problem. All the iterative 
solution to that type had the form 
 

        ( )δq q= −G y h( )  (116) 

 
for the quaternion formulation, or 
 

        ( )ξ = −G y h A( )  (117) 

 
for the DCM formulation. 
In this form we can regard that the part y h−  is the 

observation noise and the left-hand side is the 
estimation error. Then we have an error propagation 
formula 
 

        δq  or ξ = Gn  (118) 

 
where n  is the observation error. 
For any covariance analysis, we can assume that the 

statistical characteristics of the observation error are 
given as, e.g., 
 
        En 0≡  (119) 
 

        Vn Enn P≡ =T
0  (120) 

 
where En  and Vn  are the mean value and the 
covariance of the noise n , respectively. 
  Then we can calculate the statistical quantities for the 
estimation error as 
 

        Eδq  or E 0ξ =  (121) 

 

        Vδq  or V GP Gξ = 0
T  (122) 
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  If the above procedure is applied to Wahba’s problem 
with one of the present solutions, we can derive the 
same formula for estimation error covariance as that 
derived by Shuster et al.6. 
 
 

9. Conclusion 
 
  Newton’s method is very effectively applicable to 
various minimization problem of attitude functions. If 
the problem was established in the quaternion 
formulation or in the direction cosine matrix 
formulation, then it was shown that an appropriate 
iterative formula can be chosen. 
Also it was shown that those solution formulae are 

successfully applicable to the existing attitude 
determination problems and give very efficient 
calculation procedures. 
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