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Abstract 
 
 Most navigation systems currently operated by NASA 
are ground-based, and require extensive support to 
produce accurate results.  Recently developed systems 
that use Kalman filter and GPS data for orbit 
determination greatly reduce dependency on ground 
support, and have potential to provide significant 
economies for NASA spacecraft navigation.  These 
systems, however, still rely on manual tuning from 
analysts.  A sophisticated neuro-fuzzy component fully 
integrated with the flight navigation system can perform 
the self-tuning capability for the Kalman filter and help 
the navigation system recover from estimation errors in 
real time. 
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Introduction 
 
 Autonomous navigation has the potential both to 
increase spacecraft navigation system performance and 
to reduce total mission cost.  The Goddard Space Flight 
Center (GSFC) Flight Dynamics Analysis Branch 
(FDAB) has spent several years developing high-
accuracy autonomous navigation systems for spacecraft 
using NASA’s space and ground communications 
systems and enhanced these systems to support 
spacecraft using the Global Positioning System (GPS).  
 GSFC FDAB has developed navigation algorithms to 
meet a real-time accuracy goal of better than 20 meters 
(1σ) in position and 0.03 meter per second (1σ) in 
velocity using GPS Standard Positioning System (SPS) 
with selective availability (SA) corruption at typical 
levels.  These algorithms, which are based on mature 
onboard navigation systems developed for spacecraft 
using NASA’s space and ground communications 
systems, consist of the following core components: 

• An extended Kalman filter (EKF) augmented 
with physically representative models for the 
gravity, atmospheric drag, and time bias and 

drift state process noise to provide a realistic 
state error covariance. 

• A high-fidelity state dynamics model to reduce 
sensitivity to measurement errors and provide 
high-accuracy velocity estimates, permitting 
accurate state prediction during signal outages 
or degraded coverage. 

• Initialization and enhanced fault detection 
capabilities using instantaneous geometric GPS 
solutions. 

 Detailed mathematical specifications are defined in 
Reference 1.  Algorithms selected to meet the GPS 
navigation performance goals are summarized in 
Reference 2.  
 The FDAB has implemented these algorithms in a 
prototype GPS navigation software called the GPS 
Enhanced Orbit Determination Experiment (GEODE), 
which executes within the resource constraints of 
currently available flight processors (e.g., <400 
kilobytes memory and <0.5 million instructions per 
second).  Processing of raw pseudorange measurements 
from existing GPS receivers on the EP/EUVE and 
TOPEX/POSEIDON (T/P) spacecraft indicates that 
these navigation algorithms can provide accuracy of 10 
meters (1 σ) in total position and 0.01 meter per second 
(1 σ) in total velocity with SA at typical levels. Without 
SA active, experiments performed in a realistically 
simulated flight environment produced converged 
solutions with errors of 15 meters maximum and 4 
meters rms in total position, as shown in Fig. 1.  
Improvements to the baseline algorithms to achieve 
real-time onboard accuracy of better than 2 meters (1 σ) 
are discussed in Reference 2. 
 The core requirement for on-board autonomous 
navigation is a method of state estimation that handles 
uncertainties robustly, is capable of identifying 
estimation problems, flexible enough to make decisions 
and adjustments to recover from these problems, and 
compact enough to run on flight software.  Current 
method of using EKF for state estimation requires 
manual tuning by support personnel. The re-tuning 
process is more complex when dealing with 
geosynchronous or high-eccentricity orbits. 



 This paper discusses an approach to produce a high 
accuracy onboard navigation system that can recover 
from estimation errors in real time.  The self-tuning 
capability is achieved by a neuro-fuzzy component 
augmented to the Kalman filter. 
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Figure 1: GEODE Solution versus Truth Position 
Differences without SA Active 

 
Extended Kalman Filter for Navigation 

 
 Orbit state estimation algorithm for FDAB 
autonomous navigation systems consists of an EKF that 
uses physically connected noise covariance models to 
account for force model and measurement errors.  The 
state vector consists of at least the user spacecraft 
position and velocity vectors.  For GEODE, additional 
components include the atmospheric drag coefficient 
correction, the GPS receiver time bias correction, and 
the time bias drift correction.  The state vector 
estimation processing is performed at regular intervals, 
e.g., every 30 seconds, to propagate the filter state 
vector and covariance to the measurement time, update 
the state and covariance based on the measurements, 
and ouput telemetry data. 
 The state covariance matrix, [P], represents the filter 
uncertainty in the estimated state vector.  It is initialized 
or reinitialized using ground uplinked parameters. 
 For GEODE, the state covariance P and the process 
noise covariance [Q] are [9X9] matrices, while the 
measurement noise covariance R is a scalar.  To avoid 
the use of square roots and to guarantee nonnegativity 
of computed matrices, [P] and [Q] are factored into unit 
upper triangular matrix [U] and diagonal matrix [D].   

