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Abstract 
 
 A batch least-squares procedure for coarse orbit and 
attitude determination of LEO spin stabilized satellites 
is presented. The observations are the axial and radial 
components of the geomagnetic field and the Sun angle 
only. The spin axis is considered inertial during sample 
periods of few tens of minutes. The state propagation 
and its transition matrix evaluation are carried out by 
their two-body problem closed-form. The geomagnetic 
field model considers the full set of IGRF coefficients, 
and its partial derivatives are evaluated numerically. 
The initial state is obtained from the geomagnetic field 
intensity range observed during up to one orbit. Two 
orbit inclination cases were simulated: 25o and 98o. The 
results are compatible with those obtained by other 
magnetometer-based procedures for three-axis stabilized 
satellites. Results from in-flight data of Data Collecting 
Satellite SCD-1 presented position errors about 100 Km. 
 
Key words: Orbit determination, magnetometer, spin 
stabilized satellites. 
 

Introduction 
 
 This paper presents a coarse orbit and attitude 
determination procedure for low Earth orbit (LEO), spin 
stabilized satellites, using attitude heritage hardware, 
namely a three-axis magnetometer and a solar sensor. 
Conventional spacecraft orbit determination has been 
performed often on ground using radar-like observations 
(range, range-rate and angular measurements) with 
typical accuracy from hundreds to a few meters. More 
recently, GPS receivers have been used for on board 
orbit and attitude determination as well as for on ground 
orbit determination with up to sub-meter accuracy. Such 
high performance equipment is however not necessary 
for a class of missions requiring 50km to 100km of 
accuracy only to assure tracking by ground stations. 
Furthermore, it may not be affordable for many of them 
considering power consumption, weight, size and cost 

related aspects. In such cases a coarse orbit 
determination based on attitude sensor observations may 
represent an attractive alternative. 
 The feasibility of on board orbit determination of LEO 
satellites from magnetometer observations has already 
been successfully demonstrated by several authors1-7.  
Some of the several proposed algorithms are attitude 
independent, using only the total geomagnetic field 
intensity1,3, while others use its three components alone1 
or together with attitude4-7 or attitude rate2 information. 
There are both deterministic6 and non deterministic1-5 
approaches, and the accuracy of reported results from 
real data range from several kilometers to tens or even 
hundreds of kilometers, mainly depending on 
magnetometer accuracy level, orbit inclination and 
altitude, and model compatibility with actual 
application.  Besides the orbit elements, the state vector 
of non deterministic algorithms may include attitude, 
sensor bias, and drag related parameters, and may take 
from one orbit revolution to one day to converge from a 
very crude initial guess with error magnitude of 
thousands of kilometers. An initial guess is however 
clearly necessary to non-deterministic algorithms and a 
systematic way to obtain it is a question that has not 
been addressed yet. Also, all those reported results refer 
to three-axis stabilized satellites, even if they could as 
well be applied to a spin stabilized satellite with minor 
modifications, if any. 
 This paper follows and extends those previous ideas 
specially for applications on LEO spin stabilized 
satellites like Brazilian environmental satellites Data 
Communication Satellite SCD-1 and SCD-2, and 
Scientific Applications Satellite SACI. The approach 
explores the spin axis stabilization in order to retrieve 
more information from the magnetometer measurements 
with a comparatively weak requirement of attitude 
estimation. A rough procedure to initialize the algorithm 
is also presented.  
 A proof of concept algorithm was implemented using 
MATLAB, with specific code parts in FORTRAN. 
Preliminary results from in flight data of SCD-1 have 



shown an error magnitude of 100km when using attitude 
sensors data from 4 passes (around 10 minutes each) 
over Cuiabá tracking station. However, numerical 
results from simulated data yielded consistently better 
accuracy levels. The results are considered promising in 
view of the magnetic interference level on the SCD-1 
magnetometer. 
 

Procedure Description  
 
 The approach consists of a batch least-squares 
estimation of all six orbital metric elements at the initial 
time plus two angle corrections for the attitude of the 
spin axis. The observations are the components of the 
geomagnetic field both along the spin axis and 
perpendicular to it. These components are invariant to 
the satellite phase angle, which does not need to be 
estimated. Since there are too many parameters to be 
determined from two observations only, the algorithm 
requires the data to be stored over a span of few tens of 
minutes.  Attitude of the spin axis is supposed to remain 
constant during this period. Also, because solar sensors 
are usually available on most satellites, the Sun angle is 
included in order to improve attitude observability. 
 The orbit is modeled as a Keplerian movement 
analytically propagated8 during this short span. The 
transition matrix of the linearized dynamic is evaluated 
analytically too8-9. The geomagnetic field model11 
considers the full set of spherical harmonics with 
coefficients given by the IGRF-95 model. The necessary 
evaluation of the magnetic field gradient within the 
differential correction process is carried out by 
numerical derivation.  
 The algorithm initialization has to be performed based 
on the specific mission features.  For a satellite at near 
circular orbit, like SCD-1, SCD-2 and SACI, a special 
algorithm is presented based on the comparison between 
expected (modeled) and observed range of the 
geomagnetic field intensity throughout one orbit 
revolution. 
 

