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Abstract 

 
 Feedforward neural networks are investigated in this 
work to verify its ability to control the attitude of a 
satellite. Neural nets are a promising tool for attitude 
control due to its inherent nonlinear behavior, which 
makes them a natural candidate to control nonlinear 
systems. Nevertheless, as will be shown, to obtain a 
neural 3 axis attitude control is not as simple as a 
conventional SISO net control. Main difficulties are the 
large amount of training data, in order to assure the 
complete understanding of the attitude dynamics by the 
neural net, and also the fact that attitude control is a 
MIMO instead of a SISO system. Regardless of these draw 
backs, some results concerning attitude control will be shown. 

 
Introduction 

 
 The training process of a control neural network 
depends on the condition of the dynamic system having 
at least a local inverse around a reference trajectory, and 
is very much affected by dynamic system complexity. 
Thus for a given training method, the learning process 
can or can not converge, depending on system 
dynamics1. Several methods (generalized, specialized, 
predictive control) to obtain the inverse dynamic model 
have been established to guarantee training 
convergence1-2, and some particular features make them 
more or less appropriate depending on the application. 
These training methods use a feedforward reference 
trajectory as an input to the neural net controller. This 
arrangement is suggested based on the way humans 
control their movements and normally applies to robotic 
systems. However, for several applications, it is more 
important to correct residual errors than to follow an 
arbitrary trajectory. This is certainly the case of a 
satellite attitude control, where small but effective 
disturbances deviates the target pointing and where 
highly nonlinear dynamics also makes attitude 
maneuvering sometimes a difficult process. In this case, 
a static input reference trajectory in a feedforward 
neural net controller can not provide the necessary 
dynamic information in order to compensate for the 

attitude deviations. For systems that need a closed loop 
control, an error based reference trajectory is suggested. 
The error signal has the characteristic of generating a 
null control when the error drops to zero, allied to 
enough information on magnitude and velocity. The 
neural net, on the other hand, can theoretically learn the 
nonlinear behavior of the satellite, resulting in a 
nonlinear feedback error control. The proposed scheme 
is similar to the inverse generalized method1, with the 
difference that the system is now controlled in closed 
loop. The number of neurons in the network and the 
number of training points were adjusted interactively, 
assuring minimum learning time. A simulation 
presenting the neural control is compared to a 
conventional PD controller. Although the neural control 
is still far behind the PD, it is expected that with specific 
goal-directed training methods the nonlinear 
characteristic of the neural net can be better utilized. 

Keywords: Neural Network Controller, Attitude 
Control, Feedback Control. 
 

Neural Networks 
 
 Artificial neural nets (ANN) are composed of 
individual processing units called neurons grouped in 
layers. In feedforward nets each neuron applies an 
activation function f to the sum of the weighted outputs 
of the previous layer. For hidden layers, the activation 
function generally is a biased nonlinear differentiable 
function like the sigmoid or hyperbolic tangent, for 
instance, while the output layer can be a linear 
function1. A supervised training method adjusts the 
neuron weights based on error obtained at the net output 
and applying some optimization rule. Training consists 
of an interactive process in which the weights are 
adjusted by propagating the output error through the network 
layers. Nonlinear continuous functions can be approximated 
with a given accuracy by a 2 layer neural net with linear 
function in the output and the sigmoid activation function: 
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 in the hidden layer3-4. A feedforward network 
composed by l layers, as shown in Figure 1, can be seen 
as a mapping function with n0 input elements and nl 

output parameters. If k
ix  is the output of the ith neuron 

of layer k, k
ijw  is the weight of the jth input (coming 

from the jth neuron of the preceding layer) and fk is the 
activation function of layer k, then:  
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where k
ib  is the neuron bias that allows the neuron to 

present a non-null output for a null input.  
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Fig. 1 A feedforward neural network 
 
Generally the neuron bias can be obtained together 

with the weights, by assuming the inclusion of new unit 
input. In a vector-matrix representation form the 
preceding equation yields 
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where the weight matrix of layer k, Wk, includes the 
neuron bias: 
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The dimensions of the output vector xk and the weight 
matrix Wk are now nk+1 and nk × nk-1+1, respectively. 

The increasing number of hidden layers normally 
makes the neural net to better represent the dynamical 
system and to reduce the output error5-6, even taking the 
same number of neurons. Nevertheless, the capacity of 
generalization, i. e. the ability to interpolate between 
points where the neural net was not trained is more 
accentuated on nets with few or even only one hidden 
layer7. The number of neurons in the hidden layers is 

important for the approximation degree: few neurons 
tend to decrease the stability and result bad 
approximation, too much neurons cause oscillation on 
the output between the trained points8. 
 

