
A NEURAL NETWORK SATELLITE ATTITUDE CONTROLLER WITH ERROR
BASED REFERENCE TRAJECTORY

Valdemir Carrara+
Atair Rios Neto++

+ Instituto Nacional de Pesquisas Espaciais – INPE/MCT
CEP 12201-970 CP 515 São José dos Campos, SP – Brazil, E-mail: val@dem.inpe.br

++ Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba.
CEP 12245-720 São José dos Campos, SP – Brazil, E-mail: atair@univap.br

Abstract

 Feedforward neural networks are investigated in this
work to verify its ability to control the attitude of a
satellite. Neural nets are a promising tool for attitude
control due to its inherent nonlinear behavior, which
makes them a natural candidate to control nonlinear
systems. Nevertheless, as will be shown, to obtain a
neural 3 axis attitude control is not as simple as a
conventional SISO net control. Main difficulties are the
large amount of training data, in order to assure the
complete understanding of the attitude dynamics by the
neural net, and also the fact that attitude control is a
MIMO instead of a SISO system. Regardless of these draw
backs, some results concerning attitude control will be shown.

Introduction

 The training process of a control neural network
depends on the condition of the dynamic system having
at least a local inverse around a reference trajectory, and
is very much affected by dynamic system complexity.
Thus for a given training method, the learning process
can or can not converge, depending on system
dynamics1. Several methods (generalized, specialized,
predictive control) to obtain the inverse dynamic model
have been established to guarantee training
convergence1-2, and some particular features make them
more or less appropriate depending on the application.
These training methods use a feedforward reference
trajectory as an input to the neural net controller. This
arrangement is suggested based on the way humans
control their movements and normally applies to robotic
systems. However, for several applications, it is more
important to correct residual errors than to follow an
arbitrary trajectory. This is certainly the case of a
satellite attitude control, where small but effective
disturbances deviates the target pointing and where
highly nonlinear dynamics also makes attitude
maneuvering sometimes a difficult process. In this case,
a static input reference trajectory in a feedforward
neural net controller can not provide the necessary
dynamic information in order to compensate for the

attitude deviations. For systems that need a closed loop
control, an error based reference trajectory is suggested.
The error signal has the characteristic of generating a
null control when the error drops to zero, allied to
enough information on magnitude and velocity. The
neural net, on the other hand, can theoretically learn the
nonlinear behavior of the satellite, resulting in a
nonlinear feedback error control. The proposed scheme
is similar to the inverse generalized method1, with the
difference that the system is now controlled in closed
loop. The number of neurons in the network and the
number of training points were adjusted interactively,
assuring minimum learning time. A simulation
presenting the neural control is compared to a
conventional PD controller. Although the neural control
is still far behind the PD, it is expected that with specific
goal-directed training methods the nonlinear
characteristic of the neural net can be better utilized.

Keywords: Neural Network Controller, Attitude
Control, Feedback Control.

Neural Networks

 Artificial neural nets (ANN) are composed of
individual processing units called neurons grouped in
layers. In feedforward nets each neuron applies an
activation function f to the sum of the weighted outputs
of the previous layer. For hidden layers, the activation
function generally is a biased nonlinear differentiable
function like the sigmoid or hyperbolic tangent, for
instance, while the output layer can be a linear
function1. A supervised training method adjusts the
neuron weights based on error obtained at the net output
and applying some optimization rule. Training consists
of an interactive process in which the weights are
adjusted by propagating the output error through the network
layers. Nonlinear continuous functions can be approximated
with a given accuracy by a 2 layer neural net with linear
function in the output and the sigmoid activation function:

x

x

e

e
xf

+
−=

−

1

1
)((1)

 in the hidden layer3-4. A feedforward network
composed by l layers, as shown in Figure 1, can be seen
as a mapping function with n0 input elements and nl

output parameters. If k
ix is the output of the ith neuron

of layer k, k
ijw is the weight of the jth input (coming

from the jth neuron of the preceding layer) and fk is the
activation function of layer k, then:

()

+=+= −

=
∑

−
k
i

k
j

n

j

k
ij

kk
i

k
i

kk
i bxwfbxfx

k
1

1

1

 (2)

where k
ib is the neuron bias that allows the neuron to

present a non-null output for a null input.

Σ ...

...

M

...

