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Abstract

A control law is devised which steers a rigid space-
craft from rest to rest between prescribed attitudes,
taking into account arbitrary actuator configurations,
slew-rate constraints and torque constraints. The con-
trol law is extremely simple, requiring no recourse to
numerical methods whatsoever, and hence is suitable
for implementation in an on-board attitude control sys-
tem. Execution of the maneuver is achieved within a
finite time which can be explicitly written down as a
function of the maneuver input data. Redundancy in
the actuator system can be exploited to obtain small
maneuver durations. The proposed algorithm is ap-
plied to two test cases taken from the literature, with
rather favorable results.

Key words: Attitude Control, Slew-Rate and
Torque Constraints, Actuator Redundancy.

Introduction

The attitude or orientation of a spacecraft (modeled
as a rigid body) is the matrix ¢ € SO(3) whose rows are
the directions of the body’s principal axes with respect
to some reference coordinate system. Let us denote
by Iy, Is, I3 the moments of inertia, by wi,ws,ws the
angular velocities and by 77,75, T3 the exerted torques
about the principal axes. Then the attitude kinematics
of the spacecraft are described by the equation

g(t) = L(w(t)) 9(1) (1)
where
0 W3 —W9
L{w) = | —ws 0 w1 (2)
Wo —W1 0

whereas the dynamics are governed by Euler’s equa-
tions

Luwi(t) =
Lws(t) =
Tsws(t) =

(I = I3) wa(t) ws(t) + Th(1),
(Is = Iws()wi(t) + Ta(t), (3)
(Il — Iz)wl(t) (.dz(t) + Tg(t)

The actuators which produce the control torques are
usually not aligned with the principal axes. Assume
that there are N actuators such that the k-th actu-
ator produces a torque in the body-direction ) =
(b %) bUNT (where ||b®)]| = 1). Then the (3x N)-
matrix C' whose columns are 5(1)| . 5(N) will be called
the actuator configuration matriz of the spacecraft. We
assume that C' has maximal rank (which means that
torques about all three axes can be exerted). Then the

torque vector T'(t) := (T1 (), Ta(t), Tg(t))T € R3is re-
lated to the control vector 7(t) := (71 (t),..., 7w (t))T €

RY (whose entries are the actuator torques) by the
equation

T = Cr(1). (4)
Our task will now be to solve the following problem:
Given the spacecraft principal moments of inertia
11, I, I3, the actuator configuration matrix C' of the
spacecraft, an initial attitude gy and a target attitude
g1, find a control law ¢ — 7(t) which steers the space-
craft from rest to rest between the attitudes go and ¢y
in finite time while satisfying prescribed constraints on
the angular rates and the torques.

Main Results

Let us start by specifying exactly the type of maneu-
ver we want to carry out and let us fix some notation
for the maneuver data.

Maneuver Data. A maneuver will be sought to
steer a spacecraft from rest to rest between given at-
titudes go and g1. With the spacecraft are associated
the principal moments of inertia I, /s and I3 and an
actuator configuration matrix C' € R3*N, We write
v = g1gy " and a := arccos((tr[y] — 1)/2) where tr
denotes the trace of a matrix; moreover, we let

C1 o Y23 — V32
c = |c = — . 5
2 2sin « 731~ M3 (5)

C3 Y12 — Y21



Also, we let
Ay = Le, By = (12_13)6263’
Ag = Iyeo, By = (I3—1I1)eseq, (6)
Az = I3¢3, Bs = (Il—IZ)Ccha

A=+/A}+A3+A%,  B:=./B{+B3i+B3.

