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Abstract given by Markley who treated the problem in the DCM
formulation and made use of the singular value
Newton’s method is applied to solve a minimizatiordecomposition of a 3x3-matrix.
problem for general attitude functions and alsoléaist ~ Historically Wahba's problem was algebraically
squares type attitude functions. Simple solutiosolved shortly after the problem was announced. #gno
formulae are derived and those results are examindtem Brock’s necessary conditfohwhich a solution
with various three-axis attitude determination peafis. must satisfy is important and strongly related le t
present work.
Recently another type of problem was definedtireia
Key words: Attitude, Quaternion, Direction cosine to the attitude determination using GPS phaseréifiee
matrix, Newton’s method, Attitude determination measurementS. The problem is different from
Wahba's problem and an iterative solution was aefiv
in the quaternion formulation.
1. Introduction This paper first deals with general minimization
problems of attitude functions with both the quain
A minimization problem for attitude functions isand the DCM representations. We set both a general
typically encountered in the attitude determinatimin type minimization problem and a least squares (LSQ)
the spacecraft. Difficulties of those problems manly type minimization problem. Our intention is to dei
in the fact that the totality of the attitude i@mpact simple iterative solutions assuming no explicitdtion
manifold and no global coordinates with the numiser forms. For this purpose we apply Newton’'s method.
the freedom of the attitude (three for three-atisugle) After that the obtained formulae will be examineg b
are available. Therefore much effort has been @evtmt applying them to the above-mentioned attitude
the treatment of the attitude representation method  determination problems.
Two major attitude global representations are; theAmong the previous works one of the most relevant
quaternion and the direction cosine matrix (D&#M) methods to the present work was that of Gtaple
Quaternion is a four-dimensional vector and on#eated a least squred type minimization problerthen
constraint is attached to it. The direction cosim&trix DCM representation and adopted local coordinates. H
which is regarded as attitude itself comprises taose demonstrated that his method was very effectively
nine elements with six orthonormal constraints. Onapplicable to many attitude determination problems.
from these two representations is selected andeapfg  This paper generalize his method with explicit
a real application comparing their advantages assels expressions for itetative solution in the DCM
under the given situation. In recent analyses loc&rmulation.
coordinates such as Euler angles are rarely used fo Another very efficient iterative solution to Wahba’
global attitude analysis. problem in the quaternion formulation was derived b
An important attitude determination problem was setoshikawa and et d&- They applied Newton’s method
by Wahba in 1965 and it requires minimization otogether with quaternion operations for multiplioat
squares of residuals in vector observation§he The present paper, however, does not refer to such
problem was solved by various algebraic methodsuaternion operations and use rather the unit fengt
among which the g-methbdnd the QUESTutilizing  condition of quaternion only.
the quaternion converted Wahba's problem to an
eigenvalue problem of a 4x4-matrix and solved Is0A
QUEST gave a covariance matrix to the solution. 2. Problem Description
Another efficient solution to Wahba's problem was



2.1. General Minimization Problem

This paper first deals with a minimization probléon
attitude functions in various forms.

2.1.1. Quaternion Formulation
A.1. General Type Formulation
minimize f(Q) (1)

subject to

q=(0,,9,,95,9,) 0S’orq'q=1 (2)

A.2. LSQ Type Formulation

minimize (g) = (y —h(a)) " W(y —h(a)) @3)

subject to (2). Herey is an n-dimensinal vectoh) is a
vector-valued function of attitude quaterni@p, and
W is an nxn-matrix.

2.1.2. DCM Formulation

B.1. General Type Formulation

minimize f (A) (4)
subject to
A (3x3-matrix)JS0(3) or ATA =1 (5)

B.2. LSQ Type Formulation
minimize
f(A)=(y-h(A)'WE -h@A)) @)

subject to (5). Herey is an n-dimensinal vectoh) is a

vector-valued function of attitude matrid , and W
iS an nxn-matrix.

