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Abstract 
 
 The horizon contour presented to a spacecraft observ-
ing an oblate Earth is analyzed by relating the angular 
radius of the horizon from the nadir vector to the azi-
muthal angle about this vector. It is shown that the hori-
zon contour is an ellipse with respect to the geocentric 
nadir vector, and exact formulas are derived for various 
properties of the horizon ellipse. Similar analysis, 
linearized in an Earth oblateness parameter, is presented 
for the geodetic nadir vector and, for applications in 
static horizon sensors, the horizon bisector nadir. 
Numerical calculations for the Tropical Rainfall 
Measuring Mission (TRMM) are used to show that the 
geodetic and the horizon bisector nadir vectors are 
nearly perpendicular to the horizon ellipse, and that ap-
proximating the horizon contour as a circle about the 
geodetic nadir introduces errors of less than 0.06 
degrees.  
 
Key words: Earth oblateness, horizon ellipse, geocentric 
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Introduction 
 
  Low Earth orbiting spacecraft commonly use sensors 
that sense the Earth infrared horizon to compute the 
attitude. An important task is to know the shape of the 
Earth disk as observed by the spacecraft, for then we 
can compute the reference vector (the nominal pointing 
direction), and compare with the sensor observations to 
obtain the attitude (e. g., roll and pitch). For accurate 
attitude determination, we must take into account that 
the Earth must be modeled not as a sphere but as an 

oblate ellipsoid1. If a (≈ 6378.140 km) and b (≈ 
6356.755 km) are respectively the equatorial and polar 
radii of the Earth, a flattening factor, α , can be defined 
as  
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aα  .   (1) 

 
(Note that α  is small, only 0.006740 or about 1/150, a 
fact which will be useful in generating formulas 
linearized in α later.) The Earth ellipsoid may then be 
written as  
 

 2222 )1( azyx =+++ α  (2) 

 
where( )zyx ,,  are the geocentric inertial (GCI ) frame 

coordinates of any point r
r

on the surface. 
  For attitude determination purposes, the crucial ques-
tion may be phrased as (see Figure 1 below): how does 
the angular distance, ρ, of the horizon from the nadir 
vary as a function of the azimuthal angle, ψ ? (Note that 
Fig. 1 gives only a general sketch of these quantities; a 
precise definition of the plane of the figure depends on 
the definition of the spacecraft nadir vector, and will be 
offered in subsequent sections.)  
  The Earth oblateness complicates the issue in two 
ways as will be shown below. First, the horizon points 
do not lie on a circle; rather, they lie on an ellipse. 
Second, we must be careful in specifying what we mean 
by the spacecraft nadir direction. Let the spacecraft be at 

R
r

 with respect to the geocenter, with GCI coordinates 

(X, Y, Z) and RR
r

= . Denoting unit vectors by "^", we  



 
 

Figure 1.  Sketch of the Earth Disk Apparent to a 
Spacecraft Showing the Angular Radius from the 

Nadir, ρρρρ, and the Azimuthal Angle ψψψψ 
 
 
shall refer hereafter to three different nadir vectors - the 
geocentric ( Cn̂  ), the geodetic (Dn̂ ), and the horizon 

bisector ( Hn̂ ) - which are defined as follows. 

RRnC /ˆ 
r

−≡ , Dn̂  is the direction of the perpendicular 

from the spacecraft to the Earth's surface, and Hn̂  is the 

unit vector in the direction which equalizes the values of 
ρ  for the local North and South horizon points.  
  Let (ρC, ψC), (ρD, ψD), and (ρH, ψH), denote ρ and ψ  
when the nadir is Cn̂  , Dn̂ , and Hn̂  respectively. The 

question posed earlier may now be restated as: what are 
the functional relationships ρC(ψC), ρD(ψD), and 
ρH(ψH)? The problem was partly solved in Ref. 1 where 
an exact result for ρC(ψC) was presented. Our principal 
objectives here are: to fully develop the properties of the  
horizon ellipse, and to examine the other two angular 
radii - ρD(ψD)  and ρH(ψH). Note that ρD(ψD) is impor-
tant on account of most Earth-pointing spacecraft being 
geodetic-pointing (i. e., the spacecraft ẑ -axis is nomi-
nally aligned with Dn̂ ), and ρH(ψH) being necessitated 

by newer static Earth sensors2,3 where nominal pointing 
implies equal values of ρ in diametrically opposite hori-
zon quadrants.  
  The material presented here is mainly derived from 
References 1-7, and consists of the following principal 
results.  
• The locus of the horizon points seen by the space-

craft is an ellipse whose plane is not perpendicular 
to Cn̂  .  

