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Abstract 
 
 Europe, through ESA, has decided the conception of 
an Automated Transfer Vehicle, ATV, to support the 
exploitation of the International Space Station ISS. 
Rendezvous between ATV and ISS was first studied on 
the base of a four maneuvers strategy satisfying 
Kuzmak rendezvous equations1. Injection orbits and 
motorization of ATV may imply such a long time of 
burn for the first maneuver application that it must be 
split. We developed an original maneuver splitting 
method which generates two subsystems of rendezvous 
equations and allows the use of more unknowns that are 
necessary to treat the splitting maneuver problem. We 
give numerical results in the case of the first maneuver 
splitting for ATV/ISS rendezvous showing the way our 
approach can generate 5 maneuvers new strategies 
dividing by two the first maneuver modulus with an 
over cost always insignificant. 
 
Key words: maneuver splitting, rendezvous strategy, 
Kuzmak equations. 
 
 

Introduction 
 

 
 The first studies of optimal phasing strategies for 
rendezvous between ATV and ISS have shown that this 
problem belongs to a new class because ATV injection 
orbits are quite dangerous and need a very first perigee 
maneuver. In these circumstances, the first maneuver 
modulus of classical four maneuvers strategy can 
become very important, up to 150 meters per second. 
The specificity of the problem grows with the fact that 
vehicle motorization generates long times of burn, about 
half an orbital period for some first maneuvers 
application. As this can be an operational drawback, it 
becomes necessary to acquire an optimization method 
able to take into account inequality constraints under 
maneuver modulus. 

To reach this goal, we choose to build an original 
method based on maneuver splitting. It constitutes a 
fitting of the approach used by KIAM specialists to treat 
rendezvous between Mir station and Soyouz or Progress 
vehicles2, which allowed us to get the first results 
mentioned above. 
 
 

Optimization of rendezvous strategies  
 
 
 The approach2 used to realize our first studies on 
ATV/ISS rendezvous strategy is based on the 6 
linearized rendezvous equations system drawn up by G. 
E. Kuzmak for a keplerian model with  impulsive  
maneuvers1. It links maneuvers components to the 
deviation vector between vehicle and station in the 
station local orbital frame through the system (1). 
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where: 
 

• ( )t

zr VVVzr ∆∆∆∆∆∆ ,,,,, ττ is the initial vector of 

radial, tangential, lateral position and velocity 
deviations, 

• ( )t

iii WNT ,, is the components vector of the ith 

maneuver, 



  

• iϕ is the long argument of latitude of the 

application point of the ith maneuver (counted from 
rendezvous point): 

 
( ) ( ) ππϕ 2121 ⋅−−−⋅−+= RDVRDV nunu        (2) 

 
where n (resp. RDVn ) is the current number (resp. at 

rendezvous ) of turns described by  the vehicle, u (resp. 

RDVu ), is the current (resp. at rendezvous) argument of 

latitude of the vehicle. 
• N is the number of maneuvers of the strategy, 
• w is the orbital velocity of the reference circular 

orbit considered in the linear theory of Kuzmak. 
 
The optimization method we used lies on the resolution 
of system (1) for all admissible sets of application 
points { }

Nii ,1=ϕ . Note  that such sets can be constructed 

taking into account some operational constraints.  
For each fixed set { }

Nii ,1=ϕ , maneuvers components are 

obtained resolving the 6 equations of system (1). 
 Then, one can easily determinate the minimum 
propellant consuming strategy since the characteristic 
velocity F (3) represents this cost. 
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As a consequence, the strategy must be constructed with 
no more than 6 maneuvers components: 4 radial or 
tangential, and 2 lateral. In particular, this fact doesn’t 
allow to determinate strategies including more than 4 
planar components needed for maneuvers splitting.  
 
The main idea of our method is to split system (1) into 2 
subsystems, each one supporting partially  corrections  
of the initial deviations. This allows the introduction of  
6 new unknowns including 4 new planar components. 
A careful use of this idea enables the determination of a 
5 maneuvers new strategies whose cost are very close to 
the minimum cost of a 4 maneuvers reference one. 
 
 

Splitting the rendezvous equations system 
 
 
 Let’s rewrite system (1) as: 
 

 













ℜ∈
ℜ∈

∈
=

6

6

6,6

B

X

MA

BAX

                                (4) 

where: 
• A is the influence matrix, 
• X is the maneuvers components vector, 
• B is the initial deviations vector. 
 
The splitting is then defined by: 
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It generates 2 subsystems and the 6 new unknowns are 
related to maneuvers applied at { }

2iϕ set of long 

arguments of latitude. 
 One can notice that sets{ }

1iϕ and{ }
2iϕ can have 

common points. This property can be used to introduce 
less unknowns as well as to built strategies whose 
maneuvers have radial, tangential, and lateral 
components. 
 