Finally, we define o, 3 € RY by the equation

ar B A, B
; =cTcc™ ' Ay By| . (7)
ay Oy As  Bs

To have available some test cases, we give the inertia
tensors for three satellite shapes (assuming in each case
a constant mass density p).

e For a box with side lengths a, b and ¢, the inertia
tensor in the principal axes system 1is

b2 +4c? 0 0
b
I = p~% 0 c?+a? 0 (8)
0 0 a’+b?

e For an ellipsoid with semiaxes a, b and ¢, the inertia
tensor in the principal axes system 1is

b2 +4c? 0 0
4mab
I =p- T;C 0 c?+a? 0 (9)
0 0 a’+b?

e For a cylinder with height & and ellipsoidal cross-
section with semiaxes a and b, the inertia tensor in the
principal axes system is

h243b2 0 0
bh
I = p~% 0 h2+3a? 0 . (10)
0 0 3a2+3b°

Our first theorem gives a torque law which effects an
eigenaxis slew steering the spacecraft from rest to rest
between two specified attitudes during a specified time
interval.

Theorem 1. Given a time interval [ty,t1], choose
a function q : (to,t1) = (0,00) with ¢(t) — oo for
t —1lg and t — 1, let Q be an antiderivative of 1/q
and let p:= Q(t1) — Q(to). Then a slew about the axis
R ¢ which steers the spacecraft from rest to rest between

the attitudes g(to) = go and ¢g(t1) = g1 is characterized
by the following data.

Attitude evolution:

olt) = exp(wuc))go (1)

Angular velocities about the principal axes:

wl(t) 1 C1
w(t) = |wt)| = —— | e (12)
(.dg(t) q(t) P C3
Torques about the principal axes:
Ty (t) 1 [Awpd(t) + By
1) = |10 | = =1 | dapitt) + B | (13)
To(t)] M L agpie) + By

Control torques produced by the actuators:

m(t) = CT(CCT)= () + u(t) (14)

where u 1s an arbitrary function with values wn the ker-
nel of C. The choice u = 0 yields the solution which
minimizes ||T(t)||, for each t € [to,t1].

Proof. The attitude evolution (11) satisfies g(tg) =
go and g(t1) = g1, where the latter equation is a con-
sequence of Rodrigues’ formula and the choice of c.
Moreover, g(t) = (q(t)p)_lL(c)g(t) so that the under-
lying angular velocity evolution is given by L(w(t)) =
(q(t)p)_lL(c) which is (12). (Note that the angular
velocity vector is always aligned with the vector ¢ and
that w(tg) = w(t1) = 0 due to the singularities of ¢ at
times #o and ?,.) Plugging w(t) = (¢(t)p) ~'¢ into Fu-
ler’s equations (3) immediately yields the torque law
(13), and (14) is the general solution for (4) once the
torque t — T'(¢) is given. Finally, we observe that, for
each t € [to,t1], the vectors CT(CCT)~1T(t) and u(?)
are orthogonal, which implies

Ir0ll; = ICTCCT) T, + @l (15)

It can be shown (see [3]) that the attitude evolu-
tion described in Theorem 1 minimizes the integral
ftt; q(t) (w1 (t)? + w2(t)? + w3(t)?) dt, but this optimal-
ity property is irrelevant for the purposes of the present
paper. We will now associate with an arbitrary weight
function defined on the normalized time interval (0, 1)
a family of maneuvers parametrized by the duration D
of the maneuver.



Theorem 2. Choose an absolutely continuous func-
tion w : [0,1] — RF with w(0) = w(l) = 0 and a
vector-valued function v : [0,1] = kerC’ with values in

the kernel of C. Write ||w||, := fo z)de and let
w(z) w@)? |
z(x) == 3 : (16)
[lwl[y ||w]ly
B

Then a maneuver of duration D which steers a space-
craft from rest to rest between attitudes go and g1 is
produced by the control law

1
T(t) == ﬁ(z(t/D) + v(t/D)) (17)
which gives rise to the torque evolution
1 (w/D) [N wypy2 | B
Wik | A, lelly | By
and the angular velocity evolution
w(t/D) |
w(t) = cal| . (19)
Dl |2
Writing w; := r<ntzi)§) lw; (t)], @ := ogi)i)”w( W, T4 =
sup |Ti(t)] and T = sup [IT(@)||, this maneuver
0<t< 0<t

satzsﬁes the following equatzons

wp = ; 20
Dlull, 2% ) 20)
R RN
o= Vatetes oo w(z); (21)
Dl||wl||, o0<e<1
— 1
Ti= o o Wwme—mwa;@w
D || [
T=——+ \/A2 w )2+ B2w (23
D2|| ]l (x)*. (23)
Moreover, if we choose v to be identically zero, then
T = sup |m(t)| is given by
0<t<D
= |l (@) — Brw)?]. (24)
D[]} o<e<t

