RECENT DEVELOPMENTS IN EARTH OBLATENESS MODELING
FOR ATTITUDE DETERMINATION

M. Challa
(mchalla@csc.com)

Applied Research Department
Computer Sciences Corporation
10110 Aerospace Road
Lanham-Seabrook (MD 20706) USA

G. Natanson
(gnatanso@csc.com)
Mission System Engineering Department
Computer Sciences Corporation
7700 Hubble Drive
Lanham-Seabrook (MD 20706) USA

Abstract oblate ellipsoid If a (= 6378.140 km) andb (=
6356.755 kmare respectively the equatorial and polar
The horizon contour presented to a spacecraftrebseradii of the Earth, a flattening factas,, can be defined
ing an oblate Earth is analyzed by relating theutarg as
radius of the horizon from the nadir vector to #m-

muthal angle about this vector. It is shown that hbri- a2
zon contour is an ellipse with respect to the getrite a=—-1. (D)
nadir vector, and exact formulas are derived fofoues b

properties of the horizon ellipse. Similar analysis

linearized in an Earth oblateness parameter, isepted (Note thata is small, only 0.006740 or about 1/150, a
for the geodetic nadir vector and, for applications fact which will be useful in generating formulas
static horizon sensors, the horizon bisector nadiinearized ina later.) The Earth ellipsoid may then be
Numerical calculations for the Tropical RainfallWwritten as

Measuring Mission (TRMM) are used to show that the

geodetic and the horizon bisector nadir vectors are X2+y2+(1+a)22 =32 (2)
nearly perpendicular to the horizon ellipse, arat tp-

proximating the horizon contour as a circle abd t herelx. v 7) are the geocentric inertial (GCI ) frame
geodetic nadir introduces errors of less than 0.0 e( Y ) 9 ( )

degrees. coordinates of any poirt on the surface.
For attitude determination purposes, the crugisads-

Key words Earth oblateness, horizon ellipse, geocentriion may be phrased as (see Figure 1 below): has do

nadir, geodetic nadir, horizon bisector nadir, TRMM  the angular distancgy, of the horizon from the nadir
vary as a function of the azimuthal angle? (Note that

Fig. 1 gives only a general sketch of these quastit
Introduction precise definition of the plane of the figure degieion
the definition of the spacecraft nadir vector, awitll be
Low Earth orbiting spacecraft commonly use semisopffered in subsequent sections.)

that sense the Earth infrared horizon to compute th The Earth oblateness complicates the issue in two
attitude. An important task is to know the shapahef ways as will be shown below. First, the horizonnp®i
Earth disk as observed by the spacecraft, for then do not lie on a circle; rather, they lie on an psié.
can compute the reference vector (the nominal jmgint Second, we must be careful in specifying what wame
direction), and compare with the sensor observatton by the spacecraft nadir direction. Let the spadebeaat
obtain the attitude (e. g., roll and pitch). Focwate R with respect to the geocenter, with GCI coordisate
attitude determination, we must take into accotmat t _g . . .
the Earth must be modeled not as a sphere but as (éhY’ 3 andR—H - Denoting unit vectors by ", we
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e nNe and Ap differ substantially (by nearly 0.2
A Local North deg), butiand A,, are approximately the same

(to within 0.01 deg).
e npand n, are both nearly normal to the horizon

ellipse (to within 0.02 deg).
« Analytical expressions linearized m for on(¢b)

Local East and g(¢h).
* Approximating oo(¢p) by a circle which depends
AN on the spacecraft position introduces errors less
Earth horizon than 0.06 deg.

The numerical values quoted are for the TropicahRa
fall Measuring Missiofi (TRMM) - a typical geodetic-
pointing spacecraft of altitude 350 km and inclioat

35 degrees (deqg).