2.2. Attitude Determination Problem

The general iterative solutions to the above foatad
problems are then applied to two attitude detertigna
problems which are also formulated in various farms

2.2.1. Vector Observation Problem (Wahba's
Problend)

C.1. DCM LSQ Type Formulation
s n 2
minimize f(A)=) " alw, -Av,| ()

where @, are positive constantsy; are known unit
vectors in the reference space (inertial framenfiany
applications) andw; corresponding to obeservations

are also known unit vectors in the spacecraft body
frame.
This problem can be treated as this form, butiit loa
still rewritten in various forms. The first is tomvert it
to a matrix form;

C.2. DCM General Type Formulation’
minimize f (A)=-tr(AB ") (8)
where
B=>"awyv, 9)
C.3. Quaternion LSQ Type Formulation

The attitude matrixA is related to the quaterniog]
by 1,2

A=(0,°-9"),:+2q" +29.[q] (10

where Q = (q1'q2’q3'Q4)T = (qT 1q4)Ta qis a
three-dimensional vector, afjyl is a notation to convert
a three-dimensional vector to a skew symmetriaimat
Any function f (A) can be regarded as a function of

quaternion asf (A(Q)). Then Wahba's problem is
also regarded as a quaternion LSQ type problem

minimize f (Q) :zin:lai w, —A(q)vi|2 (11)

C.4. Quaternion General Type Formulation



case we have slightly different problems
It is well known that Wahba's problem is also
rewritten a$® E.1. DCM LSQ Type Formulation (GPS case)

minimize  f(q) =—q'Kq (12) minimize f (A) = Zinllzr;:l(yij -w,"Av 1)2 (19)

whereK is a 4x4-matrix defined as follows; )
Here we assumed that adl; are independent of the

(S— ol Zj indeces and omitted in the right-hand side.
= 13)
T
yA o E.2. DCM General Type Formulation (GPS case)
— " T inimi =tr(-AB"
O=1trB = zi:lawi vV, (14) minimize f (A) =tr(-AB * +AVA W ) (20)
| ; ; where the matrices in the right-hand side are;
— T _
S=B+B =) _a(wy +yw') as) ) n i
B= ZZilei Zj:lyi iVi (21)
z=[B-B" =" aw, xv, (16)
Zl—l ! i V= ';:lv jV jT (22)
In (16), tr means the trace operation for matrix, and the
notation [] means a conversion from a skew matia t _Nm T
W = AR (23)

corresponding three-dimensional vector. This bracke i=1
will be introduced in detail later (see 6.1).

We do not formulate this case using quaterniorges

no more efficient solution than the solution to Y(1&s
2.2.2. Scalar Observation Problefh”*° obtained this time.

The general form for the scalar observation prokikem

3. Gray’s Method
D.1. DCM LSQ Type Formulation

From the previous works we review Gray's metfiod
minimize f (A) = zin:lai (yi —WiTAVi)Z (17) We rewrite the DCM LSQ type problem B.2 or (6) as

_ minimize h(A)TWh(A) 6y
In these two problems, explanationsan Vv, , W, are
the same as in (7) any, are measrured data. TheThe attitude matrixA is locally parametrized by a
problem (17) is more general than Wahba'’s problem. three-dimensional vecto as:;

D.2. Quaternion LSQ Type Formulation A=A gl® (24)
0

This can be also regarded as a quaternion problem _ . . _
With the relation (10) we have a problem where A, is an approximate solution. (Notations have

been blended with those of this paper.) Then any
function of attitude is considered as defined m tifree-

dimensional spaceRs. Utilizing an approximation of
-[el
€

minimize f (Q) = zinzlai (y, - WiTA(Q)Vi)Z (18)

as

In the recent GPS attitude determination proBitatl
. . . . e_[O] ~ I _[@] 25
combinations ofv; and W, appear in (17) and for this (25)



any attitude function can be differentiated witlspect 4. General Solutions to Quaternion Formulatior®

to ©. Those derivatives are three-dimensional vectors

. nx3 . In this section we deal with attitude function's
and the Jacobiad LJR™" is calculated ai\ , as minimization problems with quaternion formulation.
While the method of Yoshikawa et Bl.used the

Ohi (A) algebraic nature of the quaternion very effectiveiyr
J=s|—= (26) method does not do so. We use the quaternion andy a
28} four-dimensional vector but with a constraint ofitun

length. This can be said that the totality of thiuae
mﬁaternion is just the unit spherE3 as a smooth
manifold in the Euclidean spad§4 .

