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Abstract 
 
 The International Space Station (ISS) will perform 
maneuvers to avoid potential collisions with other space 
objects whenever the probability of collision, PC, 
exceeds a specified value. PC is a function of the 
uncertainty, i.e. the covariance, of the orbits of each of 
the two objects.  To avoid unnecessary maneuvers that 
waste fuel and to ensure that necessary maneuvers are 
performed it is imperative that the covariance be 
accurate.  The primary contributor to the covariance 
inaccuracy is the uncertainty in the atmospheric density.  
In this paper this uncertainty is modeled as the sum of 
three Markov processes.  The effect of not including this 
atmospheric uncertainty in the dynamic model is 
presented. 
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Introduction 
 
 The Space Shuttle (SS) currently performs maneuvers 
to avoid potential collisions with cataloged space objects 
whenever the estimated conjunction with an object falls 
within a box, centered on the estimated SS position, of 
dimensions ± 5 km in the in-track direction and ± 2 km 
in the radial and out of plane directions.  The 
disadvantage of this criterion is that it does not take into 
consideration the uncertainty, or accuracy, of the 
ephemerides of the two objects or the geometry of the 
conjunction.  If the ephemerides are well known then 
there is no need to perform a collision avoidance 
maneuver if the estimated miss distance is >1-2 km.  
Since a maneuver will disrupt microgravity experiments, 
using this criterion for the International Space Station 

(ISS) will result in too many maneuvers.  In addition, 
unnecessary maneuvers will waste fuel, a precious 
commodity for the ISS.  Therefore, the ISS has switched 
from the deterministic SS criterion to a probability based 
criterion for collision avoidance.  In this approach the 
basis for the collision avoidance maneuver is the 
probability of collision, PC, of the two objects. The 
calculation of PC 

1 requires the uncertainty (covariance) 
of the ephemerides of the two objects at conjunction.  
Currently, US Space Command calculates a covariance 
at epoch, t0 , 
 

 P t0( )= ATWA( )−1
,  (1) 

 
where A is the matrix of the partial derivatives of the 
measurements with respect to the state at epoch, and W 
is a weighting matrix, which typically is a diagonal 
matrix with the elements being the inverse of the 
measurement variances.  The covariance is propagated 
by 
 
 P t( )= Φ t,t0( )P t0( )ΦT t,t0( ), (2) 

 
where Φ is the state transition matrix.  The position 
covariance at epoch is reasonably accurate, but the 
velocity covariance is very optimistic (too small) 
because only measurement errors are considered in the 
computation of the covariance, the dynamic model is 
assumed to be perfect.  Since the decision to maneuver 
must be made several hours before conjunction the 
covariance has to be propagated for 4-24 hours.  A result 
of the perfect dynamic model assumption is that the 
estimated position error at conjunction can be quite 
optimistic, possibly by an order of magnitude.  This 



  

incorrect (optimistic) covariance2 can cause a significant 
error of several orders of magnitude in PC.  The primary 
error in the dynamic model is the uncertainty in the 
atmospheric density estimation. In order to have an 
accurate estimate of PC a method for accurately 
including the atmospheric density uncertainty in the 
computation of the covariance is needed.  The 
atmospheric density uncertainty is generally at least 15-
20%, and it has both a temporal and spatial variation.  
The modeling of the uncertainty must capture both of 
these variations.  An initial approach using a first order 
stationary Gauss-Markov process to represent the 
uncertainty is presented in Ref. 3.  More accurate values 
of the sensor measurement errors have been obtained4, 
and these have resulted in some improvement of the 
covariances. 
 In this paper the uncertainty in the atmospheric 
density is included by modeling it as the sum of the 
output of three first-order Markov processes.  The effect 
of not including this uncertainty in the covariance and 
the probability of collision for a specific scenario is then 
presented. 
 

Probability of Collision 
 

 The ISS is represented as a sphere of radius R.  The 
probability of collision between the ISS during a close 
approach is defined as the probability that the debris 
object will intercept the sphere of radius R during the 
encounter. Let t = 0 at the estimated point of closest 
approach, i.e., at conjunction.  Referring to Fig. 1, 
consider a set of perturbed trajectories for the ISS and 

debris given by 
  ̃
 
r 

r so and ˜ 
r 

r do  respectively.  
Mathematically, we can state this as 
 

 
  ̃
 
r 

r so =
r 
r so +

r 
e s , ˜ 

r 

r do =
r 
r do +

r 
e d  (3) 

 
where 

  

r 
e s and

r 
e d  are the uncertainty vectors for the ISS 

and debris.  For these trajectories conjunction is not at t 
= 0. 
The following assumptions are made: 
• The ISS and debris object motion can be 

represented by rectinlinear motion (straight lines) 
with constant velocities during the encounter.  This 
is justified because the time duration under 
consideration is no more than a couple of seconds. 

• There is no uncertainty in the velocity during the 
encounter.  This is justified because the velocity 

uncertainty is usually no more than several 
meters/second, and the time duration of the 
encounter is small. 

• The position uncertainty during the encounter is 
constant, and equal to the value at the estimated 
conjunction. 