These [U] and [D] matrices are time propagated and 
measurement updated in the Kalman filter process, 
instead of [P] and [Q].  
 Parameters for [Q] and [R] are uplinked to the 
onboard navigation system to start or re-start the 
estimation process, or whenever the filter re-tuning is 
needed. For GEODE, there are nine parameters for [Q] 
and one parameter for [R]. Generally, parameters 
related to small unmodeled noises or to small errors in 
modeled accelerations that are not very well defined, are 
the ones to be updated in the re-tuning process.
 Several navigation fault detection tests are performed 
on the updated state and covariance.  The Filter 
Convergence Test is the major test.  If the filter has not 
converged and if the RSS position sigma, RSS velocity 
sigma, and semimajor axis sigma are all below their 
respective ground commandable convergence 
tolerances, then filter re-tuning is required.  The current 
tuning process is performed by ground support analysts.  
Updated tuning parameters are uplinked to the onboard 
system to reset the filter.                                                                                 
 

 
Neuro-Fuzzy Systems 

 
 Neural networks and their learning capabilities have 
enjoyed a strong popularity with the development of the 
perceptrons in the 1960s and especially, after more 
powerful learning algorithms were discovered in 1985.  
A neural network is considered as a computing system 
that is made up of a number of simple, highly 
interconnected processing elements.  Neural networks 
are used in many applications, from robot control to 
financial forecasting.  A drawback of neural networks is 
that for some applications they do not always work as 
expected, and for the user a neural network simply is a 
black box.  The user cannot learn from it. 
 Fuzzy logic is based on the idea of fuzzy sets, i.e. sets 
without clearly defined boundaries that can be used to 
model linguistic terms.  Fuzzy systems associate with 
the process of formulating the mapping from a given 
input to an output using fuzzy logic that provides a basis 
from which decisions can be made, or patterns 
discerned.  Fuzzy systems can be used for the same 
tasks as neural networks. They are successfully applied 
in fields such as automatic control, data classification, 
decision analysis, expert systems, and computer vision. 
Fuzzy systems are not, however, created by a learning 
algorithm.  A major problem is that its parameters must 
be tuned manually, usually in an error-prone and time-
consuming process. 
 Neuro-fuzzy systems are built from the idea of 
applying neural network algorithms to automatically 
determine and tune parameters of fuzzy systems.  That 

 

 



combination could avoid drawbacks of both neural 
networks and fuzzy systems, and constitutes an 
interpretable model that is capable of learning and using 
problem-specific prior knowledge.  
 Various neuro-fuzzy models have been developed.  
The Adaptive Neuro Fuzzy Inference System (ANFIS) 
model and its generalization for multiple inputs/outputs 
systems are used to prototype the self-tuning component 
for autonomous navigation using Kalman filter.  This 
preliminary choice is mainly based on the model 
efficiency, software availability, and the fuzzyness of 
filter outputs. 
 Several neuro-fuzzy system models are described with 
details in References 3 and 4.   
  
 

Neuro-Fuzzy System for a Self-Tuning EKF 
 
 The self-tuning method discussed in this paper is to 
optimize navigation autonomy for GEODE that uses 
GPS as main tracking system.  This method, however, 
can be applied without significant modifications to any 
other system that uses Kalman filter for autonomous 
navigation. 
  