Then the Newton-Gauss update scheme becomes
pair of (24) and

— T 19T
O= _(‘] W‘]) J'Wh (A 0) 27) 4.1. Solution to General Minimization Problem

This method was applied to both Wahbas’s problemfFrom the well-known Kuhn-Tucker’s conditiGnany
(7) and the scalar observation problem (17). In W&  solution to A.1 or (1) and (2) is a stationary gaifithe

problem h(A) is 3n-dimensional and is a set offollowing Lagrangian functionf , () with a Lagrange

hy(A) =Avy, ..., h (A)=Av,. For function myripiier A
h,(A) = Av, its derivative with respect t&f was
calculated as a quite simple form of f.(@=f@+Aq'q-1 (32)
J(Av,) - A[V,] 29) or it satisfies
X
éf/l(q) — d(q) +2Aq:0
and the Jacobiad was derived in the form of A
Alv 1] Applying the unity condition (2) we have
J=| .. (29) #(@)
ALY,] 2=-q" =¥

X

Deleting A, we have a necessary condition which any
soluton must satisfy as

Also in the scalar observation problem D.1 or (tHé
function h (A) =w, Av, was differentiated as

a T T 7
Wi AY, =-w ALY ] (30) (|4x4—qu)%:o (33)
and the Jacobiaf was derived in the form of Since the functionf is not specified, no explicit

- W, Alv 1] algebraic solution is applicable. According to Nems

J= 31) method, solution is sought near an approximation

T solution , as
—w, Alv,]
q=0,+X (34)

Notations were largely altered here, and therefore
citing purpose referring the original

PAPEr  Syhere A is a sufficiently small vector. Hereafter we
recommended.

write equations within the equivalency (11')(|d:]|)



Then the constraint (2) is equivalently rewrittan a

T
9 =0 (35)
And this is still equivalent to

14,00 = G (36)

Iqo = s~ qoqu (37)

The matrix | q0 works as a projection to the tangential

plane toS° at g,
Substituting (34) into (33), we have

Fd o°f
| - TH— =0
{1 = (0 + an(q, + ) }{d;mz a‘q}
(38)
This is rearranged as
o
Hog = -1, —(d
a=-l, oh(q) (39)
o f Vi .
H=l 0 5.2 Mo/ ~ Yo\ 5 Mo
© (%) q(m(q))
(4x4) (4x1(1x4)
r o
Yo Mo IqO
q dq(q) (40)

We see that the second term of the right-hand si(%
becomes a higher-order term when multiplied Oy
and therefore it can be dropped in (40). Also tgKiB6)

dimensional hyper plane (35), which is hereafter
denoted agi. The 4x4-matrixH * is not singular if its
domain is restricted ta7. Then the inversdH ** of

H* in 71 is defined as a 4x4-projection matrix on the
hyper plane7i which satisfies

H*"H* =H*H* " = (43)

One calculation procedure &4 ** can be written as

H*" =(H* +&0,0,) " — €7'0,0,  (44)

where any non-zero number, e.g., unity, is applead
&. Using this inverse matrix we obtain a solution
formula as;

LA
aq=-H* E( Jo) (45)
Substituting (42) here yields the solution formaa
P f i ’
a = _{I qoﬁ(qo)l qo qu E(qo) qo}

el
@) e

4.2. Solution to LSQ Type Problem

While the previous solution needed derivativeghef
second-order or the Hessian matrix, the solutiothi®
ase needs only those of the first-order. If thecfion
(g) in (3) can be appropriately linearized with

respect to & = ¢ —(,, then the whole function is

into account brings (39) and (40) to the followingearranged as quadratic and an iterative solutidirbes

simple expressions.