Backpropagation algorithm 
 

Neural nets have three major advantages when 
compared with traditional function approximation 
methods. First is parallel processing structure, which 
allows quickly response in parallel computers. Second, 
they are able to handle with large number of input 
elements, and do not need filtering or state estimation 
processing. Third, the weights are easily obtained by 
using training procedures, that gradually teaches the net 
how to respond to a given input. The training process 
normally minimizes the output error through the 
application of an optimization method. These methods 
need to know with some extent how the net output 
varies with respect to a given neuron weight. This can 
be achieved with the back propagation algorithm 
developed by Werbos1, which obtains the partial 
derivative of the output elements in a recursive way. In 
matrix form the back propagation algorithm the 
derivative of the output vector with respect to the jth 
weight of the ith neuron of the kth layer results the 
expression: 
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where ∆k is the back propagation matrix, obtained from: 
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with initial condition ∆l = Fl, where Fk is a diagonal 
matrix with the derivatives of the activation function fk: 
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It should be noted that, due to the inclusion of the 

neuron bias on the weight matrix, Fk should be a nk-1+1 
× nk-1+1 matrix, with the last diagonal element equal to 
zero. However, to reduce computation both Fk and Wk 



can be resized with elimination of the last row when 
performing matrix products. 

Steepest descent or gradient method is today the most 
common training procedure. It is ease to implement in 
computers, is very fast but converges in a strongly slow 
rate. This certainly is the main reason of the extremely 
long training times in most neural net applications. 
Nevertheless, there are other training methods that show 
improved learning speed, as the least square6-9, or the 
Levenberg-Marquardt algorithm10-11. In spite of the 
training procedure, the network weights can be updated 
at each input presentation, in a so-called adaptive 
training, or at the end of a complete set of input data, 
known as batch training. 

Adaptive training allows the network to learn the 
system dynamics in real time, although the learning can 
also be done offline. If the learning rate is too large or if 
the system remains at a specific state for long time, the 
network adjust the weights to the last trained position 
and the learning remains incomplete. The same is true if 
the system do not pass to some points or regions in the 
state space. Batch training appears to avoid such 
underfitting in the first case, but depending on the 
system complexity, the training can or can not be 
performed over the entire state space. The training of a 
network attitude controller can not be done after in-orbit 
injection, because during the learning process the 
erroneous control can put the satellite in a dangerous 
situation. So, computer simulated dynamics shall be 
used for training in order to guarantee the controllability 
before launching. This procedure allows also train the 
neural net over the entire state space, and not only in 
one particular trajectory. Nevertheless, some problems 
arise from this solution, mainly due to the large number 
of training points necessary to inform the system 
dynamics to the neural net. For example, for a 3 degrees 
of freedom second order system (like a satellite 
attitude), the neural input can be determined with 9 
variables (3 for each position, velocity and control). If 
one admits 5 samples for each variable, then the training 
set will have 59 = 1,953,125 training points in order to 
cover the state space, which is almost impossible to get 
with the computer and memory available today. The 
training process could take several months and the 
resulting net would be so large that real-time application 
would turn to be a mere desire. Fortunately, at least in 
theory, the training set do not need to be so large, by 
taking into consideration the possibility that the network 
can acquire enough system information by generalizing 
and interpolating the input data. In this sense, a 
statistical method, similar to the Monte Carlo, can be 
applied by generating random points in the state space. 
The problem now will be to find the necessary number 

of points and the corresponding number of neurons that 
learns the dynamic behavior. 
 

Training approaches 
 

One of the most peculiar aspects in neural net control 
is how to obtain the control signal. Hunt1 suggests some 
well know training approaches, like the generalized 
inverse, the indirect and the specialized inverse 
methods. Each one of these models has advantages and 
also disadvantages concerning the quality of results. 
Generalized inverse learning presents some negative 
properties when the training is performed with the real 
system, as there is no guarantee that the system output 
covers totally the state space. Of course this problem 
will not happen in case of a numeric simulated system. 
Indirect model presents some instability during training, 
depending on the system dynamics. Specialized inverse 
method requires a network direct model in order to 
establish a relation between the direct model output 
error and the control network output error. In a 
simulated system, nevertheless, specialized and 
generalized methods are equivalents and so the results 
presented here were obtained with the generalized 
inverse model, as shown in Figure 2. 
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Fig. 2 – Control network training model. 

 
Inputs to the control network are the state (3 attitude 

angles and 3 angular velocities) at time t and the 
propagated position at time t+∆t. The output is the 
control signal (torque) u(t). System dynamics is 
simulated considering a non-perturbed 3 axis rigid body, 
with inertia equals to 23, 23 and 11 kg.m2. Torque is 
provided by gas jets, supposed regulated by a PWM 
device. Maximum available torque is considered umax =  
1.5 Nm. The network is trained with the Levenberg-
Marquardt method10-11. 