Proof. Let [to,t1] := [0, D] and ¢(¢) := w(t/D)~!
in Theorem 1; then equations (14), (13) and (12) be-
come (17), (18) and (19), respectively. The remaining
statements are immediate consequences of the above
explicit formulas. ]

Example 1. Let w(z) := sin(wx). Elementary cal-
culations show that

__ el
i = ; 25
_ F\/C%—I—C%—ch
b= —t— (26)
2D
T m . (A7+B7)/[Bi| if |Ai] < |Bil, (27)
T 4D? | 2044 otherwise;
2
T= 107 -max{2A4, B}. (28)
Moreover, if v =0 then
2 2, 32 :
4D? | 2|ay] otherwise .
Example 2. Let
z/e if0<z<e,
w(z) =<1 ife<z<l—eg, (30)

(1—z)/e

fl-e<aze<1

where ¢ € (0, %] is a fixed parameter. Elementary cal-
culations show that

lei

=D (81)

v (Cf—fgff%; (32)

T = (1 Yy s VA1 =) + B2 (34)
Moreover, if v =0 then

(=4l .

(1 — )2 D2

It is now very simple to reverse the situation: Given
prescribed limits for the angular velocities and the
torques, we can find the minimum duration D for which
the maneuver in Theorem 2 can be executed whilst sat-
isfying the constraints.

Theorem 3. Given the maneuver data as before

max max max max max
wmex Tmax T

and constraints w; and %%, a

maneuver of dumtzon D satisfying the constraints can



be found by successwvely settingw; 1= W™, W = w™**,
T; = Tmax T .= T™ gnd 7f = %, solving the
resulting equations in (20) for D and then choosing the
mazimal D thus obtained.

Proof. This is an immediate consequence of Theo-
rem 2. ]

Optimization of the Maneuver Duration

We now want to show how the redundancy in the
actuator system can be optimally exploited in order to
cut down the maneuver duration while satisfying the
constraints on the actuator torques.

Theorem 4. Assume that the constraints |1, (t)] <
TP (where 1 < k < N ) have to be satisfied. Let © :=
diag(1/m** ... 1/70%) and ((x) := Oz(x) where z
1s as in Theorem 2. Then the maneuver of the type
described itn Theorem 2 which has the shortest possible
duration is obtained if we choose v(x) := O~1E, where,
Jor each x € [0, 1], the vector &, € ker(CO™Y) is chosen
as to minimize ||((x) + &||, over all £ € ker(CO™!).

Proof. The constraint to be satisfied 1s

sup_[|Or(0)]l., < 1.
0<t<D

(36)

Now the function v : [0,1] — ker C' in Theorem 2
can be written as v(z) = ©7¢, where each &, is
an element of O(ker C') = ker(CO~!). Then 7(t) =
D_2®_1(C(t/D) —|—€t/D) and hence

sup [[O7(1)llee = 55 sup [[6(x) + &ollo - (37)
0<t<D 0<e<1

Obviously, the duration D which ensures the constraint
can be chosen the smaller the smaller the supremum on
the right-hand side is. The optimal choice is obtained
if we choose, for each « € [0, 1], the vector £, in such a
way that

16(x) + &alloe = inf{]IC(x) + €]l | € € ker(COT)}

= sup{(a,((2)) | lall, = 1,0 € ker(CO™)*}

N N
sup{z a;Ci(z) | Z la;| = 1, Pa = 0} (38)

N
= sup{Z(ri —5)Ci(x) |y > 0,8 >0,
i=1

[» ][] = LoD

where e:= (1,...,1) € RN and where PeRIV-3)xN
1s any matrix whose row vectors form a basis of the
kernel of CO~'. Here the transition from the first to
the second line follows from elementary duality theory
(cf. [1], Thm. 4.9, pp. 91-92), and the transition from
the third to the fourth line (obtained by substituting
a; = r;—s; and |a;| = r; + ;) shows that the optimiza-
tion problem addressed can be recast as a standard
linear programming problem (and hence can be solved
by the simplex algorithm or Karmarkar’s algorithm,
for example). [