• An exact formula relating ρC  to ψC.  
• Approximate formulas for computing Dn̂ and Hn̂ . 

• Cn̂  and  Dn̂  differ substantially (by nearly 0.2 

deg), but Dn̂ and Hn̂  are approximately the same 

(to within 0.01 deg).  
• Dn̂ and Hn̂  are both nearly normal to the horizon 

ellipse (to within 0.02 deg).  
• Analytical expressions linearized in α  for ρD(ψD) 

and ρH(ψH). 
• Approximating ρD(ψD) by a circle which depends 

on the spacecraft position introduces errors less 
than 0.06 deg. 

The numerical values quoted are for the Tropical Rain-
fall Measuring Mission8 (TRMM) - a typical geodetic-
pointing spacecraft of altitude 350 km and inclination 
35 degrees (deg). 
  Additional notation used here is as follows. The GCI 

frame is defined by the unit vectors { }III zyx ˆ,ˆ,ˆ . h
r

 is 

the vector from the spacecraft to a horizon point. ρ0  is 
the angular radius of the circular disk presented by a 
fictitious spherical Earth of radius a, i.e.,  
 
 Ra /)sin( 0 =ρ .    (3) 

 
We use the compact notation "c(θ) = cos(θ)", "s(θ) = 
sin(θ)", and "t(θ) = tan(θ)". λ and γ are the spacecraft 
geocentric latitude and right ascension respectively, so 

that the GCI components of R
r

 can also be written as 
( ))(),()(),()( λγλγλ sscccR .  

 
 

The Horizon Ellipse 
 
As shown by K. Liu1, the horizon points lie in the 
horizon plane 
 

 2)1( azZyYxX =+++ α   (4) 

 
with ( )zyx ,,  subject to Eq. (2). It is convenient to 

examine the locus of the horizon points in a new 
frame{ }'ˆ,'ˆ,'ˆ zyx which is obtained by rotating 

{ }III zyx ˆ,ˆ,ˆ first through 
2

πγ − about Iẑ , and then 

through λ about the intermediate x-axis so that 

'ŷ coincides with R
r

. The transformation matrix from 

{ }III zyx ˆ,ˆ,ˆ to { }'ˆ,'ˆ,'ˆ zyx  is: 
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Labeling the surface points as ( )',',' zyx  in the new 

frame, Eq. (2) becomes  
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and Eq. (4) becomes  
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Eliminating y' in Eqs. (6) and (7) yields the horizon el-
lipse in the 'ˆ'ˆ zx −  plane: 
 

 ( ) 222 '' '1' azx =++ α ,  (8) 

 
where: 
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and 
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Note that R
r

 passes through the center of the ellipse. 
 
 
An Exact Relation Between ρρρρC  and ψψψψC 

 
In view of its importance, we will now derive Eq. (4-24) 
of Ref. 1 which was given without proof. Consider Fig. 
2 where u is the length of the perpendicular from a hori-

zon point ( )',',' zyx  to R
r

. We have  
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'
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To relate u to ψC, note that the 'x̂  axis is along local 
West and the 'ẑ  axis is along local North in Fig. 1 so 
that 
 
 )(' Cc  ux ψ−=  ,  ) s(uz Cψ='  . (11) 

 

Using Eq. (11) in Eq. (8), and using the definitions in 
Eqs. (9), yields 
  
 

 
 

Figure 2.  Geometry Used in Relating ρρρρC to ψψψψC 
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where 
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and  
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It remains to obtain y'(ψC) in Eq. (10). To do this, 
eliminate u in Eqs. (11) and (12), and use the resulting 
z'(ψC) in Eq. (7). This yields  
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Using Eqs. (12) and (15) in Eq. (10) yields 
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which is Eq. (4-24) of Reference 1. (Note that Ref. 1 
uses the factor  f  related to α by  

r
r R

r

h
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α  to express the Earth oblateness.) 

 
 
The Horizon Ellipse Expressed in a Horizon Plane 
Frame 
 
 Let m̂  be the normal to the horizon plane. From Eq. 
(7), we get  
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If εell  is the angle between m̂  and 'ŷ (i. e., R
r

), a direct 

consequence of the Earth oblateness is that εell  ≠ 0: 
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Thus εell  is a small angle, and it is easy to show that  
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It is worthwhile to examine the ellipse in the 
{ }''ˆ,''ˆ,''ˆ zyx  frame which is obtained by further rotating 

the { }'ˆ,'ˆ,'ˆ zyx  frame through the angle εell  about the 

'x̂ axis so that the ellipse lies in the ''ˆ''ˆ zx −  plane. 
Labeling the horizon points as ( )","," zyx , Eq. (8) 

becomes   
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while Eq. (15) shows that y''  is constant on the horizon 
ellipse: 
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Note that the above value of y'' is also the perpendicular 
distance from the geocenter to the horizon ellipse. Thus 
the center of the horizon ellipse is shifted along ''ẑ  
through  
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Nadir Coordinate Systems 
 