M M M

Σ

Σ

Σ Σ

Σ

Σ

Σ

Σ

0
1x

0
1x

0

0nx

1x 2x 1−lx lx0x

Fig. 1 A feedforward neural network

Generally the neuron bias can be obtained together

with the weights, by assuming the inclusion of new unit
input. In a vector-matrix representation form the
preceding equation yields

() ()1 −== kkkkkk xWfxfx (3)

where the weight matrix of layer k, Wk, includes the
neuron bias:

11

2221

1111

1

1

1

=

−

−

−

k
n

k
nn

k
n

kk
n

k

kk
n

k

k

kkkk

k

k

bww

bww

bww

W

L

MMM

L

L

. (4)

The dimensions of the output vector xk and the weight
matrix Wk are now nk+1 and nk × nk-1+1, respectively.

The increasing number of hidden layers normally
makes the neural net to better represent the dynamical
system and to reduce the output error5-6, even taking the
same number of neurons. Nevertheless, the capacity of
generalization, i. e. the ability to interpolate between
points where the neural net was not trained is more
accentuated on nets with few or even only one hidden
layer7. The number of neurons in the hidden layers is

important for the approximation degree: few neurons
tend to decrease the stability and result bad
approximation, too much neurons cause oscillation on
the output between the trained points8.

Backpropagation algorithm

Neural nets have three major advantages when
compared with traditional function approximation
methods. First is parallel processing structure, which
allows quickly response in parallel computers. Second,
they are able to handle with large number of input
elements, and do not need filtering or state estimation
processing. Third, the weights are easily obtained by
using training procedures, that gradually teaches the net
how to respond to a given input. The training process
normally minimizes the output error through the
application of an optimization method. These methods
need to know with some extent how the net output
varies with respect to a given neuron weight. This can
be achieved with the back propagation algorithm
developed by Werbos1, which obtains the partial
derivative of the output elements in a recursive way. In
matrix form the back propagation algorithm the
derivative of the output vector with respect to the jth
weight of the ith neuron of the kth layer results the
expression:

∆=
∂
∂ −

0

0

1

M

M

k
j

k
k
ij

l

x
w

x
, (5)

where ∆k is the back propagation matrix, obtained from:

kkkk FW 11 ++∆=∆ (6)

with initial condition ∆l = Fl, where Fk is a diagonal
matrix with the derivatives of the activation function fk:

)(0

0)(
)(

1

′

′

==
k
n

k

kk

k

kk
k

k
xf

xf

xd

xdf
F

L

MOM

L

 (7)

It should be noted that, due to the inclusion of the

neuron bias on the weight matrix, Fk should be a nk-1+1
× nk-1+1 matrix, with the last diagonal element equal to
zero. However, to reduce computation both Fk and Wk

can be resized with elimination of the last row when
performing matrix products.

Steepest descent or gradient method is today the most
common training procedure. It is ease to implement in
computers, is very fast but converges in a strongly slow
rate. This certainly is the main reason of the extremely
long training times in most neural net applications.
Nevertheless, there are other training methods that show
improved learning speed, as the least square6-9, or the
Levenberg-Marquardt algorithm10-11. In spite of the
training procedure, the network weights can be updated
at each input presentation, in a so-called adaptive
training, or at the end of a complete set of input data,
known as batch training.

Adaptive training allows the network to learn the
system dynamics in real time, although the learning can
also be done offline. If the learning rate is too large or if
the system remains at a specific state for long time, the
network adjust the weights to the last trained position
and the learning remains incomplete. The same is true if
the system do not pass to some points or regions in the
state space. Batch training appears to avoid such
underfitting in the first case, but depending on the
system complexity, the training can or can not be
performed over the entire state space. The training of a
network attitude controller can not be done after in-orbit
injection, because during the learning process the
erroneous control can put the satellite in a dangerous
situation. So, computer simulated dynamics shall be
used for training in order to guarantee the controllability
before launching. This procedure allows also train the
neural net over the entire state space, and not only in
one particular trajectory. Nevertheless, some problems
arise from this solution, mainly due to the large number
of training points necessary to inform the system
dynamics to the neural net. For example, for a 3 degrees
of freedom second order system (like a satellite
attitude), the neural input can be determined with 9
variables (3 for each position, velocity and control). If
one admits 5 samples for each variable, then the training
set will have 59 = 1,953,125 training points in order to
cover the state space, which is almost impossible to get
with the computer and memory available today. The
training process could take several months and the
resulting net would be so large that real-time application
would turn to be a mere desire. Fortunately, at least in
theory, the training set do not need to be so large, by
taking into consideration the possibility that the network
can acquire enough system information by generalizing
and interpolating the input data. In this sense, a
statistical method, similar to the Monte Carlo, can be
applied by generating random points in the state space.
The problem now will be to find the necessary number

of points and the corresponding number of neurons that
learns the dynamic behavior.