. o o
H*aq =~ q0 E( 0o) (41)
e, 1 a
H =Iqoﬁ(qo)l qo_quE(q(Dl qo0
(42)

Eq. (41) can be regarded as a linear equatiartlimee-

obtained (the Newton-Gauss method).
Firstly we deal with a linearization of a function

h(g): S® -~ R" and introduce a notation of the first-

order derivative aslgh(Q) . In this section we define it
as a row vector or 1x4-matrix which satisfies both

h(q, + d1) = h(g,) + Osh(g,)d +o( &) (47)

and



Osh(ag)! 4, = Ush(a,) (48)

asH*" in Eq. (43).

where lqO is the same matrix as defined by (37). Eq4'3' Quaternion Update

(48) requires that(1h(q,) is tangential toS°® at q,,.

This gradient is calculated from the conventionalVhen & is obtained as an increment vector in the
derivative dh/ & (this is also treated as a row vectorfangential planezz and substituted into (34) to obtain a

as

0h(d) :%(qonqo (49)

For a vector functionh(q):S® — R", its gradient
Osh(q) is defined as an nx4-matrix by

Oshy(a)
Osh(q) =
Osh,(a)

(50)

Then we have

h(d, + ) = h(do) + Osh(d,)d + o(|a))

(51)

Substituting Eq. (51) into (3) yields
f(@) =" (vy-h(a,) W(y -h(a,))
=23 (v =h(a,))WOsh(g,) &
+&@'{ X7, 0:n(@) WOh (G} &

+ residual (52)

The residual in (52) can be neglected to derivetitee
solution to minimizef () as

& ={37, Deh(a) WOh(,)}

D" Osh(a,)"W(y —h(a,))  (53)

where the notation + is used to mean the samesave

new quaternion(, it will violate the condition (2).

Therefore a normalization step is to be taken atryev
update. The following conventional normalization is
applicable with a small load.

(54)

q=1g, + & (G + &)

5. Attitude Determination in Quatrernion
Formulation

The results of the previous section with quatarrare
immediately applicable to the attitude determimatio
problems. Since general formulae are already derive
the task here is quite straightforward.

5.1. Solution to Vector Observation Problem

5.1.1. Application of General Type Formula (46)

The problem C.4 or (12) is treated with the itewat
formula (46), to which we can substitute

% =-2Kq (55)
2
7l )

Then an iterative solution is obtained as

& =1 40~ (K a9 (K do (67)

5.1.2. Application of LSQ Type Formula (53)

The problem C.3 or (11) is rearranged to (3) with t
following correspondence

y=(w, ,..,w, ") (58)

n



(59)

h(@) = ((Av))"... v, )’

W =diag(ayl 55, -.-,8,1 53) (60)
Of course A must be replaced by (10) for quaternio

formula (53), we need to calculaté JAv; . Using (10)
we have an expression fékv, as

Av, =(q,” -9%)v, +2q9(q"v;) + 29,[q]v,
(61)

The conventional gradiertJAV, with respect toq is
calculated as

DAv, :(qviT -v,q' +q'v,I -q,v,],

(3x4 (3x3)
vid, +[v;]q) (62)

(3x1)

Then we havd JGAV; as
UsAv, =HAv I (63)

All the necessary quantities are derived and #matitve
formula (53) is now applicable.

5.2. Solution to Scalar Observation Problem

For this case we apply the LSQ type formula o
have expression

w,"Av; =(a,” —g*)w; v, +2(w,'q)@q"V;)

+29,w;"[d]v, (64)
Using (62) and (63) we can calculate
Ow, Av, =w, DAV, (65)

Then the iterative solution formula (53) is applia

6. General Solution to DCM Formulation

The direction cosine matrix (DCM) is the most direc
attitude representation and in this section we degl
minimization problems expressed by DCM. The basic
idea is to use a local representation of attitudérisnby
a three-dimensional vector around any fixed atétud

H 1
representation. Then in order to apply the iteeati\?rhe procedure is the same as that adopted by*Gray

while the development here derives an explicit
expression for the gradient of any function witbpect
to the local variables.