Figure 1. Sketch of the Earth Disk Apparent to a Additional notation used here is as follows. 'IEB@I

Spacecraft Showing the Angular Radius from the ~ frame is defined by the unit vectofg, ,§,,2,}. h is
Nadir, p, and the Azimuthal Angle ¢ the vector from the spacecraft to a horizon pqipt.is
the angular radius of the circular disk presentgdab
fictitious spherical Earth of radiss i.e.,

shall refer hereafter to three different nadir vest the
geocentric 6 ), the geodetic ffy ), and the horizon sin(p,) =a/R. 3)

bisector () - which are defined as follows.
. _ 5 A N . We use the compact notation(8) = cos@", "s(@ =
nc =-R/R, np is the direction of the perpendlcularsin(@,,, and (@) = tan(8)". A and yare the spacecraft

from the spacecraft to the Earth's surface, Apdis the  geqcentric latitude and right ascension respegtives
unit vector in the direction which equalizes thé&ues of  {hat the GCI components d@ can also be written as
p for the local North and South horizon points. R(c(/l)c(y),c(/l)s(y),s(/l)).

Let (oc, ¢e), (oo, ¢b), and fpy, ¢h), denotep and ¢
when the nadir i\ , Ay, and N, respectively. The
question posed earlier may now be restated as: avhat The Horizon Ellipse
the functional relationshipsoc(¢e), m(¢p), and
o:(¢k)? The problem was partly solved in Ref. 1 wherds shown by K. Lid, the horizon points lie in the
an exact result fops(¢) was presented. Our principal horizon plane
objectives here are: to fully develop the propsertéthe
horizon ellipse, and to examine the other two aagul XX +yY+(1+a)zZ=a? (4)
radii - oo(¢p) and py(¢). Note thatop(¢p) is impor-
tant on account of most Earth-pointing spacecraifidp
geodetic-pointing (i. e., the spacecraftaxis is nomi-
nally aligned withnp ), andp.(¢4) being necessitated
by newer static Earth sensbtsvhere nominal pointing
implies equal values gf in diametrically opposite hori- {§<| Vi ,2|}ﬁrst through y—ﬁabout 2,, and then
zon quadrants. 2

The material presented here is mainly derivednfrothrough A about the intermediatex-axis so that

References 1-7, and consists of the following fo@lc ¥ coincides with R. The transformation matrix from

results. 5 & 5 RSP I
Yia gt Y :
* The locus of the horizon points seen by the spaciz(' yi Z'} © {X y Z} 'S

craft is an ellipse whose planerist perpendicular

to fic . s(y) —c(y) 0
«  An exact formula relatinge to ¢. A= c(A)e(y) c(A)s(y) ¢A)|. (5
«  Approximate formulas for computingy and Ay . -s(A)e(y) -s(A)s(y) c(A)

with (x, 2 z) subject to Eq. (2). It is convenient to
examine the locus of the horizon points in a new
frame{i‘,y‘,i'}which is obtained by rotating



Labeling the surface points a(s<‘,y',z') in the new Using Eq._(ll) in Eqg. (8), and using the definidan
frame, Eq. (2) becomes Egs. (9), yields

x'2+(1+a s? (A))y'2+(1+acz(/1))z'2+

o (6)
2as(A)c(A)y'z=a“,
and Eq. (4) becomes
iras?))y+asycyz=a2/IR . (7)

Eliminatingy' in Egs. (6) and (7) yields thH®orizon el-
lipsein the X'-Z' plane:

x2+(1+a)z?=a?, (8)
where:
1+as?(1)-s? Figure 2. Geometry Used in Relatinga. to
a2 = R2s?(0,) ( )2 (Po) . (9a) g y P 1o Yk
l+as“(A)
af,(1)
200y o2 ue) = ———— (12)
b'zszsz(po){“as A)-s (po)}, (9b) R we)
1+a
where
and
(M) ={R?[l+a s?(1))-a2 (13)
a? . ac’h)
a=2_1=_9% ) (9c)
b2 1+a s%(A) and
Note thatR passes through the center of the ellipse. fo(A, ) :\/1+a32 A)+ac?(A)s? (@) . (14)

. It remains to obtairy'(¢c) in Eg. (10). To do this,
An Exact Relation Betweeng: and ¢ eliminateu in Egs. (11) and (12), and use the resulting

In view of its importance, we will now derive Ed-24) Z(Ye) in Eq. (7). This yields

of Ref. 1 which was given without proof. Consideg.F
z o o a(af, -asth)eil) swe) fy)