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: High-level Architecture of a 
Self-tuning Kalman Filter 

  

 Fig. 2 illustrates a high-level architecture of the 
integrated system. 
 Outputs from the filter include the state error 
covariance matrix [P], measurement residual [M], and 
appropriate information relating to the filter and satellite 
status.  [P] and [M] are gathered in time series, limited 
by a reasonable preset time window.  When the filter is 
not convergent and covariances hit preset thresholds, 
which are less generous than those set by the Filter 
Convergence Test, the re-tuning process is needed. 
Functional representations for [P], [M] time series are 
then determined (e.g., using a least-squares polynomial 
fitting), and the preprocessor forms an input vector to 
the neuro-fuzzy system.  The neuro-fuzzy system 
analyzes these inputs to produce tuning data to be used 
to adjust [Q] and [R].   
 Input patterns and target parameters are specifically 
modeled to train the neuro-fuzzy system for a given user 
spacecraft.  The training process is performed prior to 
the operational use of the system.     
 
 

Prototype for Phase I Development 
 
 The real scenario of the self-tuning navigation system 
can be much more complex than as described above.  
The main problem, however, is simply to find a 
mapping between the behavior of the filter output (e.g., 
state error covariance) and the tuning parameters.  The 
primary phase of the development of the self-tuning 
Kalman Filter for autonomous navigation is therefore to 
build a simple prototype that can prove the existence of 
such a mapping.  The target navigation system for this 
prototype is GEODE.  For LEO user spacecraft, there 
are three parameters that are related to errors in the 
acceleration models for solar gravity, lunar gravity, and 
solar pressure; or to unmodeled accelerations from polar 
motion, tidal effects, random venting, etc.  These 
parameters need to be updated via the tuning process.  
Preliminary examination of output data from different 
cases shows that patterns of velocity variances (or 
standard deviations) are adequate in the determination 
of tuning parameters.  The tuning subsystem prototype 
for Phase I is simply a three inputs/three outputs neuro-
fuzzy system augmented by a preprocessor that gathers 
filter outputs (i.e. state error covariance) in time series, 
determines if the filter re-tuning is needed, and uses 
least-squares process to fit them to second degree 
polynomials.  The preprocessor also builds a vector that 
functionally represents the behavior of the covariance 
and that is input to the neuro-fuzzy system. Parameters 
are tuned using the hybrid option that is a mixture of 
least-squares and backpropagation techniques.  An  
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asymmetric and closed sigmoidal function is used for 
membership function. 
 Fig. 3 shows a high-level diagram of the Phase I 
prototype. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: High-level Diagram 
of the Phase I Tuning Subsystem Prototype 

 
 
 

 
 

Test Results 
 
 Data from the GEODE processing of real GPS 
pseudorange measurement with SA on, obtained from 

an experimental receiver flown on the 
TOPEX/POSEIDON (T/P) spacecraft on November 17, 
1993, were used to test the Phase I prototype.   
 Fig. 4 shows the convergence of the in-track velocity 
standard deviation from the T/P testing.  Similar curves 
are seen in other components as well as in the 
corresponding position standard deviations.  This 
behavior reflects a filter status where correct tuning 
parameters are provided. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: In-track Velocity Standard 
Deviation from the T/P Testing 

 
 
 
 To train the neuro-fuzzy system, standard deviation 
patterns and corresponding target tuning parameters for 
fifty cases are used.  Fig. 5 shows 3 patterns that 
correspond to different errors in one of three tuning 
parameters, Qi. 
 Results from preliminary testing of this Phase I 
prototype show that errors in tuning parameters are 
identified and the system can be well recovered from 
these errors.   The average testing error is 0.0024 for 
parameters ranging from 0.02 to 0.8.  Fig. 6 shows the 
average difference between the in-track velocity 
standard deviations obtained from the correct Qi and 
from that determined by the prototype.  
 These test results are encouraging for this preliminary 
work.  It is still premature, however, to have a good 
conclusion about the quality and practicality of this 
method of self-tuning when applying to the complex 
operational scenario of a real autonomous navigation 
system.       
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Figure 5: Patterns of In-track Velocity Standard 
Deviations from T/P Testing for Different Errors in 

a Tuning Parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Average Errors in Phase I Prototype 
Testing (for In-track Velocity Standard Deviation)   

 
 
 

Future Directions 
  
 Phase II of the development of the self-tuning Kalman 
Filter for autonomous navigation is to refine the self-
tuning method to accommodate to a much more 
complex operational scenario and to accordingly 
complete the system prototype. 
 Phase III will involve the extension of the self-tuning 
filter to cover geosynchronous spacecraft, and high- 
eccentricity orbits.  For these cases, more parameters 
need to be updated in the re-tuning process and the 
tuning frequency is projected to be much higher.  
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