The diagonal matrix Π is called weight matrix and 
leads the system splitting to a particular type of solution. 
Choices of weight coefficients and of active 
components repartition over the 2 subsystems lead to an 
infinity of split subsystems and therefore to a great 
number of solutions. 
 
 

Searching for a new rendezvous strategy 
 
 
   In the present study, we have developed the use of (5) 
to obtain the splitting of the first maneuver modulus of 
an optimal 4 maneuvers strategy taken as a reference. 
 
Set { }

2iϕ differs from set { }
1iϕ only by a new value of 

the long argument of latitude for the application point of 
the second split part of the initial first maneuver bisT1 . 

Both coplanar and non-coplanar cases are investigated. 
 



  

Coplanar rendezvous 
 
For a coplanar rendezvous, we consider a strategy made 
of 4 purely tangential maneuvers.  
The resulting subsystems are given by: 
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Maneuvers components of the new strategy are then 
deduced: 
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In this case, the total cost is: 
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The long argument of latitude value for the application 
point of bisT1 was chosen taking advantage of the fact 

that the influence matrix coefficients are all periodic 
except coefficients related to the phase equation (9) in 
which long argument of latitude acts directly. 
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This translates the prevalent status of the first maneuver 
and implies that 12ϕ must be as close as possible to 

1,1ϕ if one wants to keep the reference solution structure 

and cost. The best choice seems to be: 
 

 πϕϕ 21,12,1 −=                            (10) 

 
To determinate the weight matrix coefficients, we take 
into account the following remarks: 
 
1- Phase equation structure implies that if one wants 

an efficient splitting of the first maneuver only, the 

tangential initial deviationτ∆ correction must be 
supported by both subsystems. 

 
2- Some numerical tests showed us that the separation 

of rV∆ and τV∆ corrections over the 2 subsystems 

implies a less efficient splitting than the separation 
of r∆  or τ∆ corrections. 

 
3- Furthermore, numerical tests showed that in all 

configurations of rendezvous, various weight 
matrix  imply the same splitting effect but, as a 
global rule, deviations correction must be balanced  
over the 2 subsystems. 

 
As a consequence, in the frame of our application, we 
use: 
 

( )αααα ,,,diag=Π                     (11) 

 
Non coplanar rendezvous 
 
For strategy including lateral corrections, we have to 
use  the 2 equations governing rendezvous out of  ISS 
orbital plan. The splitting method allows us to consider 
up to 4 lateral components in the new strategy. 
 
Resulting subsystems can be: 
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maneuvers components can be given by: 
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and the new cost function is then: 
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In this case, the choice of the weight matrix can be done 
using the same rule as in the coplanar case because 
coefficients of the 2 equations introduced are 

Π2 periodic too. 
  
The weight matrix to be used can be: 
 

 ( )αααααα ,,,,,diag=Π                (15) 

 
If out of plan deviations to be corrected are not too 
important, the introduction of 4 lateral components is 
not necessary. Lateral corrections can then be support 
by less components, or only by one of the 2 subsystems. 
The weight matrix to be used can then be: 
 

 ( )1,1,,,, ααααdiag=Π                   (16) 

 
 

Numerical results 
 
 
We give in the present section examples of maneuver 
splitting in 3 different representative configuration of 
rendezvous between ATV and ISS. All rendezvous 
strategies have to be executed in 72 hours. 
 
First case of coplanar rendezvous 
 
We consider that ISS orbit is circular with an altitude of 
350km and with an inclination of 51.6 degrees. 
ATV injection orbit is given by: 
-Perigee altitude: 50 km 
-Apogee altitude: 300 km 
-Inclination: 51.6 degrees. 
 
The initial phasing distance is of 30.7 degrees. 
Initials deviations in station local frame are: 
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The 4 tangential maneuvers optimal strategy taken as a 
reference is given in Table 1. 
  

Table 1: Reference 4 maneuvers optimal strategy 
maneuver n (turns) u (deg) (rad) ϕ  T(m/s) 

1 1 130 295.55 93.024 
2 1 320 292.55 4.432 
3 47 315 3.61 0.954 
4 48 150 0.21 3.288 

Total cost F (m/s) 101.69 
 
The 2 subsystems are given by (6) and the total cost 
function F by the form (8). We used a weight matrix of 
the form (11) with a various  values of α coefficient. 
Resulting first modulus splitting and total cost of the 
new strategies are represented in figure 1.  
 
Best splitting effect had been obtained for 5.0=α and 
the corresponding strategy is given in Table 2. 
 

Table 2: 5 maneuvers new strategy 
maneuver n (turns) u (deg) (rad) ϕ  T(m/s) 

1 1 130 295.55 46.579 
1 bis 1 320 292.55 2.343 

3 2 130 289.26 49.539 
4 47 315 3.61 3.053 
5 48 150 0.21 0.182 

Total cost F (m/s) 101.69 
 

 
Figure 1: First tangential maneuver splitting and 
strategy total cost versus α α α α weight coefficient.  
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Second case of coplanar rendezvous 
 
We consider that ISS orbit is circular at the altitude of 
460km and with an inclination of 51.6 degrees. 
 