Quaternion Representation

We will now apply our algorithm to two situations
described in the literature and will compare its per-
formance with that of other control algorithms pro-
posed for these situations. In both cases the attitude
is parametrized in terms of quaternions (q1, ¢2, ¢3, ¢4)
so that the attitude matrix is given by

2(q193—4294)
2(q293+9194)
—i— 43 +43+43

2(q192+9394)
—i+43—q3+4;
2(g293—q194)

0 —45—a3+43
2(q192—q394)
2(q193+9294)

where ¢7 + ¢2 + ¢2 + ¢3 = 1; equation (1) then reads

q1 94 —q3 ¢z

j 1 q3 qa  —q1 “1

2 = - wy | . (39)
qs3 2| —q q1 q4

. W3

q4 —q1 —q2 —4g3

First Example

As a first example, we apply our algorithm to the
situation of the XTE spacecraft as described in [4]. The
XTE spacecraft is equipped with four reaction wheels}
whose configuration is given by the matrix

S T B
C=—|1 0 -1 o0 (40)
V210 -1 0 1

1 A spacecraft equipped with reaction or momentum
wheels is not a rigid body; hence our theory is, strictly
speaking, not applicable, and our results will slightly
differ from the ones obtained after properly incorporat-
ing the wheel dynamics. However, in [4] the same rigid
body model as in our paper is used so that the results
can be directly compared. The incorporation of the
wheel dynamics into the system equations is straight-
forward and requires only minor modifications.



The maximum torque level of each reaction wheel 1s
7' = 0.3 Nm, and the maximum slew-rate is given
as wi"® = 0.2 deg/s. Moreover, the moments of inertia
are I} = 6292 kgm?, I, = 5477 kgm? and I3 = 2687
kgm?. A maneuver shall be executed to steer the
spacecraft from the initial attitude quaternion

(0.2652,0.2652, —0.6930,0.6157) (41)

to the target quaternion (0,0,0, 1) which means that
v =g19; " equals

—0.101163 —0.712698 —0.694134
v = 0.994022 —0.101163 —0.041000 (42)
—0.041000 —0.694134  0.718673
Straightforward calculations show that
1 2 0
- 1 -1 0 -2
T Ty\-1 _
cH(cehy = NG 1 —2 0 (43)
-1 0 2

and that ker C = R (1,1,1,1)7. In the notation of
Theorem 4, we have

o (] e [

_ W) e | w@? |

@)= 55Tl [aa| " osep [5 | @Y
ay B

and since ker(CO~1) =R(1,1,1,1)7 the vector &, can
be written in the form &, = o(z)(1,1,1,1)T with a
scalar function ¢ : [0,1] — R. The optimal choice of
o is the one which minimizes, for each = € [0, 1] for
which ( is defined, the expression

g

2] + o1 = (z) +o(x)|.

I o) + oo | Il = Gl +otl (49)
Ca(2) + o)

From a sketch of the numbers 0 and ¢;(#) (where 1 <
i < 4) on the real line it is evident that we have to
choose

(o) = =5 (max G+ minGlo))  (10)

2 \1<i<4 1<i<4

and that for this choice the expression (45) is given by

—_

2 (121%)(4 Gl) = 121}24 Q(x)) (47)

max |Gi(x) — ¢ (2)].