• The position uncertainties can be represented by a 
Gaussian distribution. 

• The ISS is much larger than the intercepting 
(debris) object so that the intercepting object can 
be considered a point mass.  

 The nominal trajectories near the estimated point of 
closest approach for both objects are given by 

 

  

r 
r so =

r 
r so +

r 
v s t ,

r 
r do =

r 
r do +

r 
v d t  (4) 

 
Including the position uncertainties of the debris and 
ISS, the actual (perturbed) positions are 
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r s(t) = ˜ 
r 

r so +
r 
v st , ˜ 

r 

r d (t) = ˜ 
r 

r do +
r 
v dt  (5) 

 
The miss vector between the ISS and debris is 
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r d(t)− ˜ 
r 

r s(t)
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e d −
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e s
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v r t

 (6) 

 
Assuming a Gaussian distribution of the errors the 

probability distribution for   ̃ 
r 

ρ  is given by 
 

 

  

p ˜ 
r 

ρ ( )= 1

2π( )3/2 detP( )1/2 *

exp − ˜ 
r 

ρ −
r 
ρ ( )T P−1 ˜ 

r 

ρ −
r 
ρ ( )/ 2 

  
 
  

 (7) 

 
where 
 
 P = Ps + Pd  (8) 
 
The probability of collision at this instant of time is 
 



  

 

  

PC = 1

2π( )3/2 detP( )1/2 *

exp − ˜ 
r 

ρ −
r 
ρ ( )T P−1 ˜ 

r 

ρ −
r 
ρ ( )/ 2

 
  

 
  
dV

V

∫
 (9) 

 
where the integral is over the sphere of radius R.  
 Define the (x,y,z) coordinate system with unit vectors 

  

r 
i ,
r 
j ,
r 
k ( ) according to 

 

 
  

r 
j =

r 
v r
vr

,
r 
i =

r 
ρ o
ρ o

,
r 
k =

r 
i ×

r 
j  (10) 

The geometry of this system is shown in Fig. 2.  In this 
coordinate system the y-component of the nominal miss 
vector at conjunction is zero.  Foster1 has shown that the 
probability of collision for the encounter reduces to 
 

    

PC =
1

2π detP *( )1/2 *

exp[− r 
s − r 

s o( )T
P*-1 r 

s − r 
s o( )]dxdz

− R2− x2

R2− x2

∫
R

R

∫
 (11) 

 

where P*  is the 2x2 covariance in the 
  

r 
i ,
r 
j ,
r 

k ( ) frame and  

 
 

  

r 
s = x

r 
i + z

r 

k ,
r 
s o = xo

r 
i + zo

r 

k  (12) 
 
Thus, the collision sphere of radius R is now a collision 
circle of radius R.  An alternative derivation using a 
different, but equivalent, definition of PC, that leads to 
the same result is provided in Ref. 5. 
 The effect of an optimistic covariance is shown in the 
following analysis of the close encounter between the 
Mir and a US satellite, Object No. 23101, on September 
1, 1997.  During the encounter the crew went into the 
escape module.  The estimated miss distance was about 
800 meters and the angle between the orbital planes was 
approximately 104 degrees.  Thus, the two trajectories 

were almost orthogonal.  To analyze this encounter US 
Space Command provided orbital data.  These data were 
the state of the two objects at the estimated conjunction 
and the covariance.  Post processed, as well as 2, 8 and 
24 hour predict data were provided.  The estimated miss 
distances at conjunction for these cases are given in 
Table 1. 
 
 For the provided covariance data PC < 10-18.  Thus, no 
maneuver would have been necessary.  Figure 10 shows 
PC as a function of K, where K2 multiplies each row of 
the covariance.  The larger estimated conjunction 
distance for the 24 hour predict is evident. For this 
encounter for PC >10-4, K >12 for the 8 hour predict and 
K >28 for the others.  Note again, particularly for the 8 
hour predict, the large change in PC for small changes in 
the covariance size.   
 

Stochastic Drag Model 
 
 The equations of motion of a satellite in low Earth 
orbit (LEO) are 
 

 

  

Ý 
r 
r = r 

v 

Ý 
r 
v = −

µ
r 3

r 
r +

r 
a g +

r 
a d

, (13) 

 
where 

  

r 
a g  is the acceleration due to the non-spherical 

Earth and third body gravitational perturbing 
accelerations and 

  

r 
a d  is the atmospheric drag.  The 

instantaneous acceleration is assumed to be opposed to 
the direction of motion and proportional to the 
atmospheric density ρ  and the velocity squared as 
 

 
  

r 
a d = −

1

2B* ρv
r 
v  (14) 

where B* is the ballistic coefficient.  The atmospheric 
density ρ is assumed to be the sum of the standard 
exponential atmosphere plus a stochastic component,  

Table 1 
Estimated Miss Distance 

Predict time Radial (m) Horizontal (m) Miss distance (m) 
Post Processed 674.97 450.32 811.40 
2 hour 646.07 506.99 821.25 
8 hour 671.88 496.68 835.53 
24 hour 629.09 861.48 1066.72 