  The scheme used to generate the { }''ˆ,''ˆ,''ˆ zyx  frame 

from the{ }'ˆ,'ˆ,'ˆ zyx  frame can be generalized to yield  a 

family of spacecraft-centered frames which we term 
"Nadir Coordinate Systems" (NCSs) and denote by 
{ }NNN zyx ˆ,ˆ,ˆ . The essential aspect of a NCS is that it is 

generated from the { }'ˆ,'ˆ,'ˆ zyx  frame by a rotation about 

the 'x̂ axis through an angle εN  (see Figure 3).  This 
allows us to adopt a common treatment for analyzing 
ρD(ψD) and ρH(ψH) by introducing the tilt angles εD and 
εH. 
 

 
 

Fig 3. Generation of a Nadir Coordinate System by 
Tilting the Geocentric Nadir Through εεεεN 

 
 
  Analogous to conventional definitions of orbital 
coordinate systems, the NCS axes are defined as 
follows. 
 

Nx̂  (local East) = -x′ˆ  

Nẑ  = nadir direction, Nn̂ , obtained by tilting  

          -y′ˆ  through  an angle εN  about x′ˆ  

Nŷ (local South) = NN xz ˆˆ ×   
 
The angle ψN  is measured from local East, as in Fig. 1. 
In particular, the Geocentric NCS, { }CCC zyx ˆ,ˆ,ˆ ,  is 

defined by ε = 0, i.e., by relabeling the { }'ˆ,'ˆ,'ˆ zyx  axes:  

 
 Cx̂  = - x′ˆ , Cŷ  = - z′ˆ , Cẑ = - y′ˆ .     (23) 

 
It is easy to see that the nadir vector, Nẑ , can be 

resolved in this NCS as: Nn̂  = ( 0, s(εN), c(εN) ). 

Iẑ

Nε

Cẑ
Nẑ

Earth 



  Given εN  and Eq. (16) for ρC(ψC), our goal is to obtain 
a general formula for ρN(ψN), and then specialize to the 
cases εN = εD and εN = εH. Exact results analogous to 
(16) are presently not available, but it will be seen that 
accurate formulas linear in α can be obtained. The 
linearizations are possible because it will be seen that 
both εD and εH  are of order α. Thus, the following 
approximate expression for εD (accurate to 2x10-6 deg) 
can be derived using the results of Heffron and Watson9: 
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where 
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Linearizing in α  yields: 
 

 )()2(
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  A similar expression can be derived2,3 for the horizon 
bisector nadir Hn̂  by equalizing the values of ρ in the 

local North and South directions. Starting from the Eq. 
(16), we can show that (see Appendix A)  
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and that, to order α, ρH will be equal for any pair of 
diametrically opposite horizon points. (This is 
particularly useful in analyzing the Barnes static Earth 
sensor assembly3-6 where the sensor axes do not 
coincide with the Hx̂  and Hŷ  axes.) 

  Equations (19), (26), and (27) show that εD and εH are 
generated from εell by successive applications of the 
factor s(ρ0) which is nearly unity for low-Earth orbiting 
spacecraft. As a practical example, consider TRMM for 
which the maximum value of λ is 35 deg, and R is about 
350 km. Then s(ρ0) = 0.9510, and s(2λ)max = 0.9397, 
so that the maximum values of the tilt angles εell, εD, and  
εH  are respectively 0.1814 deg, 0.1725 deg, and 0.1641 
deg. Thus, nominal pointing in either the geodetic or  
horizon bisector frames implies near-normal viewing of 
the horizon ellipse. We also conclude that Hn̂  is very 

close to Dn̂ ; for TRMM the difference is less than 0.01 

deg, and corresponds to a surface arc length of only 
about 0.05 km.  