The network final error depends on the number of 
hidden neurons and the number of training points. In 
order to achieve a given precision, the larger the training 
set, the greater the number of hidden neurons. If umax is 
the maximum available torque, them the network error 



shall be a fraction of this value, 1% for instance. This 
value, nevertheless, has to be selected carefully, as the 
number of hidden neurons (and also the training time) 
increases quickly with de required net accuracy. 
Unfortunately, there is no theory that gives the number 
of neurons as function of the number of training points. 
So it is adopted an iterative approach: the training is 
performed first with a small network with few training 
points. If the required accuracy is not met after a 
predefined number of training iterections, then the 
number of neurons is increased by a factor larger than 1 
(1.4 in this case). On the other hand, if the training 
succeed, them a new random input set is generated and 
a new output mean error is calculated. If the new error is 
still below the required accuracy, the training process is 
completed. Otherwise the number of training points is 
multiplied by a factor greater than one (1.4) and the 
whole process is repeated. With such algorithm the 
number of training points and hidden neurons grows up 
to the minimum necessary to learn the system dynamics.  

Training was carried out by generating random 
positions between ± 20° and ± 1 rpm on each axis. 
Starting with 8 neurons and 256 training points, the 
required output error was reached with 24 neurons, and 
the learning process succeed with only 2576 points, as 
shown in Figure 3.  

Once trained, the ANN controller is used in 
conjunction with the attitude simulator in order to 
validate the control. Nevertheless, as shown in Figure 2, 
the network needs to know previously the attitude at 
time t+∆t. This information, not available at current 
time, can be replaced by the reference trajectory 
θr(t+∆t), as suggested by Hunt1 and depicted in Figure 
4. This procedure however characterizes a feedforward 
controlled system, as the network does not correct the 
output error of the system. In order to feed back the 
attitude error, it is adopted a reference trajectory 
calculated as function of the error between the target 
and the actual attitudes. The reference trajectory can, for 
instance, be proportional to the error: 
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where θt(t) is the target attitude. This procedure led the 
system to the target position as expected, but with 
increasing oscillation as the satellite has no way to 
dump the angular motion. So it is necessary to include a 
dump factor on the reference trajectory proportional to 
the angular velocity. If the target attitude is a null 
attitude, them θr becomes: 
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Fig. 3 – Number of hidden neurons as function of the 

number of training points. 
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Fig. 4 – Neural Network Control  
 

The stability of the ANN control revealed a difficult 
task, as the scalars ap and ad had to be adjusted by trial 
and error, and the stability range is very tight. Small 
differences in ap and ad move from long time 
convergence to instability. Considering ap = 0.08 and ad 
= 1.2, the result for a 200 seconds attitude simulation is 
shown in Figure 5. As can be seen, attitude oscillation 
could not be removed entirely. Maybe this can be done 
by using different gains for individual satellite axis 
instead of only one value for all 3 axes. The ANN also 
presented a small but non-zero bias that causes the 
control to respond even when the target has reached. 
This made the trajectory to dump slowly near the final 
attitude. It is possible also that the nonlinear behavior of 
the network caused the oscillations, but this can be 
proved only increasing the number of hidden neurons 
and training points. Initial conditions for curves in 
Figure 5 are: attitude angles in pitch, roll and yaw, θ = 
(10°, 15°, -5°) and angular velocity ω = (0.1, 0.6, 0.2) 
rpm. 
 Note that the reference trajectory, as proposed in 
Equation 9 is similar to a PD (proportional and 
derivative) controller. The difference is that the torque 
obtained by the network is based on a nonlinear attitude 
dynamics, whereas the PD normally obtains the gains 



upon linearized assumptions. In fact, the performance of 
PD controller is better than the ANN, as seen in Figure 
6, even considering that the PD gains were not 
optimized. Both curves have identical initial and steady 
state conditions. Gains for the PD controller are 
proportional ap= 0.5 and derivative ad= 7.5. Note also 
that the PD reaches the target in 20 seconds, whereas 
the ANN controller takes more than 200 seconds. 
 

 
Fig. 5 – Attitude simulation with a ANN controller 

 

 
Fig. 6 – Attitude simulation with a PD controller 

 
Conclusions 

 
 This paper presented a comparison of an ANN 
attitude and a conventional PD controllers. ANN acting 
as a nonlinear system control has some intrinsic 
advantages that can be exploited in further studies. 
Nevertheless, if by one side there is not still a global 
theory for nonlinear control, on the other hand the large 
number of the ANN parameters that need to be adjusted 
by trial and error makes the training process an 
exhaustive task. It is important to note also that there is 

not too many examples, in literature, concerning system 
control with several degrees of freedom by means of 
ANN. As became clear the larger the number of state 
variables, the bigger the network. In fact, the first 
attempt to train the ANN was carried out with 
maximum torque of umax = 0.15 Nm, more realistic with 
respect to the satellite size. However, as the output 
accuracy was a fraction of this value (1% indeed), 
training was not completed even with 128 hidden 
neurons. Training times was so large that the process 
had to be stopped. 
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