We have already used the bracket operffoto the

mutual conversion between a three-dimensional vecto
and a skew symmetric matrix. Although the usuabaesa
is to place a vector inside the bracket, we use thi
bracket also to the reverse conversion I[R€] where

X is a 3x3 skew symmetric matrix. Some natures of
this bracket which are used in this paper arefliprie
summarized.

6.1. The bracket operator(]

For a three-dimensional vectod = (U, ,U,,U,)",

[u] is defined as a skew symmetric maktfix

0O u -u
[U={-u 0 'y (66)
u -u O

With Levi-Civita symbolé‘ijk this is expressed by

3
[ul; = Zkzlgijkuk

(67)
This matrix[U] works as a cross-product operator as

[ulv=-uxv (68)
whereV is any three-dimensional vector.
Using the same bracket we wri{tX] for a 3x3 skew-

symmetric matrix X to denote a three-dimensional
vector

X23
[X] =| X5, (68)
X12



which is expressed by using};, as 0l
: Z f(eA,)
x%

0 (75)

I ¢=0
[X]; = Ezjykzlgijkxjk (69)
Considering no constraint onA = (A;) (3x3-

This bracket satisfies the following natures anti e ~ Matrix), we define the derivative of any function

freely used hereafter f (A) with respect toA as a 3x3-matrix
[[U]] =u (70) A (A) _ (OT (A)j -
[[X]] = X (71) A A
[uxv]=uv" —vu’ 72) Using this expression we can expafidA , + 0A) as
o
[w™ -wu']=uxv 2y TR+ B = TR+ S B OB,
j
tr{ch} =[C-C"]"[X] (73) P
+od)) = F(A,) +tr{ﬁ(Ao)c¥\T}
[XC-C™X ]
+0(|0A)) (77)
={tr(C)l 5.5 ~C}IX] (74)

Substituting an evaluation
Here U and V are three-dimensional vectorX is a
3x3 skew symmetric matrix, an@ is any 3x3-matrix. A _ + A = A _ =A + + (78)
The relations (73) and (74) may be new with this 0 0 0 LA 0 dm)
bracket, but their derivation is directly possifilem the . to (77) vield
definition and omitted here. into (77) yields

6.2. Solution to General Minimization Problem

fE9A,) = f(A,)

We treat the general minimization problem exprésse
by the DCM, B.1 or (4). Rewrite (24)

17
+1r —(AO)[é]T}+o (79)
A =€dIA, (24) {dA (4)

) _ _ Here utilizing the formula (73), we can rewrit®)]as
where ¢ is a three-dimensional vector. Then any

attitude function can be considered as a functibrf o f (e[ﬂAO) =f(A,)

as f(€9A,). To A, corresponds = 0. Also it is

necessary to note that this representation is ludtay Vi T i T
and depends on the fixed attitud®,. If the function + o"_A(AO)A o Ay d_A(A o) ¢
f (A) has alocal minimum af ,, then the derivative

with respect to must vanish there or + O(M) (80)

Then we have for the left-hand side of (75)



if £ is small. However, in case of

J ., i f(A)=trA’BT, & /A =BAT+AB | the
Zf(é9A,) o
V3 0 derivative can not be regarded as nearly constant.
= Around an approximate poir ,, we linearize (83) as
_| 4 PN A
= {E(AO)A o —A O(E(A o)j } (81) d—A(AO)(A oHLAA )
Since the attitudéA , is arbitrary, dropping the index 0 Vi T _
is possible and it yields a general expression - (AO *[4A 0) K(A J) =0 @4
17 o F\' where no second-order derivatives are kept under th
o"_f(A) = {EAT _A(Ej :I (82) present assumption. Writing
. . _4
This formula is so general to enable us to caleuthé C= X(A 0) (85)

gradient vector with respect # only from the original
function itself. When we conduct an attitude anialp®  yje|ds
ground, the program memory size is not a large eanc

and this kind of general formula will be very udefu - Te aT T -
Then finally we have reached a necessary conditi(ﬂﬂAoC —-CA, [4 z(CA o AL )
which any local minimum must satisfy

(86)

X &Y'
XAT - A(ﬁ) =0 (83) Applying (74) to the left-hand side we have

T ™ e~ T T
The condition (83) comprises only three indepamde{tr(AoC )N -A £ }5”'[CA o AE ]
relations from its symmetry. Together with the
condition thatA is a matrix in SO(3) or must satisfy

(5), all nine elements ofA are determined.

