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Abstract 
 
The algorithm is designed to perform the calculation 

of probabilityP  of the satisfaction of the restrictions on 
spacecraft movement with respect to the celestial body 
(other spacecraft, orbital station, planet, satellite of a 
planet, etc.) at moments t  from finite set T . 

For each calculation of P  it is necessary to compute 
the many-dimensional integral. Computing a many-
dimensional integral is usually executed by the method 
of a separation of domain of integration into small 
parallelepipeds that is immediately followed from 
mathematical definition of a integral. In our case a 
calculation of integral by the methods of a separation of 
domain requires execution of a lot of operations even if 
it is done for one moment t only. In solving applied 
problems a set T  that t belongs to being generally 
large, in computing it is impossible to limit oneself to 
above-mentioned method of a separation of a domain 
through a large time of its execution. In connection with 
this the more effective algorithm is offered for solving 
the problem. 

Solving the problem is divided into two time stage: 
1)  preliminary stage and 
2)  stage of immediate computation of P t( )  for all 

t from set T . 
A finite set J of integrals whose values are 

independent on t is computed in a preliminary stage 
when time to calculate is practically unlimited. For 
calculated mathematical expectations, covariance 
matrices and values of integrals from set J a 
computation of values P t( )  is realized in the stage 2 

by using simple formula and does not require big time of 
execution. 
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Introduction 

 
A movement of mass centres of celestial bodies and 

spacecraft for used model of the acting forces 
(movement model) is defined by representation of the 
kinematic parameters of their trajectories in some initial 
moment and by the parameters of the movement model. 

It is assumed that 
*  kinematic parameters of trajectories, 
parameters of movement model and their errors are 
known; 
*  restrictions on the parameters of spacecraft 
movement define the domain Ω  which is not changed 
(in the course of time) in a Cartesian system of 
coordinates OXYZ ; 
*  position of the axes of coordinate system 
OXYZ  in an inertial space is given function from time. 

The algorithm for calculation of probability P  
utilizes practically justified assumptions about character 
of the errors in knowledge of initial movements for the 
celestial bodies and the parameters of movement model 
and about topology of the domain Ω : 
*  in initial moment (for the interval of prediction 
of movement) the errors are distributed in accordance 
with normal law (Gauss law) for which the parameters 
(mathematical expectation and covariance matrix) are 
known; 
*  in any moment (from the interval of prediction 
of movement) the dependence of deviations of kinematic 
parameters of the bodies’ movement on deviations in 
initial moment of such parameters and parameters of 
movement model can be presented by linear part of 
Taylor series; 
*  domain Ω  is bounded. 

The algorithm was used successfully for 
a) choosing the trajectories ensuring the autonomic 

closure between the vehicle and orbital station,  
b) projection and implementation of the closure 

between artificial satellite of Mars and Fobos, 
c) estimation of safe coming together of spacecraft 

and etc. 
 



Description of the algorithm 
  

Input information for algorithm are: 
*  set T ; 
*  mathematical expectation and covariance 
matrices of 

a)  initial conditions of movements of 
spacecraft and the celestial body; 

b)  parameters of the manoeuvres to perform 
(jet thrust, orientation of the jet axis is 
space, etc.) and 

c)  parameters of the movement model; 
*  parameters to define domain in which 
restrictions on spacecraft movement are satisfied. 

Output information of algorithm are value of  the 
probability 
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at every moment t from set T . Here a K,  are 
mathematical expectation and covariance matrix for q  

kinematic parameters of spacecraft at the coordinate 
system OXYZ  in which the restrictions are imposed. 

In common case the movement of celestial bodies is 
described by the system of differential equation. For 
calculation of the matrix K  it is necessary to calculate 
the partial derivatives of current kinematic parameters of 
the spacecraft movement in coordinate system OXYZ  
with respect to  a) initial kinematic parameters of 
movement of the spacecraft and the celestial body,  b) 
parameters of the manoeuvres and  c) parameters of the 
movement model. These derivatives can be calculated 
by the method of the finite differences. In the algorithm 
the computation of their derivatives is executed by the 
numerical solution of Cauchy problem for the 
corresponding system of differential equations. The 
algorithm of such computation of the covariance matrix 
was presented1,2 in detail. 