2 whereu is the length of the perpendicular from a hori- Y (@e) = > (15)
zon point(x', y', Z) to R. We have R(1+0’S (A )) f,
R-y Using Egs. (12) and (15) in Eqg. (10) yields
cot(pg) =— . (10)
u
+

cot(og) =2 AN SWe) g

To relateu to ¢, note that thex 'axis is along local a(1+a's (/]))

West and theZ' axis is along local North in Fig. 1 so
that which is Eq. (4-24) of Reference 1. (Note that Rlef.

uses the factof related tax by
X=-uce) , Z=usc) - 11)



Nadir Coordinate Systems
a =
@-f)?

-1 to express the Earth oblateness.)

The scheme used to generate {fe, ¥, 2} frame
from the{§<', v, 2‘} frame can be generalized to yield a
The Horizon Ellipse Expressed in a Horizon Plane family of spacecraft-centered frames which we term
Frame "Nadir Coordinate Systems" (NCSs) and denote by
{%n. In.2n} - The essential aspect of a NCS is that it is

Let m be the normal to the horizon plane. From Edgenerated from théf(', 9-,2-} frame by a rotation about

(7), we get the X'axis through an angley (see Figure 3). This
) allows us to adopt a common treatment for analyzing
A= (O,1+as (A),a s(4) C(/‘)) _ (17) A(¢p) andas(¢) by introducing the tilt angles, and
x/1+(2a+a2)32(/1) &iy.

If & is the angle betweern and ¥ (i. e, R), a direct
consequence of the Earth oblateness isghat O:

1+a s?(A)
\/1+(2a+a2)32 (1) ’

C(een) = (18)

Thus&, is a small angle, and it is easy to show that Earth

Ear = % s@1) . (19) .

It is worthwhile to examine the ellipse in the
{)”( v,z } frame which is obtained by further rotating

the {)2 9’,2‘} frame through the angle,, about the

X axis so that the ellipse lies in the'-z plane.

Labeling the horizon points aéx",y",z"), Eq. (8) Analogous to conventional definitions of orbital
b coordinate systems, the NCS axes are defined as
ecomes follows

Fig 3. Generation of a Nadir Coordinate System by
Tilting the Geocentric Nadir Through &

X2+ (1+a) [s(eg )y +oleq )2'] =02, (20) %y (local East) = X'

while Eqg. (15) shows that' is constant on the horizon N T n?dlr directionjiy , obtained bAy tilting
ellipse: -y’ through an angley aboutX’

¥y (local South) =2 x Xy
2
= 2 (21)
> > ) The angley is measured from local East, as in Fig. 1.
R\/ 1+(a ¥ 2a)s () In particular, the Geocentric NCYXc,Vc.2:}, is

Note that the above value gf is also the perpendicular defined bye =0, i.e., by relabeling thé(" Y, Z'} axes.
distance from the geocenter to the horizon ellip$eis

the center of the horizon ellipse is shifted alogig Xc =X, Yo =-2', =Y. (23)
through

y

It is easy to see that the nadir vectdy,, can be
Jr = a® a's(A)c(A) . (22) 'esolved inthis NCS asiy =(0, s&), c(&) ).
Rl1+s2())y 1+ (02 + 2a)s2(1)




Givengy and Eq. (16) fopc(¢), our goal is to obtain close tonp ; for TRMM the difference is less than 0.01
a general formula fopy(¢4), and then specialize to the deg, and corresponds to a surface arc length of onl
casesgy = & and & = &. Exact results analogous toabout 0.05 km.