Batch Least-Squares Algorithm 
 
 Let kr  be the satellite position vector; kr&  its velocity 

vector and kA  its spin axis unit vector at a given time 

kt  in the inertial frame. Let kX  be the orbit and 

attitude joint state vector and f  the analytical 

propagation non-linear function of the system from the 
initial state 0X  to a final state at kt : 

 

{ }′′′′= kkkk ArrX &  ,                   (1) 
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The orbit related elements in f are given by Ref. 10, 

and the attitude remains constant. 
 Let kY  be the measurement vector sequence tagged 

with kt , corrupted by an unbiased white sequence 

vector kε , and kh  the observation non-linear function: 
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where }{ ⋅E  is the expectance operator, ki ,δ  is the 

Kröenecker delta and kΞ  is the covariance matrix of 

the observation noise sequence. 
 Let ),( kk trB  be the geomagnetic field vector in the 

inertial frame. The magnetometer observation function 
may be written as: 
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where I  is the identity matrix on 33xℜ . 
 Let S  be the Sun direction unit vector in the inertial 
frame. Because the Sun sensor measurement is constant 
during the sampling period, it will be arbitrarily tagged 
with 0t : 
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 According to the Least-Squares Method the orbit and 
attitude determination problem may be stated as: 
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 As usual, to deal with non-linearity at the equations 
they have to be linearized around a given nominal value 

0X : 
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where p  is a reduced state correction vector which 

takes into account that 0A  has only two degrees of 

freedom since it is a unit vector, 
 

{ }′ξ′′−′′−′≡ 0000 rrrrp &&  ,               (11) 

 
with ξ  such that: 
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and •  denotes nominal value; ][ ×V  denotes the vector 
product operator which is a skew-symmetric matrix 

with elements given by the V  components 3ℜ∈∀V ; 
and Ψ , kF  and kH  are defined as: 
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Ψ  may be easily derived from Eqs. 1,11-13, while kF  

may split as: 
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where the orbit derivatives are analytically given at Ref. 

(10), and mxn   0  represents the null matrix on mxn   ℜ . As 

for magnetometer observations, kH  is given by: 
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where the nominal field kB , its symmetric gradient 

matrix B∇  and the radial field component kβ  are given 

by: 
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while for the solar sensor observation, kH  is given by: 
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 The optimal solution ∗p  is then given by: 
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where pC  is the error covariance matrix of p , and υ  is 

the weight average of the residual: 
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 Once ∗p  is found, the state estimate is given by: 
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which may be used as the new nominal value in a 
hopefully convergent iterative process. After each 
iteration it is recommended to normalize the attitude 
vector to assure it will remain a unit vector. 
 

Algorithm Initialization 
 
 In this section one presents a procedure to initialize 
the iterative algorithm presented in the previous section. 
This initializing procedure is valid for near circular 
orbits only, but absolutely independent of the attitude 
stabilization mode. 



 Let kb  be the total geomagnetic field intensity at a 

given time kt ; kb&  its time derivative and ∗ℑ ,, ji  a set of 

four independent scalar observations: 
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supposing for a while that kb&  could be observed in 

some way. Since circular orbits have four degrees of 
freedom only, namely the semi-major axis a , the 
inclination i , the longitude of ascending node Ω  and 
the sum true anomaly plus argument of perigee 

πω+M , it should be possible in principle to evaluate 

those four elements from ∗ℑ ,, ji . For the sake of non-

ambiguity, the redundant set kji ,,ℑ  could be considered 

instead, which includes one more scalar observation 
than ∗ℑ ,, ji , 

 

{ }kjjiikji bbbbb ,,,,,,
&&≡ℑ  .               (29) 

 
 The considered set of scalar observations have the 
advantage of being invariant to three-axis attitude 
changes, but have an hindrance due to the fact that time 
derivatives of the magnetic field are not an usual output 
of magnetometers. So, a small adjustment is necessary. 
Let minb  and maxb be respectively a local minimum and 

a local maximum of the sequence kb . Now, neglecting 

the observation noise and the effect of a finite sampling 
rate, one has: 
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So, one propose to evaluate the orbit from a modified 
set k,,∗∗ℑ  containing only three magnetic 

measurements, actually plus two time related 
measurements: 
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 Since the field rotates together with the Earth, B&  is 
given by: 
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where ⊕ω  is the Earth’s angular velocity vector. 