1
2 1<i<j<4

From (36) und (37) we see that a maneuver of duration
D is possible within the given actuator constraints if
and only if

pr > L sup (max ¢i(z) — min Q(x)) . (48)

= 2 o<o<r \15i<4 1<i<a

Once D is determined, the optimal choice for u in the
control law (14) is

2ot t/D)

u(t) = g

(49)

—_ = = =

Up to this point the weight function w has not yet
been specified. We now choose the function (30) from
Example 2 above. Then

1 x?/e?
(1—¢)oy 0y —¢eB 1
_ -1 (1—x)?/e?
Glz) = 0.35(1—¢)? (50)

where the case-by-case distinctions refers to the cases
0<ze<eg e<ae<l—cand 1l —¢ <z <1 From the
special form of the (; it is clear that to determine the
supremum in (48) it is enough to consider the points
t=0,2=1,2=c¢cand z = 1 —¢ (left- and right-sided
limit). After some algebra condition (48) becomes

D > 131?3;(34@”(6) where

1
is(2) = 1 (1—¢)|oi — o] + ]Bi — Bj (51)
WA 2 0.3¢(1—¢)2 '

This is the condition that D has to satisfy if the con-
straints on the control torques are to be satisfied. In
addition, in view of the slew-rate constraints, we must
also satisfy condition (31) which in our case reads D >
900 |es]/(m(1—¢)). Hence we must have

hie) = 900]c;]

h = .
where (=2

D > .
2 max, fie)

(52)

Consequently, the shortest possible duration is
D* :=max{ fi(¢), ¢ij(c) | 1<k <3, 1<i<j<4}. (53)

The specified maneuver data lead to

c1 =cy=0.611, c3=-1.596 (54)
and
oy = 3724.673 51 = 1523.796
as =  1673.992 B =  746.807
asz = —1006.867 [ = —3447.501 (55)
oy = —4391.798 By = 1176.899



where all figures are rounded to three decimal places.
Plotting the functions fi and ¢;; (of which f; and fs
coincide for the given maneuver data) we obtain the
following diagram (Figure 1) which yields the shortest
possible maneuver duration as a function of the pa-
rameter € (which can be freely chosen by the user).
The optimal value ¢* = 0.061 is the one at which the
graphs of fs and 714 intersect; the optimal maneuver
duration is then D* = f3(e*) = p14(e*) = 486.959 sec-
onds. This compares favorably to the result obtained
in [4] where an ideal duration of 522 seconds is reported
and where simulation results (with the control law in
closed-loop form) yield a maneuver with a duration of
about 600 seconds.
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Fig. 1: Maneuver duration (in s) as function of the
parameter €.

Figure 2 shows the actuator torques implementing the
optimal maneuver, whereas Figure 3 is a plot of the
function ||g(¢) — g1|| (where ||a||:=Vtr aT a) which mea-
sures the deviation between the current attitude g()
and the target attitude ¢g; during the maneuver.
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Fig. 2: Control torques (in Nm) which yield the
shortest possible maneuver of the type considered.
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Fig. 3: Deviation between current attitude and tar-
get attitude as function of time (in seconds).

It is interesting to contrast these results with the
ones obtained if only the constraints on the control
torques are imposed, but not the ones on the slew-

rates.
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Fig. 4: Control torques (in Nm) which yield the
shortest possible maneuver of the type considered if

.
co0o
wN e

no slew-rate constraints are taken into account.
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Fig. 5: Deviation between current attitude and tar-
get attitude as function of time (in seconds).



In this case Figure 1 shows that the optimal value
e* = 0.423 is the one at which the graphs of ¢14 and
(13 Intersect; the optimal maneuver duration is then
D* = 14(g*) = ¢13(e*) = 239.106 seconds (which
is less than half of the duration previously obtained).
The actuator torques implementing the optimal ma-
neuver (given in Figure 4) differ dramatically from the
ones obtained before, and also the deviation between
the current attitude and the target attitude (plotted in
Figure 5) changes rather differently during the maneu-
ver.

It is also interesting to compare the above results
with the ones obtained by choosing v = 0 in the control
law (14). This choice (which is not optimal, but eas-
ler to implement and, in view of Theorem 1, certainly
reasonable) leads to a maneuver duration of 489.921
seconds which is very close to the optimal solution.
However, if only the torque constraints are considered,
the choice u = 0 leads to a duration of 272.487 seconds
which appreciably differs from the optimal duration of
239.106 seconds obtained before.