(16) are presently not available, but it will beesehat

accurate formulas linear imr can be obtained. The

linearizations are possible because it will be sé@ A Linearized Formula for the Earth Angular

both & and g, are of ordera. Thus, the following Radius, ov(¢)

approximate expression fap, (accurate to 2x10 deg)

can be derived using the results of Heffron andsa#dt The angular radius of the nearly spherical Eeatibe
obtained from the following linearization of Eq6{1

£ =| =2 (R~Ro) s(24) oy U= SHo AN ) + ol e |2 -(28)
2+a ( a j (24) 2
-| — |[(R-2Rp) c(21)
2+a Thus,
where Pe(Wic) =y = -5 L2p0 )M oo )+ (A )l )] *-(29)
a
Rp= R_—Z : (25) A similar expression foroy can be derived using
1+as®(4) spherical geometfy. We obtain the complementary
relations
Linearizing ina yields:
c(pn)=c(pc )elen )= oc )S(en )S(¢c),  (30)
a
£0 = @) (py) - 20 _

A similar expression can be deri¢édor the horizon c(pc)=clpy)cley)+s(py )sley )S(¢y ). (BL)
bisector nadirny by equalizing the values gfin the

local North and South directions. Starting from Bg  These can be linearized &g to yield
(16), we can show that (see Appendix A)

Pn =Pc teEy SAYe), (32)

en =2 @A) s (00), en

and that, to orden, gy will be equal forany pair of Pc =P -En SSWUN)- (33)
diametrically opposite horizon points. (This is
particularly useful in analyzing the Barnes stdt@mrth Using Eq. (28) and ignoring the difference betwegn

sensor as.semlff? where the sensor axes do NOLnq . (which is of ordes, as shown in Appendix B)
coincide with thex, andy, axes.) yields

Equations (19), (26), and (27) show tgtand &, are
generated froms, by successive applications of the ~p Ty Nt + o) 2,
factor s(oy) which is nearly unity for low-Earth orbiting AU )=po - S PSR o) + el A )l )
spacecraft. As a practical example, consider TRMM f ENE U (34)
which the maximum value of is 35 deg, an® is about
350 km. Thers(ﬂ)) = 0.9510 and SQA)DHaX = 0.9397, Def|n|ngp* and AM(/IN) via
so that the maximum values of the tilt anglgs &, and
& are respectively 0.1814 deg, 0.1725 deg, and4Q.16 | 2
deg. Thus, nominal pointing in either the geodetic P =po-5aL )2 ) (A) (35)
horizon bisector frames implies near-normal viewirig
the horizon ellipse. We also conclude thaf is very and




1 ou(Wn)=po(Wp)=p - (39)
Apy) = - a2 (A )SH(Yy) (36) . N .

4 Note thatp is not a true constant since it is a function
. ) of the spacecraft position vidandA. Nevertheless it is
and using the formula fog, in (27), (34) may be ingependent of the attitude (the "yaw" angj, , for

written as Earth pointing spacecraft). This formula can bes in

. quick calculations or when the accuracy requiresient
pN(wN ) =p +Ap(lt[jN )+(‘£N - &H )S(‘//N ) . (37) are modest.

We expect thap will deviate significantly in fromoy

due tot(m) which appears in Eq. (35); by the same Conclusions

token, Ao(¢x) will contribute much less since &

may be written as 28§/ t(a) in Eq. (36) with s¢p)=1.  We have derived exact expressions for the prigsert
Let us now consider the horizon bisector cootginaof the horizon ellipse including the anglg between

system. By definition, the term proportionalg4,) in its normal and the geocentric nadir, and an exact
(37) vanishes. The remaining, -dependence in (37) expression relating the angular radiag,of the horizon

arises only vias(¢4) in 4p , thus showing that from the geocentric nadir to the azimuthal angle,

()= o4 (Y + m) for arbitrary¢yy. This shows the about this nadir. This expression fpg agrees with
(approximate) equality of the angular radii for amp  earlier workK.

diametrically opposite horizon points, thus vafidg  The introduction of a generalized Nadir Coordinat

the term "horizon bisector". System where a new nadir vector is generated fteam t
Let us now use (37) to evaluate tjag -dependence of geocentric nadir vector by a rotatiefn about the local
20(Yr), which is West was useful in

e deriving further exact properties such as the
ooy _ a ) offset of the center of the ellipse whap=¢&
oy ~'ZS(2'O0)C (A)s@py) . (38) « introducing coordinate systems from the point
H of view of an observer
providing a unified treatment of the angular
radius, oy, of the horizon as a function of the

—ZH | for A = 0 deg and 35 deg are only azimuthal angleg _ _
H Formulas linearized ior were derived for the geodetic