It is necessary to adopt some technique in applieg
Newton-Gauss method to derive a simple iterative

formula. It is because we did not succeed to obtain ¢ = {tr (ACHI-AL T} CAS-AC T
simple expression for the second-order derivatioes

which is solved with respect t§ as an iterative update
formula

the Hessian matrixd” f / dA? which intrinsically (87)

contains 81 elements. We here adopt two approxomati

methods. This iterative algorithm depends strongly on thee
assumption, and it must be noted that a general

Case thatd / JA is nearly constant convergence condition is not guaranteed.

We assume thatdf / JA is constant or almost ) ’ _
Method to calculate ° f / d§° numerically

tant. F le, tHa(A) = trAB ",
constan .or example, assume tHafA) Since an explicit expression faf / J¢ is available
where B is constant. Thendf / A =B, and the

assumption is met. Also assume thaPy (82), there is a way to calculate’” f /o"fz

f(A) = tr{AB T + EAZB} Then numerically. With an appropriate small numbé&r we
can numerically calculated” f / €2 by using two
discrete evaluations fdr=1,...,3 as

X JA=B+&BAT+AB) is almost constant,



£=(CTWC)'C'W(y -h(A,))  (92)

7 & _ —11([&%] )_éf
=& { e A, (Ao) (88) where C is evaluated aA = A .

0& OF & &

Here €,,€,,€, are three orthogonal unit vectors and .
1r=2r=s g 6.4. Attitude Update

& is an appropriate non-zero number. As an example
107 is applicable to£ . Then we can apply Newton's The attitude update is calculated by (24) or

method and obtain an update scheme A =€9A . Then practically it is necessary to
4 calculate the exponential function of a skew symimet
i= _(5’2 fj 17 89 matrix. Since it can be expected thétis small, one
a 0"'52 o"_f (89) candidate for the calculation procedure is (25) or

e =|+[f. But this formula violates the

It should be noted that the above two method$ Willequirement thae! must be an orthogonal matrix or
give an exact solution, if we have a convergentds & iP 0(3)
i\ .

because we are using an accurate expression (82 o . ! . .
J P (82) Therefore it is desirable to find a simple cadtian

X | OF. 4 N .
formula for € under the condition that the result is
stillin SO(3) .

6.3. Solution to LSQ-Type Minimization Problem One is to use a well-known expression which utilize

the trigonometric functior$

The minimization problem of the least squares
formulation B.2 or (6) is treated. In this case for ¢ =cosd + (- cogYu’ + sidy ] (93)

function h(A):S® - R', we define the derivative of
the first-order derivativeoh / d¢ as a row vector, and where & and U are defined by

from (82) it has an expression of
=4 (94)

h oy (Y
d_cr(A)_L"AA A(a”Aj:l (90) u=¢/|4 (95)

(1x3)
When the iteration is repeate|af,| will vanish and the

For a vector observation functionh(A) = (h1(A), calculation (95) will diverge. In such a case thextn
formula is applicable;

dd = 1- &I +(1+\/1—752)_155T +[<]

oy (A ))T we define the gradient as

)
C= %(A) = P (91) (96)
0—,; (A) Although & must not exceed unity, the right-hand side
) stays for any case i8O(3) and the difference of both

the sides is the order m(|£|2) .