 

 

A Linearized Formula for the Earth Angular 
Radius, ρρρρN(ψψψψN)  
 
  The angular radius of the nearly spherical Earth can be 
obtained from the following linearization of Eq. (16): 
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Thus,  
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A similar expression for ρN  can be derived using 
spherical geometry10. We obtain the complementary 
relations  

 
    )(s )(s )(s  )(c )(c  )(c CNCNCN ψερερρ −= , (30) 

 
and 
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These can be linearized in εN  to yield 
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and 
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Using Eq. (28) and ignoring the difference between ψN  
and ψC  (which is of order εN  as shown in Appendix B) 
yields  
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Defining ρ* and  ∆ρ(ψN) via 
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and using the formula for εH  in (27), (34) may be 
written as  
 
 )(s )-( )()( NHNNNN ψεεψρ∆ρψρ ++≈ * . (37) 

 
We expect that ρ* will deviate significantly in from ρ0  
due to t(ρ0) which appears in Eq. (35); by the same 
token, ∆ρ(ψN) will contribute much less since s(2ρ0) 
may be written as 2s(ρ0)/ t(ρ0)  in Eq. (36) with s(ρ0)≈ 1. 
  Let us now consider the horizon bisector coordinate 
system. By definition, the term proportional to s(ψH) in 
(37) vanishes.  The remaining ψH -dependence in (37) 
arises only via s2(ψH)  in ∆ρ , thus showing that 
ρH(ψH)= ρH (ψH  + π)  for arbitrary ψH. This shows the 
(approximate) equality of the angular radii for any two 
diametrically opposite  horizon points, thus validating 
the term "horizon bisector".  
  Let us now use (37) to evaluate the ψH -dependence of  
∆ρ(ψH), which is  
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For TRMM, ρ0 = 1.25630 = 71.9807 deg.  Thus, the 

maximum of 
H

H

ψ
ρ

∂
∂

 for λ = 0 deg and 35 deg are only 

0.000991277 and 0.000665157 respectively. More 
explicitly, the numerical values of ρH  for ψH  = 0 deg 
and 90 deg are listed below for λ = 0 deg and 35 deg.  
 
   ρH (λ = 0 deg, ψH  = 0 deg)   ≈ 71.9807 deg 
 
   ρH (λ = 0 deg, ψH  = 90 deg) ≈ 71.9807 deg  
                                                     - 0.0567960 deg 
 
  ρH (λ = 35 deg, ψH  = 0 deg)    ≈ 71.8041 deg  
 
  ρH (λ = 35 deg, ψH  = 90 deg)  ≈ 71.8041 deg  
                                                     - 0.038111 deg 
 
  Thus ρH  varies over one quadrant by less than 0.06 
deg for TRMM. In view of the practically insignificant 
differences in the numerical values of εD  and εH  in Eqs. 
(26) and (27), and the relatively small contribution of 
∆ρ(ψN),  we may further approximate Eq. (37) by 
 

 *ρψρψρ ≈≈ )()( DDHH  . (39) 

 
  Note that ρ* is not a true constant since it is a function 
of the spacecraft position via R and λ.  Nevertheless it is 
independent of the attitude (the "yaw" angle, Dψ ,  for 

Earth pointing spacecraft). This formula can be of use in 
quick calculations or when the accuracy requirements 
are modest. 
 
 

Conclusions 
 

  We have derived exact expressions for the properties 
of the horizon ellipse including the angle εell  between 
its normal and the geocentric nadir, and an exact 
expression relating the angular radius, ρC, of the horizon 
from the geocentric nadir to the azimuthal angle, ψC, 
about this nadir. This expression for ρC agrees with 
earlier work1.  
  The introduction of a generalized Nadir Coordinate 
System where a new nadir vector is generated from the 
geocentric nadir vector by a rotation εN  about the local 
West was useful in  

• deriving further exact properties such as the 
offset of the center of the ellipse when εN =εell  

• introducing coordinate systems from the point 
of view of an observer  

• providing a unified treatment of the angular 
radius, ρN, of the horizon as a function of the 
azimuthal angle, ψN 

  Formulas linearized in α  were derived for the geodetic 
and horizon bisector tilt angles εD and εH  respectively, 
showing that they differ from εell through successive 
factors of sin(ρ0), where ρ0 is the angular radius of the 
horizon contour in the spherical Earth approximation. 
Linearized expressions were also derived for ρD(ψD) 
and  ρH(ψH ) and showed that the tilt angle εH  generates 
the desired horizon bisection effect.  
  Numerical application of the various formulas to the 
TRMM spacecraft (which uses static horizon sensors) as 
a typical example revealed the following.  

• εell, εD, and εH  differ by less than 0.02 deg, that 
is, the geodetic and horizon bisector nadir vec-
tors, Dn̂ and Hn̂ , are nearly normal to the hori-

zon ellipse  
• Hn̂  is a good approximation to Dn̂  (to within 

0.01 deg)  
• ρH  varies by less than 0.06 deg as the azi-

muthal angle ψH  varies along the ellipse.  
• The oblate Earth presents to the spacecraft an 

Earth disk which can be well-approximated by 



a circle whose center is on Dn̂  and whose ra-

dius, ρ*  , depends on the spacecraft position. 
 