0.000991277 and 0.000665157 respectively. Morand horizon bisector tilt angless and &, respectively,
explicitly, the numerical values g, for ¢4 = 0 deg showing that they differ frome through successive

and 90 deg are listed below fo= 0 deg and 35 deg.  factors of sinfy), wherep is the angular radius of the
horizon contour in the spherical Earth approxinmatio

For TRMM, g = 1.25630 = 71.9807 deg. Thus, the

maximum of 9P

o4 (N =0degyy =0 deg) =71.9807 deg Linearized expressions were also derived f((b)
and o4(¢y ) and showed that the tilt angle generates
o (A =0 degysy =90 degy 71.9807 deg the desired horizon bisection effect.
- 0.0567960 deg Numerical application of the various formulasthe
TRMM spacecraft (which uses static horizon sensass)
o1 (A =35 degyy =0deg) =71.8041 deg a typical example revealed the following.
& &, andg, differ by less than 0.02 deg, that
o4 (A = 35 degyy = 90 deg)= 71.8041 deg is, the geodetic and horizon bisector nadir vec-
-0.038111 deg tors, Np and Ay, , are nearly normal to the hori-
zon ellipse
Thus oy varies over one quadrant by less than 0.06 « A, is a good approximation té, (to within
dgg for TRMM. In view pf the practically |nS|_gn|ﬁmt 0.01 deg)
differences in the numerical \_/aluesaaf andsy in Eqs. « . varies by less than 0.06 deg as the azi-
(26) and (27), and the relatively small contribatiof

muthal angle/y, varies along the ellipse.
The oblate Earth presents to the spacecraft an
Earth disk which can be well-approximated by

A0(¢n), we may further approximate Eq. (37) by .



a circle whose center is on, and whose ra-
dius, o* , depends on the spacecraft position.

Appendix A - The Horizon Bisector Frame

Let ﬁ+ and h_ be the North and South horizon points,

with the azimuth angle/: equal to /2 and /2, re-
spectively. Note that the azimuth anglg of these two

1+a+as?(A)c? ()

A8
= (1+a'52(/1))(1+acz(/1)) (A8

yields the simple result
t(ng) - 0’5(2/1)52(,00) (Ag)

1+a-as’(py)c21) |

horizon points also takes exactly the same valug2 + Ljnearization of Eq. (A9) ina and & immediately
and 772 in any NCS, and therefore it is immaterial as tyields Eq. (27).

which NCS is used to evaluaﬂéF and h_ . Another

important point is that bothh, and h_ are perpen-
dicular to X- and therefore their NCS angular raslji

are related to their geocentric raglii=p, via the
simple relation:

Pu (wN _’g] = p. £ ey (A1)
which implies that
&q =(p-—p.)I2. (A2)
Evaluating Eq. (16) ajc = + 172 we get
cot(p,) = (F, + OF,) / Fy, (A3)
where
F, =s(0,) L+a s2(D)), (A4)
F, =42 (o) +as?(h)) @+a),  (AS)
and
AF, =as(p,) S(A) c(A) . (AB)

Knowing cofp.) and cofp.) from Eq. (A3), it is easy to
show that

2F, 4F,

—1 2 (A7)
F2+F7 —4F7

tan(o- - p,) =

Explicit evaluation of Eq. (A7) using the definiti® in
Egs. (A4)-(A6), and the identity

Appendix B — The Azimuth Angle ¢
Within the Nearly-Spherical Approximation

An explicit formula relatingyy to ¢ can be obtained
by summing up Egs. (30) and (31), yielding

s(pN)s(wN)—s(pc)s(wc)=t(%“j[c(pc)+c(pm] (B1)

By linearizing the left side of this relation witkspect
to oy -oc and making use of Eq. (31) one finds
(W) = (Y )+ ey (e )eot(oc ) - (B2)
Note that the North and South horizon poigits= +17/2
must lie in theyy -2y plane and therefore, by defini-
tion, they are the same for any NCS. (Contrastilitis
the East and West horizon points which vary sligfdat

different NCSs). In fact, according to Eq. (B =
Y for ¢y = £ 102, as expected.
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