ATV injection orbit is given by: 
Perigee altitude: -20 km 
Apogee altitude: 450 km 
Inclination: 51.6 degrees 
 
The initial phasing distance is of 29.472 degrees. 
Initials deviations in station local frame are: 
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The 4 tangential maneuvers optimal strategy taken as a 
reference is given in Table 3. 
 

Table 3: Reference 4 maneuvers optimal strategy 
maneuver n (turns) u (deg) (rad) ϕ  T(m/s) 

1 1 135 288.58 149.647 
2 1 330 285.18 -11.849 
3 46 330 2.43 -19.212 
4 47 100 0.16 23.594 

Total cost F (m/s) 204.3 
 
The 2 subsystems are given by (6) and the total cost 
function F by the form (8). We used a weight matrix of 
the form (11) with various values of α coefficient. 
Resulting first modulus splitting and total cost of the 
new strategies are represented in figure 2.  
 
Best splitting effect had been obtained for 5.0=α and 
the corresponding strategy is given in Table 4. 
 

Table 4: 5 maneuvers new strategy 
maneuver n (turns) u (deg) (rad) ϕ  T(m/s) 

1 1 135 288.58 74.858 
2 1 330 285.18 -10.524 
3 2 135 282.29 75.127 
4 46 330 2.43 -20.454 
5 48 150 0.21 23.173 

Total cost F (m/s) 204.14 
 
 
 
 
 
 

Figure 2: First tangential maneuver splitting and 
strategy total cost versus αααα weight coefficient. 
 
Non coplanar rendezvous 
 
We consider that ISS orbit is circular at the altitude of 
460km and with an inclination of 51.6 degrees. 
 
ATV injection orbit is given by: 
-Perigee altitude: 50 km 
-Apogee altitude: 300 km 
-Inclination: 51.6 degrees. 
 
The initial phasing distance is of 29.472 degrees. 
Initials deviations in station local frame are: 
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The 4 maneuvers optimal strategy taken as a reference 
is given in Table 5. 
 

Table 5: Reference 4 maneuvers optimal strategy 
maneuver n u (deg) (rad) ϕ  T(m/s) W(m/s) 

1 1 116 288.91 135.485 -3.421 
2 1 260 286.40 24.828 1.838 
3 46 132 5.89 4.07 0 
4 47 100 0.16 -0.253 0 

Total cost F (m/s) 164.75 
 
The 2 subsystems are given by (12) and the total cost 
function F by the form (14). We used a weight matrix of 
the form (16) with various values of α coefficient.  
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Figure 3: First tangential maneuver splitting and 
total strategy cost versus α α α α weight coefficient. 
 
Resulting first tangential modulus splitting and total 
cost of the new strategies are represented in figure 3.  
Best splitting effect had been obtained for 5.0=α and 
the corresponding strategy is given in Table 6. 
 

Table 6: 5 maneuvers new strategy 
maneuver n u (deg) (rad) ϕ  T(m/s) W(m/s) 

1 1 116 288.91 67.74 -3.42 
2 1 260 286.40 24.84 1.838 
3 2 116 282.62 69.25 0. 
4 46 132 5.89 2.86 0. 
5 47 100 0.16 -0.58 0. 

Total cost F (m/s) 165.45 
 
 
The use of a weight matrix of  the form (15) splits 
lateral corrections over 4 maneuvers and give strategies 
of higher total cost. The 5 maneuvers strategy obtained 
with a weight coefficient α=0.5 is the result of the best 
splitting effect and is given in Table 7. 
 
 

Table 7: 5 maneuvers new strategy 
maneuver n u (deg) (rad) ϕ  T(m/s) W(m/s) 

1 1 116 288.91 67.74 -1.71 
2 1 260 286.40 24.84 0.918 
3 2 116 282.62 69.25 -4.39 
4 46 132 5.89 2.86 2.02 
5 47 100 0.16 -0.58 0. 

Total cost F (m/s) 166.11 
 
 
 
 

 
Conclusions and perspectives 

 
  Knowing the complex and tricky nature of the 
introduction of inequality constraints within classical 
optimization method, we developed a maneuver 
splitting method which has shown its efficiency and its 
simplicity of use and implementation through some 
ATV/ISS orbital rendezvous problem resolution. It 
allowed us to construct new strategies including 
reasonable times of burn. The two subsystems can be 
used to reach other  goals than first maneuver splitting if 
one finds out adapted  weighting rules.  But  in the 
frame of transfer problems, the use of our method can 
be easily made since they don’t contain any  phase 
equation.  
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Figure 3: First tangential component splitting and 
strategy total cost versus αααα coefficient. 
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