 Therefore, whenever 0=b&  it holds: 
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with g  being the gradient vector of b : 
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 Then the velocity vector can be evaluated as follows. 
Let ),,( vux  be an orthogonal base defined for all r  

non co-linear with g : 
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 For a circular orbit, r&  lies in the vu -  plane which in 
view of Eq. 33 yields: 
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where y  is a component of the orthogonal base 

),,( zyx  of the orbital frame: 
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The signal ambiguity being easily removed by 
considering that the third component of vector z  must 
be positive for direct orbits and negative for retrograde 
ones. 



 The algorithm can now be described as follows. First a 

set of candidate position vectors }{ m
ir  is constructed by 

scanning a net covering the whole space within an 
altitude range from 500Km to 1,500Km, selecting those 

for which min),( btrB i
m

i ≅ . Then, for every candidate 

position vector m
ir  the velocity vector m

ir&  and the 

normal to orbital plane m
iz  are determined. The 

candidate solution is then propagated from it  to both jt  

and kt , so generating m
jr  and m

kr . If jj
m
j btrB ≅),(  

and kk
m
k btrB ≅),( , then the normal to orbital plane mjz  

is analogously evaluated at mjr  and compared with miz  

to check if 0)(cos arc ≅⋅ m
j

m
i zz . The solution for ir  

corresponds to the candidate m
ir  with maximum weight 

average residual of all the referred amounts. 
 Once an orbit approximation is found at it , it may be 

propagated to a reference time 0t  and attitude may be 

estimated by any well-known method for 1-axis attitude 
determination12,13. This completes the algorithm to 

obtain the initial approximation 0X . 

  
Numerical Results 

 
Both least squares and initializing algorithms have been 
implemented and tested using simulation and real data. 
The simulation conditions correspond to Brazilian 
satellites SCD-1&2 and SACI. Their main 
characteristics are listed in Table 1. SCD-1 and SCD-2 
are very similar and SACI has not been launched yet. 
For this reason, real data were taken from SCD-1 only. 

 
Table 1: Simulation Scenario 

 
Satellite: SCD-1&2 SACI 
Altitude: 750 Km 770 Km 
Inclination: 25o 98o 
Magnetometer Accuracy: 1 mG (1) < 1 mG (2) 

Sun Sensor Accuracy: 0.5o 0.5o 
Sampling Interval: 16 s (3) 16 s (3) 

 

(1) After pre-processing14. Rough data have 3 mG of 
uncertainty. 
(2) Payload magnetometer placed far from satellite 
magnetic interference sources. Includes model error. 
(3) After ground pre-processing14. Rough data have 
sampling interval of 0.5 s. 
 
  Table 2 summarizes the simulation results of batch 
least squares algorithm. The simulation uses the same 
dynamical model considered in the least-squares 
algorithm: Keplerian orbit and constant spin axis 
attitude. Measurements were corrupted by unbiased 
gaussian random errors. The purpose of such naive 
simulation test conditions is only to give an idea of the 
expected error magnitudes in ideal cases for different 
inclinations.  
 The benefit of a bigger sampling period is clear, but at 
expenses of more iterations to achieve convergence. As 
for the inclination, the error distribution for the satellite 
with high inclination presented standard deviations 
much bigger than the obtained for the low inclination 
satellite with a short sampling period, but the median 
was not so affected. In all tests the convergence was 
achieved in less than 50 iterations from an initial error 
per axis of 100 Km in position, 100m/s in velocity and 
1o in attitude. 

 
Table 2: Batch Least-Squares Algorithm – Summary of Estimation Errors from 20 Simulations 

 
Satellite Sampling 

Period 
[min] 

Position Error 
[Km] 

Velocity Error 
[m/s] 

Attitude Error 
[arc-min.] 

Number of Iterations 

Median σ Median σ Median σ Median σ 
SCD-1 20 66 59 61 60 35 25 9 3 

30 23 49 22 42 9 21 12 3 
45 17 20 19 19 11 12 15 11 

SACI 20 62 165 82 184 24 86 12 8 
30 22 21 32 38 14 16 12 4 
45 14 8 9 10 7 6 21 13 

 
 Concerning the initializing algorithm, the results were 
very sensitive to the weights arbitrarily set to the 
residuals at different simulation conditions. The position 
errors varied from few hundreds of Kilometers, which is 

quite acceptable for the purpose, to embarrassing 
several thousands of Kilometers. The position error 
median was about 1000 Km and the velocity error 
median about 700 m/s. The above mentioned results 



correspond to weights of (5mG)-1 to the magnetic field 
intensity residuals and (1o)-1 to the misalignment 
between angular momentum vectors.  Finding a way to 
assign proper values to these weights will possibly 
require an exhaustive simulation effort that could not be 
accomplished by the authors till now. Despite this 
admitted necessity of further adjustments, in the scope 
of a preliminary analysis, the several cases where the 
chosen weights worked fine represent an evidence of the 
concept validity. 
 As for the tests with real data, Figs. 1-3 shows the 
residual in both radial and axial components of the 
observed magnetic field at representative steps of the 
iterative algorithm. The sample period cover orbit  
#5268 to #5271, which held in February 9th, 1994.  