Then applying the Newton-Gauss method, we obtain an
update formula forl as

7. Attitude Determination in DCM Formulation

10



We would like to demonstrate that the resultedegal  Utilization of the Original Vectors
iterative formulae in the previous section arecédfitly The matrix B was defined by (9) using the original
applicable to the attitude determination problems. vectorsV; and W, . Returning to these vectors we can

write

7.1. Solution to Vector Observation Problem n T
ABT =2 _aAyw, (100)
7.1.1. Application of General Type Formula =

Wahba’s problem is treated in a rewritten form 6r2 If the observation is made under a condition of-low
(8) and (9) ~ level noises, thenA Vv, must be nearw; or

AV, =W, . Then we have

minimize f(A)=-tr(AB ") ®)
ABT=>" aww,". 101
where B is a constant matrix defined by (9). For this 0 zi=1a1 o (101)
case the first-order derivativef (A)/ JA becomes
Ty — N\ T
constant as tr(AB') = Zizlaitr Ayvw, )

i(A) =-B (97) _\" T _ "

o =) _aw Ay, =3 a (102
Then the necessary condition for local minimum (&3) These two relations state that the Gain mafixcan be
expressed as; evaluated without using a priori attitude estinee

ABT-BAT =0 (98) _ n n Tt

G=G,= {(Zi:iai )l - Zi:laiwiwi }

This condition is very basic for Wahba's problendan
was derived by Broék. He did an algebraic treatment
of this condition to derive a simple calculationrfaula
which we do not further enter.

Now the iterative solution formula (87) is applide
and we obtain

(103)

é={r(ABT)I-ABT}'BA S -AB ]
(99)

This result is already very simple, but we try todf
simpler expressions.

No Update of Gain Matrix
If the initial attitude matrixA is already near the
solution, then the first factor of the right-hanides of

©9), G E{tr(AOBT)I -A B T}_l, which we call

here thegain matrix, will stay almost constant during
the iteration. Then it is feasible to stop the gkdtion of
this factor if it is once obtained. This proceduvél
serve for saving the calculation time in a real
application. Program code is sill needed.

11



Using this G, we obtain one of the simplest iterative =g, x Ay, = _ekT[ AVi] (107)

solution formula as 1x3)
n n T * The result is expressed as a row vector. Then we ha
¢= {(Zizlai )I B zizlaiw Wi } the same expression falAv, / J¢ as
T U g Av, =-|A
EPAOB ~BA, ] (104) b -Av ] (108)

In the real application this formula requires the Substituting the expression (108) into (91) and),(92
summation and inverse operation only at the beg@ni we have an update formula

to obtain both the gain matrix and the matBx. After

that during the iteration very small amount of matr n T -1

calculation is required. é= _(Zi:1a1 [A Ovi] [A i ])

7.1.2. Application of LSQ Type Formula [Zn 1a1' [A oV, ]T (Wi -Ayv i)
i=

The iterative solution to Wahba's problem here o
becomes the same one as that of Gray (see 3). Howev — n ( _ T)
we demonstrate that our general formula is Z‘4i=1a1 laa =AY A Y)
automatically applicable to this problem. And aise
try to see how simpler the result can be reduced. h

For applying the LSQ type solution formula to Walsba [Zi:lahwi XAV (109)
problem, it is necessary to calcula#d\v, / ¢ .

We demonstrate the derivation of this derivativeoy ~We see that this result has a very similar fornthes
present method. As is needed in (86), we firstvetiie Previous result (104). We can show the two formulae

derivatives of Av, with respect to A. Av, is &€ basically eq_uwalent_ as follows.
expressed as Firstty A,V; in the first factor can be replaced by

W;, since these two are near each other. And the
Av. = (e Tav. . e.TAv. el Av )T (105) second factor can be calculated as
i 1 i1-2 ir>3 i
"aw, xAyv, =" afiw, xA v,
where € =(L0,0",e,= (010" ,&=(Q0Y . Vi = 2 il
Then we can calculatée, ' Av, / JA as; o T T
‘ _zizlai[wi(AoVi) —(A oy w, ]

o"iAekTAVi :ﬂ%tr(A(ekviT)T) :[AOBT_BAOT] (110)

(106) Then we have again the formula (104). Therefore on
can select the simplest formula from these several
variations in any real application consideringsip&cific
condition.