 

Appendix A - The Horizon Bisector Frame 
 
  Let +h

r
and −h

r
be the North and South horizon points, 

with the azimuth angle ψC equal to +π/2 and -π/2, re-
spectively. Note that the azimuth angle ψN of these two 
horizon points also takes exactly the same values +π/2 
and -π/2 in any NCS, and therefore it is immaterial as to 

which NCS is used to evaluate +h
r

and −h
r

. Another 

important point is that both +h
r

and −h
r

are perpen-

dicular to Cx̂  and therefore their NCS angular radiiNρ  

are related to their geocentric radii ±= ρρC  via the 

simple relation: 
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which implies that 
 
 2/)( +− −= ρρεH .  (A2) 

 
Evaluating Eq. (16) at ψC =  ± π/2 we get 
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Knowing cot(ρ+) and cot(ρ-) from Eq. (A3), it is easy to 
show that  
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Explicit evaluation of Eq. (A7) using the definitions in 
Eqs. (A4)-(A6), and the identity 
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yields the simple result 
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Linearization of Eq. (A9) in α and εH immediately 
yields Eq. (27). 

 
 

Appendix B – The Azimuth Angle ψψψψN 
Within the Nearly-Spherical Approximation 

 
An explicit formula relating ψN  to ψC  can be obtained 
by summing up Eqs. (30) and (31), yielding  
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By linearizing the left side of this relation with respect 
to ρN -ρC  and making use of Eq. (31) one finds 
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NCN ρψεψψ +≈ . (B2) 

 
Note that the North and South horizon points ψN = ±π/2 
must lie in the NN zy ˆˆ −  plane and therefore, by defini-

tion, they are the same for any NCS. (Contrast this with 
the East and West horizon points which vary slightly for 
different NCSs).  In fact, according to Eq. (B2), ψN  = 
ψC  for ψC = ± π/2, as expected. 
 
 

References 
 
1Liu, K.; "Earth Oblateness Modeling",  in Spacecraft 
Attitude Determination and Control, Ed: J. R. Wertz, D. 
Reidel Publishing Co., Dordrecht, Holland, 1978, pp. 
98-106 
2Flately, T. W.; "TRMM Yaw", Technical Memoran-
dum from 712.3/TRMM ACS lead analyst, D. McGlew, 
to Distribution, November 16, 1992. 
3Challa, M.; "Advanced Attitude Determination Task 
Attitude Determination Using Static Earth Sensors: 
Models and Algorithms", Technical Memorandum No. 
553-FDD-94/030R0UD0, prepared for NASA-Goddard 
Space Flight Center, August 1994 



4Keat, J., Challa, M., Tracewell, D., and Galal, K.; 
"Earth Horizon Modeling and Application to Static 
Earth Sensors on TRMM Spacecraft", Proceedings of 
the Flight Mechanics and Estimation Theory Sympo-
sium, NASA Conference Publication No. 3299, God-
dard Space Flight Center, Greenbelt, MD, May 1995 
5Natanson, G.; "New Algorithms for the Simulation, 
Processing, and Calibration of Earth Sensor Penetration 
Angles", Technical Memorandum No. 27434-12, pre-
pared for NASA-Goddard Space Flight Center, Decem-
ber 1996 
6Natanson, G.; "Ground-Support Algorithms for Simu-
lation, Processing, and Calibration of Barnes Static 
Earth Sensor Measurements: Application to the Tropical 
Rainfall Measuring Mission Laboratory ", Proceedings 
of the Flight Mechanics Symposium, NASA Conference 
Publication No. 3345, Goddard Space Flight Center, 
Greenbelt, MD, May 1997 
7Challa, M.; "New Results on  the Shape of the Earth 
Disk as Seen by a Spacecraft ", technical memorandum 
No. CSC-86-910-14, prepared for NASA-Goddard 
Space Flight Center, September 1998 
8The TRMM home page on the web is at: 
http://fpd-b8-0001.gsfc.nasa.gov/490/more/trmmhp.htm 
9Heffron, W. G. and Watson, S., B.; “Relationships 
Between Geographic and Inertial Coordinates”, Journal 
of Spacecraft and Rockets, vol. 4, pp. 531-532, April 
1967 
10Tandon, G. K..; in "Spacecraft Attitude Determination 
and Control", Ed: J. R. Wertz, D. Reidel Publishing 
Co., Dordrecht, Holland, 1978, pp. 760-766. In the 
notation of this reference, ρN  is the angle between the 
points (φ =-ψC, θ =ρC) and  (φ0 = π/2, θ0  = εN). 

 