 

Figure 1: Residuals of SCD-1 at first iteration; 
Orbit # 5268-5271, real data 

 

Figure 2: Residuals of SCD-1 at 30th iteration; 
Orbit # 5268-5271, real data 

 

 Because SCD-1 data is available on ground with the 
reported sampling rate only during passes over Cuiaba 
ground station, there are large gaps on the data sample 
since they cover four orbit revolutions. Those gaps were 
purged from Figs. 1-4 for the sake of clarity, causing the 
time discontinuities clearly seen on Fig. 1. Each pass 
takes about 10 min. 
 Since the residual presented a highly time correlated 
pattern after convergence, it was not necessary to 
process the data in full sapling rate. So, only one data 
per 64 s was processed leading to practically the same 
results obtained when processing the full sample 
(compare Figs. 3 and 4). 

 

Figure 3: Residuals of SCD-1 after convergence 
Orbit # 5268-5271, real data 

 

 

Figure 4: Residuals of SCD-1 after convergence 
Orbit # 5268-5271, real data, full sampling rate 

 
 In all cases convergence was achieved in less then 
(45) 15 iterations from an initial error per axis of (300) 
100 Km in position, (300) 100m/s in velocity and (3o) 1o 



in attitude. The relatively low convergence rate is due to 
a conservative factor applied to the least-squares 
correction to avoid divergence. 
 The data-preprocessing algorithm of SCD-1 removes 
bias efficiently from radial component of the observed 
field but not from its axial component. This bias is not 
relevant to the particular INPE’s attitude determination 
software for SCD-1, though in the present application it 
would cause a position error magnitude quite bigger 
than the obtained consistently by simulation. Due to this 
problem, an empirically estimated bias of -13 mG had to 
be removed from the axial component of the observed 
field in order to lower the bias effect.  The low 
frequency, which is still evident on the residuals, may 
be due to several reasons: the uncertainty on the IGRF 
model coefficients; the non-modeled orbit perturbations 
(J2, drag, etc); and an indication that the bias problem 
was not completely solved, for instance. 
 The real data results are summarized in Table 3, where 
the “errors” were evaluated comparing the obtained 
solution against orbit and attitude determination data 
files for the epoch, from INPE’s Control Center. Their 
orbit determination estimates are based on range 
measurements from Cuiaba ground tracking antenna 
while the attitude is determined on ground from the Sun 
sensor and magnetometer observations, given the 
position vector. 
 The benefit of accumulating data from multiple passes 
is evident from the results, especially for position and 
velocity errors. 
 

Table 3: Errors on SCD-1 Orbit and Attitude 
Determination Using Attitude Observations Only 

 
Orbit No. Position, Km Velocity, m/s     Attitude 
5268 45 267 27’’ 
5269 287 214 13’ 
5270 134 132 45’ 
5271 198 125 3o 
5268-69 74 83 20’ 
5269-70 79 106 17’ 
5270-71 69 67 55’ 
5268-70 101 89 33’ 
5269-71 84 106 23’ 
5266-71 93 82 20’ 
 

Conclusions 
 
 A proposed batch least squares algorithm for orbit and 
attitude determination of LEO spin stabilized satellites, 
from attitude observations only, has been implemented 
and tested successfully. An error magnitude in the order 
of tens of kilometers has been found from digital 

simulation tests covering both low orbit inclination and 
high orbit inclination cases. Such results are compatible 
with previously reported results for three-axis stabilized 
satellites.  
 An initializing algorithm has also been presented and 
tested. A better idea of its overall performance still 
requires further testes and analysis. However, the 
obtained preliminary results show that it is also possible 
to initialize the least-squares algorithm based only on 
attitude observations. This holds for LEO satellites in 
near circular orbits, regardless it is one or three-axis 
stabilized. 
 Ground processing of in-flight data from Brazilian 
satellite SCD-1 presented errors around 100Km in 
position. In view of an apparently remaining bias at 
SCD-1 magnetometer measurements even after data 
pre-processing, especially on the axial component, these 
results are considered promising. The concept has been 
clearly proved and the approach should be regarded as 
an attractive alternative envisaging to lower costs of 
future missions. The present study represents an initial 
step in this direction.  The authors are currently engaged 
in applying an extended Kalman filter to the same 
problem as a next step towards an autonomous on board 
orbit and attitude determination system based on 
heritage hardware of spin stabilized satellites. 
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