Second Example

We now apply our algorithm to the situation of the
space station ALPHA as described in [2]. Here the con-
straints ||T(2)]|:= /711 (?) +T2 )2+T5(t)2 < 1000 Nm
and ||w(?)|| := \/w1 V2wt —|—w3( )2 < 0.05 deg/s

are imposed. The inertia matrix is given by

R 124.5544 —2.80367 —8.76338
I = | —2.80367 110.7526 —0.140927 | -10°kgm?.
—8.76338 —0.140927  199.0598

In this example the inertia tensor is not yet expressed
in the principal axes system. Diagonalization yields

R 200.077 0 0
I1=Q%71Q= 0 124.124 0 -10kgm?
0 0 110.165
(56)
where
0.115338  0.972175 —0.203895
Q = |—-0.002053 —0.205031 —0.978753 | . (57)
—0.993324  0.113306 —0.021652

Denoting by g, & and T the expression of the attitude,
the angular velocity vector and the torque with respect
to the originally given body system, we let

9:=Q", w=Q"5,

Then the system equatlons (d/dt)g = L(®)g and
((d/dt) ) = (Iw) x &+ T take the form g = L{w)g

T:=Q"T. (58)

and Jw = (Jw) x w = T which is just the form given
in equations (1) and (3). Now a maneuver shall be ex-
ecuted to steer the spacecraft from the initial attitude
quaternion

(0.041996, 0.591724, 0.654368, 0.468936) (59)

to the target quaternion (0,0,0,1) which means that
3 =qng " equals

—0.556670 0.663413 —0.500000
v = | —0.564013 0.140077  0.813797
0.609923 0.735024  0.296197

which is tantamount to saying that v := glgo_1 =

Q"G50 ' Q = QT3Q equals

—0.556669 0.663412 —0.499998
v = | —0.664013 0.140077  0.813795 (60)
0.609922 0.735023  0.296196

The constraints on the maneuver duration D are de-
termined from equations (21) and (23) and take the
form

Verestes o w(e) < 005

Dllw||, o<z<1 = 180’

sup /A7l ()7 + Bu(a)? oy

frsl —— < 1000.
D7l

If we use again a weight function of the form (30), these
conditions become

180 c%—i—c%—l—c%

D =
= T 0.05m(1-2) 1),
62
D V(1= 62A2—|—6232 (o) (62
= 1000s(1—e)2 ¢~

The shortest possible duration (for a given &) is then
D = max{f(¢),g(¢)}, und the value for ¢ which min-
imizes this duration is ¢* = 0.0394915 (yielding the
duration D* = 2583.41 seconds), as can be seen from
Figure 6 below. Again, this compares favorably to the
result given in the literature, where a maneuver dura-
tion of about 3200 seconds is found ([2], Fig. 2).
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Fig. 6: Maneuver duration (in s) as a function of
the parameter ¢.

The following figures show the overall angular velocity,
the overall torque and the deviation from the target
attitude during the maneuver.
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Fig. 7: Angular velocity (in deg/s) during the ma-
neuver.

1000

800

600

400

200

500 1000 1500 2000 2500

Fig. 8: Torque (in Nm) during the maneuver.
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Fig. 9: Deviation between current attitude and tar-
get attitude as function of time (in seconds).

References

Walter Rudin, Functional Analysis, Tata McGraw-
Hill, New Delhi 1974

Hans Seywald, Renjith R. Kumar, Min Qu, Globally
Asymptotically Stable Reorientation Controller with
Control Constraint and Slew Rate Limat, Proc. 13th
Int. Symp. Space Flight Dynamics, Goddard Space
Flight Center, Greenbelt, Maryland, May 1998

Karlheinz Spindler, Optimal Control on Lie Groups
With Applications to Attitude Control, Mathematics
of Control, Signals, and Systems, Vol. 11, No. 3,
1998, pp. 197-219

Bong Wie, Jianbo Lu, Feedback Control Logic for
Spacecraft Eigenazxis Rotations Under Slew Rate and
Control Constraints, Journal of Guidance, Control,

and Dynamics, Vol. 18, No. 6, 1995, pp. 1372-1379