  

that is 

 ρ = ρ p exp −k r−rp( )[ ]+ p   (15) 

 
where ρp  and rp are the density and radius at perigee and 
p is the stochastic component. The stochastic 
component is assumed to be the sum of the output of 
three first-order stationary Gauss-Markov processes.  
That is, 

 
p = p1 + p2 + p3

Ý p i = −ai pi + aiw,ai > 0
 (16) 

 
where w is zero-mean white noise with a constant 
covariance  Pww.  The pi have the following properties 
 

 
E pi t( ){ }= 0

E pi t+τ( )pi t( ){ }= σ i
2 t( )exp −aiτ( )forτ ≥ 0

 (17) 

  
where E{ •} is the expectation operator.  σ2 and (1/a) are 
the variance and correlation of each of the stochastic 
processes.  Strictly speaking, the quantity (1/a) is the 
distance or time that it takes the autocorrelation function 
to decay 1/e times its initial value.  In this paper it will 
be referred to as the correlation time.  It can be shown 
that6 
 
d

dt
σ 2 t( )= −2aσ 2 t0( )+ a2 Pww ,σ 2 t0( )= σ0

2

σ2 t( ) = σ 0
2 − 0.5aPww( )exp −2a t − t0( )[ ]+ 0.5aPww

 (18) 

 
If we choose σ0

2 = aPww / 2 , then 
 

 σ2 t( ) =
1

2
aPww = constant,∀t  (19)

  
Figures 4-7 show the density uncertainty for three 
correlation times and equal σ0 ,σ 0 = 0.1ρp / 3  

  
Numerical Results 

 
 Since we are concerned with potential collisions with 
the ISS simulations were performed for an object in a 
near circular orbit at the ISS altitude.  The specific 
orbital parameters were a = 6748 km and i =70 deg.  
The correlation times were 1 orbit, 10 hours and 24 
hours.  The total atmospheric density uncertainty was 
selected to be 10% of the nominal density, i.e., 0.1ρp.  
The ballistic coefficient was selected to give an in-track 
error of 30 meters due to the atmospheric uncertainty 
after four hours.  This value was approximately equal to 

the ISS ballistic coefficient.  Even though the fit span 
used by USSPACECOM for catalog maintenance of 
objects in LEO is 10 days current plans are to use a 
three day fit span for the orbit determination for objects 
that pose a threat to the ISS.  The batch least squares 
orbit determination process estimates the position and 
velocity at epoch and the ballistic coefficient.  Since 
many of the objects are small and are often only tracked 
by the FPS-85 at Eglin AFB our simulation used only 
this sensor.  Each pass through the radar generated 
observations for a track with a maximum length of two 
minutes.  It was assumed that the sensor measurements 
errors were zero-mean Gaussian and the noise standard 
deviations were known.  With these assumptions the 
covariance, Eq. (1) at the end of three days was 
obtained.  Since decisions on collision avoidance may 
have to be made as much as 24 hours before conjunction 
the covariance at epoch (end of the three day track) was 
propagated for 24 hours.  Figures 8 and 9 show as a 
function of time the volume of the 1-σ error ellipsoid. 
with and without the atmospheric uncertainty.  As 
expected, there was very little difference in the values 
since the least squares process used assumes a perfect  
dynamic model.   Also note that the volume size does 
not increase much in 24 hours.  This is a result of the 
estimated velocity error being too small. 
 Ignoring the atmospheric uncertainty in the dynamic 
model creates two errors sources.  The first is that the 
velocity portion of the covariance at epoch is too small.  
Underestimating the velocity error at epoch causes the 
position error to be too small later.  This is seen in 
Figures 8 and 9 with the slow growth of the position 
error. Propagation of the covariance without the 
uncertainty term causes another error. The covariance at 
epoch was then taken as the initial condition for the 
propagation of the covariance including the uncertainty 
effects.  The covariance was propagated by integration 
of the Lyapunov equation. Figure 10 shows the growth 
of the 1-σ in-track error as a function of the ratio of the 
density uncertainty to the density, in this case an 
exponential model.  For reasonable values of the 
uncertainty the error is much bigger than that resulting 
from ignoring the atmospheric density uncertainty. 
 

Conclusions 
 

 Preliminary results show that ignoring the effect of 
the atmospheric density uncertainty in the determination 
of the covariance can create a significant error in the 
actual uncertainty.  This can then cause a significant 
error in the probability of collision. 
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Figure 1  Encounter Variable Definition 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Encounter Coordinate System 
 
 
 
 
 
 
 
 
 

 
Figure 3 Mir US Sat Near Collision – PC vs Covariance 
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Figure 4  Atmospheric Density Uncertainty  

 Correlation Time = 1 orbit 
 

 
Figure 5  Atmospheric Density Uncertainty  

 Correlation Time = 10 hours 

 
Figure 6  Atmospheric Density Uncertainty  

 Correlation Time = 24 hours  
 

Figure 7  Atmospheric Density Uncertainty – Sum 
 

 
 

Figure 8 1-σ Error Ellipsoid Volume 
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Figure 9 1-σ Error Ellipsoid Volume 
 
 

 
Figure 10 In-Track error Growth 
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