=e\V,

and thende, ' Av, | J¢ as

d T T T
20 A =[ek(Avi) ~(AV,)e, ]

12



7.2. Solution to Scalar Observation Problem n )1
f={2i=la1 (Wi XAOVi)(Wi XAOVi) }
For the scalar observation problem D.1 and E.2, our
method is also automatically applicable.

D" a(w, onvi)(yi -w,"A 0vi) (115)
7.2.1. Application of General Type Formula =1

The attitude determination problem E.2 or (20) is

treated. We differentiate (20) first b as 8. Comments on Covariance Analysis
7 J We focused our attention on solving minimization
—f(A) = —tr(—ABT +AVA TW) problems. If the problem arose from some statiktica
oA oA estimation problem, then a necessity of covariance
analysis must accompany it. We briefly commentton i
=-B +2WAV (111) The covariance analysis is related to least squares

(LSQ) type minimization problem. All the iterative
Then substituting this into (82) we hav# (A) / d¢ solution to that type had the form

* & = G(y - h(a)) (116)
J _I_ T T ) )
o"_f f(A) —[ BA ' +AB ] for the quaternion formulation, or
&=G(y-h(A)) (117)

+[2WAVA T_AVA W ] (112)
for the DCM formulation.

This expression can be used in the iterative soiuti In this form we can regard that the paft-h is the

formula (89) with numerical differentiation (88) rfo observation noise and the left-hand side is the

% f (A)/o"fz. estimation error. Then we have an error propagation
formula

7.2.2. Application of LSQ Type Formula & or £=Gn (118)

The problem D.1 or (17) is treated. What is needed _ _
applying the formula (92) is only to differentiatee wheren is the observation error.

function For any covariance analysis, we can assume that the
statistical characteristics of the observation rerice
h(A) = WiTAVi (113) given as, e.g.,
En=0 (119)

with respect tof . The main process was already done

to derive (108) and we have Vn =Enn' = P, (120)
iW-TAV- =w.T IAV, - —W-T[AV-] where En and Vn are the mean value and the
o& : ' Of : : covariance of the noisB, respectively.

Then we can calculate the statistical quantfiiesthe
T estimation error as
=(w; xAv,) (114)
(1x3) Edq orEE=0 (121)

where the result is expressed as a row vector.
If we write the whole update formula, it becomes

V& or VE=GP,G’ (122)
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If the above procedure is applied to Wahba’s lemmb °Brock, J. E., Optimal Matrices Describing Linear
with one of the present solutions, we can derive thSystems,AIAA Journal, Vol. 6, No.7, July 1968, pp.
same formula for estimation error covariance ag thd292-1296.
derived by Shuster et &l. ®Shuster M. D., and Oh, S. D., Three-Axis Attitude

Determination from Vector Observationdpurnal of

Guidance and Control, Vol. 4, No.1, January-February,
9. Conclusion 1981, pp. 70-77.

"Markley F. L., Attitude Determination using Vector

Newton’s method is very effectively applicable toObservations and the Singular Value Decomposition,
various minimization problem of attitude functions. The Journal of the Astronautical Sciences, Vol. 36,
the problem was established in the quaternioNo.3, July-September 1988, pp. 245-258.
formulation or in the direction cosine matrix®Crassidis, J. L., Markley, F. L., New Algorithm for
formulation, then it was shown that an appropriatéttitude Determination Using Global Positioning
iterative formula can be chosen. System Signals Journal of Guidance, Control and
Also it was shown that those solution formulae ar®ynamics, Vol. 20, No.5, September-October, 1997, pp.
successfully applicable to the existing attitudé391-896.
determination problems and give very efficienfBar-ltzhaack, I. Y., Montgomery P. Y., and Garridk,
calculation procedures. C., Algorithms for Attitude Determination using GPS

AIAA Paper No. 97-3616, AIAA Guidance and Control

Conference, New Orleans, August 1997.
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