Training approaches

One of the most peculiar aspects in neural net control
is how to obtain the control signal. Hunt1 suggests some
well know training approaches, like the generalized
inverse, the indirect and the specialized inverse
methods. Each one of these models has advantages and
also disadvantages concerning the quality of results.
Generalized inverse learning presents some negative
properties when the training is performed with the real
system, as there is no guarantee that the system output
covers totally the state space. Of course this problem
will not happen in case of a numeric simulated system.
Indirect model presents some instability during training,
depending on the system dynamics. Specialized inverse
method requires a network direct model in order to
establish a relation between the direct model output
error and the control network output error. In a
simulated system, nevertheless, specialized and
generalized methods are equivalents and so the results
presented here were obtained with the generalized
inverse model, as shown in Figure 2.

Simulated
System

Control Neural
Network

θ(t), ω(t)
u(t)

Σ+ –

um(t)

θ(t+∆t)

Fig. 2 – Control network training model.

Inputs to the control network are the state (3 attitude

angles and 3 angular velocities) at time t and the
propagated position at time t+∆t. The output is the
control signal (torque) u(t). System dynamics is
simulated considering a non-perturbed 3 axis rigid body,
with inertia equals to 23, 23 and 11 kg.m2. Torque is
provided by gas jets, supposed regulated by a PWM
device. Maximum available torque is considered umax =
1.5 Nm. The network is trained with the Levenberg-
Marquardt method10-11.

The network final error depends on the number of
hidden neurons and the number of training points. In
order to achieve a given precision, the larger the training
set, the greater the number of hidden neurons. If umax is
the maximum available torque, them the network error

shall be a fraction of this value, 1% for instance. This
value, nevertheless, has to be selected carefully, as the
number of hidden neurons (and also the training time)
increases quickly with de required net accuracy.
Unfortunately, there is no theory that gives the number
of neurons as function of the number of training points.
So it is adopted an iterative approach: the training is
performed first with a small network with few training
points. If the required accuracy is not met after a
predefined number of training iterections, then the
number of neurons is increased by a factor larger than 1
(1.4 in this case). On the other hand, if the training
succeed, them a new random input set is generated and
a new output mean error is calculated. If the new error is
still below the required accuracy, the training process is
completed. Otherwise the number of training points is
multiplied by a factor greater than one (1.4) and the
whole process is repeated. With such algorithm the
number of training points and hidden neurons grows up
to the minimum necessary to learn the system dynamics.

Training was carried out by generating random
positions between ± 20° and ± 1 rpm on each axis.
Starting with 8 neurons and 256 training points, the
required output error was reached with 24 neurons, and
the learning process succeed with only 2576 points, as
shown in Figure 3.

Once trained, the ANN controller is used in
conjunction with the attitude simulator in order to
validate the control. Nevertheless, as shown in Figure 2,
the network needs to know previously the attitude at
time t+∆t. This information, not available at current
time, can be replaced by the reference trajectory
θr(t+∆t), as suggested by Hunt1 and depicted in Figure
4. This procedure however characterizes a feedforward
controlled system, as the network does not correct the
output error of the system. In order to feed back the
attitude error, it is adopted a reference trajectory
calculated as function of the error between the target
and the actual attitudes. The reference trajectory can, for
instance, be proportional to the error:

)]()([)()(ttattt t
p

r θ−θ−θ=∆+θ (8)

where θt(t) is the target attitude. This procedure led the
system to the target position as expected, but with
increasing oscillation as the satellite has no way to
dump the angular motion. So it is necessary to include a
dump factor on the reference trajectory proportional to
the angular velocity. If the target attitude is a null
attitude, them θr becomes:

)()()()(tatattt dp
r ω+θ−θ=∆+θ . (9)

0 500 1000 1500 2000 2500 3000
Number of training points

0

10

20

30

N
u

m
be

r
of

 h
id

de
n

ne
u

ro
ns

Fig. 3 – Number of hidden neurons as function of the

number of training points.