After a computation of  the covariance matrices 
K t( )  and the mathematical expectations a t( ) , 

t T∈ , the values P t( )  are calculated. A computing of 

the probability P  is highly laborious process even for 
the individual value of t . Our algorithm exploits 
effective the computation method for calculating 
probability P  . 

Method for calculating probability. 
Without loss of generality the method is presented 

for the case when the Ω  is three-dimensional 1-
connected and bounded domain. 

The expression (1) can be rewritten in the form: 
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The formula (2) is replaced by the approximate 
formula 
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where 

A t K t( ) ( ) /= − −1 2 , 

b t K t a t( ) ( ) ( )= −1  

(the limit of (3) as N  becomes infinite is equal to (2)). 
It is obvious that calculation of P t( )  by the formula 

(3) is reduced to calculation of the set J  of the integrals  
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Solving the problem is divided into two time stage: 

1. preliminary stage, 
2. stage of immediate computation of P t( ) , t T∈ . 

Stage 1. 
Being independent on t the values of integrals (4) 

are calculated in stage 1. The calculation of integrals (4) 
are realized for all nonnegative integers k l m, ,  that 

satisfy the inequality k l m N+ + ≤ 2 .  
In addition centre coordinates and radii of two 

spheres ( , )S SM m  are calculated. The spheres 

S SM m, satisfy relations S SM m⊂ ⊃Ω Ω,  and they 

have maximal and minimal radii respectively. 
 
Stage 2. 
In stage 2 a computation of P t( )  is executed by 

using linear dependence of (3) on the integrals 
J k l m( , , )  with coefficients that are relatively simple 

functions of components of the vector a t( )  and the 

covariance matrix K t( ) . 

The stage is executed in the following succession. 



1. Let EU  be ellipsoid which is similar to the 

concentration ellipsoid of the stochastic vector with 
covariance matrix K . A centre and directions of 
principal axes of EU  is the same as those of ellipsoid of 

concentration but form of EU  is determined by matrix 

U K2  where U  is a given scalar. If by researching it 
has been found that either  
 

E S EU M U∩ =                                               (5) 

 
or 
 

E SU m∩ = ∅                                                  (6) 

 
then P  is set equal to 1 in case (5) or 0 in case (6). 

It is perfectly permissible for practical calculations if  
U = 5. 

2. For known values of the integrals (4) the 
following values 
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are calculated in succession for j N= 01, ,...,  by 

using simple relations. The calculation are executed 
until 
 

Q V j⋅ ≤ δ                                                        (8) 

 
where δ  is a given small value. 

If the inequality (8) is satisfied for j N* ≤ , the 

probability P  is set equal 
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It should be noted that the number N  is empirical 

found with regard for restrictions on execution time and 
on size of computer storage for coefficients of 

polynomials ( )x Ax b xT T j+ , j N= 12, ,..., . 

Taking in into account we have recommended N = 14  
for three-dimensional domain (N  is set equal 11, 9, 7 
for four-, five- and six-dimensional domain Ω  
respectively). In addition it should be noted that 

generally for this value of N  a number j *  satisfying 

the condition (8) exists in most practical tasks and, 
consequently, calculation of the probability P  is 
completed by the formula (9). 
 

Characteristic of the algorithm 
 

The algorithm was put in the base of the software 
(software A) to calculate probability of satisfaction of 
the restrictions on spacecraft movement parameters. The 
basic characteristics of the algorithm are showed in 
connection with problem of coming together of two 
spacecrafts (S1 and S2 ). 

The mass centres (points O1  andO2 ) of spacecrafts 

move along their trajectories in a   Cartesian system of 
coordinates OXYZ . The point O2  is centre of the 

sphere with radius R  (sphere of safety). For each 
moment t T∈  it is necessary to calculate the 
probability  P  of the event when point O1  hits into 

sphere of safety. 
If K ri i,  are covariance matrix and mathematical 

expectation of position of the point Oi , i = 12, . then 

expression (1) may be written in form: 
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(the domain Ω  is unit sphere; the centre of sphere is 
point O2 ). Here, K a,  are covariance matrix and 

mathematical expectation of position of spacecraft S1  

with respect to spacecraft S2 , 
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The basic characteristics of the algorithm are 

represented in Tables 1, 2, 3 for the series of matrices 
K  and vectors a . 