Simulated
System

Control Neural
Networkθ(t), ω(t)

um(t)
θr(t+∆t)

State
estimator

θ(t+∆t)

Fig. 4 – Neural Network Control

The stability of the ANN control revealed a difficult
task, as the scalars ap and ad had to be adjusted by trial
and error, and the stability range is very tight. Small
differences in ap and ad move from long time
convergence to instability. Considering ap = 0.08 and ad
= 1.2, the result for a 200 seconds attitude simulation is
shown in Figure 5. As can be seen, attitude oscillation
could not be removed entirely. Maybe this can be done
by using different gains for individual satellite axis
instead of only one value for all 3 axes. The ANN also
presented a small but non-zero bias that causes the
control to respond even when the target has reached.
This made the trajectory to dump slowly near the final
attitude. It is possible also that the nonlinear behavior of
the network caused the oscillations, but this can be
proved only increasing the number of hidden neurons
and training points. Initial conditions for curves in
Figure 5 are: attitude angles in pitch, roll and yaw, θ =
(10°, 15°, -5°) and angular velocity ω = (0.1, 0.6, 0.2)
rpm.
 Note that the reference trajectory, as proposed in
Equation 9 is similar to a PD (proportional and
derivative) controller. The difference is that the torque
obtained by the network is based on a nonlinear attitude
dynamics, whereas the PD normally obtains the gains

upon linearized assumptions. In fact, the performance of
PD controller is better than the ANN, as seen in Figure
6, even considering that the PD gains were not
optimized. Both curves have identical initial and steady
state conditions. Gains for the PD controller are
proportional ap= 0.5 and derivative ad= 7.5. Note also
that the PD reaches the target in 20 seconds, whereas
the ANN controller takes more than 200 seconds.

Fig. 5 – Attitude simulation with a ANN controller

Fig. 6 – Attitude simulation with a PD controller

Conclusions

 This paper presented a comparison of an ANN
attitude and a conventional PD controllers. ANN acting
as a nonlinear system control has some intrinsic
advantages that can be exploited in further studies.
Nevertheless, if by one side there is not still a global
theory for nonlinear control, on the other hand the large
number of the ANN parameters that need to be adjusted
by trial and error makes the training process an
exhaustive task. It is important to note also that there is

not too many examples, in literature, concerning system
control with several degrees of freedom by means of
ANN. As became clear the larger the number of state
variables, the bigger the network. In fact, the first
attempt to train the ANN was carried out with
maximum torque of umax = 0.15 Nm, more realistic with
respect to the satellite size. However, as the output
accuracy was a fraction of this value (1% indeed),
training was not completed even with 128 hidden
neurons. Training times was so large that the process
had to be stopped.

References

1 Hunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop,
P. J. Neural networks for control systems - a survey.
Automatica, v. 28, n. 6, p. 1083-1112, 1992.
2 Kawato, M; Uno, Y.; Isobe, M; Susuki, R.
Hierarchical neural network model for voluntary
movement with application to robotics. IEEE Control
Systems Magazine, v. 8, n. 2, p. 8-15, Apr. 1988.
3 Cybenko, G. Approximation by superposition of a
sigmoidal function. Mathematics of Controls, Signals
ans Systems. v. 2, n. 4, p. 303-314, 1989.
4 Hornik, K.; Stinchcombe, M.; White, H. Multilayer
feedforward networks are universal approximators.
Neural Networks, v. 2, n. 5, p. 359-366, 1989.
5 Nguyen, D. H.; Widrow, B. Neural networks for self-
learning control systems. IEEE Control Systems
Magazine, v. 10, n. 3, p.18-23, Apr. 1990.
6 Chen, S.; Billings, S. A. Neural networks for
nonlinear dynamic system modelling and identification.
International Journal of Control, v. 56, n. 2, p. 319-346,
1992.
7 Baffes, P. T.; Shelton, R. O.; Phillips, T. A. NETS, a
neural network development tool. Huston, Lyndon B.
Johnson Space Center, 1991. (JSC-23366)
8 Billings, S. A.; Jamaluddin, H. B.; Chen, S. Properties
of neural networks with applications to modelling non-
linear dynamical systems. International Journal of
Control. v. 55, n. 1, p. 193-224, 1992.
9 Carrara, V.; Varotto, S. E. C.; Rios Neto, A. Satellite
Attitude Control Using Multilayer Perceptron Neural
Networks (98-345). Advances in the Astronautical
Sciences. Vol. 100, Part 1, 1998. p. 565-579.
10 Hagan, M. T.; Menhaj, M. Training feedforward
networks with the Marquardt algorithm. IEEE
Transactions on Neural Networks, V. 5, n. 6, pp. 989-
993, 1994.
11 Demuth, H.; Beale, M. Neural Network Toolbox
User’s Guide Version 3.0. MathWorks, 1997 (in PDF
file).