The values ME, σ σ σx y z, ,  are modulus of the 

mathematical expectation a  and square roots of 
eigenvalues of the covariance matrix K . The values 
PM  and PS  are results of calculations of the 

probability P  by using software A (with δ = 0 001.  in 
inequality (8)) and the algorithm of the separation of 
domain Ω  into parallelepipeds (software S) 
respectively. The parallelepiped edges are equal 
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where N = 40. This value of N  makes possible to 
compute probability with accuracy 0.0005. 

 
Table 1: Characteristics of algorithm. 

Domain contains mass centre 
of spacecraft. 

ME 
σ σ σx y z, ,  

PM  PS  Trel  

0.0 
0.8, 0.8, 0.80 

0.3321 0.3323 292 

0.0 
0.6, 0.6, 0.60 

0.5729 0.5729 371 

0.0 
0.8, 0.6, 0.40 

0.5671 0.5667 163 

0.0 
0.9, 0.6, 0.33 

0.5468 0.5453 53 

0.5 
0.8, 0.8, 0.80 

0.2887 0.2888 350 

0.5 
0.6, 0.6, 0.60 

0.4742 0.4742 151 

0.5 
0.8, 0.6, 0.40 

0.4957 0.4955 168 

0.5 
0.9, 0.6, 0.33 

0.4877 0.4866 55 

 
Table 2: Characteristics of algorithm. 

Boundary of domain contains 
mass centre of spacecraft. 

ME 
σ σ σx y z, ,  

PM  PS  Trel  

1.0 
0.8, 0.8, 0.80 

0.1887 0.1888 159 

1.0 
0.6, 0.6, 0.60 

0.2612 0.2612 75 

1.0 
0.8, 0.6, 0.40 

0.3292 0.3293 163 

1.0 
0.8, 0.6, 0.33 

0.3449 0.3451 52 

 
Table 3: Characteristics of algorithm. 

Domain do not contains 
mass centre spacecraft. 

 
ME 

σ σ σx y z, ,  
PM  PS  Trel  

1.5 
0.8, 0.8, 0.80 

0.0918 0.0918 103 

1.5 
0.6, 0.6, 0.60 

0.0898 0.0896 82 

1.5 
0.8, 0.6, 0.40 

0.1637 0.1638 163 

1.5 
0.9, 0.6, 0.33 

0.1924 0.1925 89 

2.0 
0.8, 0.8, 0.80 

0.0328 0.0327 110 

2.0 
0.6, 0.6, 0.60 

0.0180 0.0179 47 

2.0 
0.8, 0.6, 0.40 

0.0599 0.0599 168 

2.0 
0.9, 0.6, 0.33 

0.0837 0.0842 99 

2.5 
0.8, 0.8, 0.80 

0.0085 0.0084 110 

2.5 
0.6, 0.6, 0.60 

0.0021 0.0020 62 

2.5 
0.8, 0.6, 0.40 

0.0159 0.0158 163 

2.5 
0.9, 0.6, 0.33 

0.0282 0.0284 99 

3.0 
0.8, 0.8, 0.80 

0.0017 0.0015 >1752 

3.0 
0.6, 0.6, 0.60 

0.0000 0.0001 >2049 

3.0 
0.8, 0.6, 0.40 

0.0032 0.0030 414 

3.0 
0.9, 0.6, 0.33 

0.0074 0.0073 181 

 
An algorithm effectiveness is characterized by value  

T
t

trel
S

M

=                                                     (11) 

where t tS M,  are times of the computations by using 

the softwares S and A respectively. 
The problem of coming together of two spacecrafts 

(Earth satellites) was solved by software A and software 
S repeatedly. The movement model was sufficiently 
precise3 . The calculations showed effectiveness of 
software A. The calculation time of probability P  by 
using software A is approximately by two order less that 
this time by using software S. The value Trel  (see (11)) 

increases if dimension of domain is increased. 
Consequently the effectiveness of algorithm increases. 
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