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Abstract 
 
   In this paper we consider the gravitational field of a 
massive straight segment rotating in the space as an 
approximation to the gravitational field created by an 
elongated celestial body.  For this body, we express the 
potential function in closed form. In a synodic reference 
frame, we find stationary points and their stability.  
Besides, we compute families of periodic orbits.  These 
libration points and periodic orbits may be taken into 
consideration for close survey of natural elongated 
bodies in rotation.  
 
Key words: Straight segment potential, equilibria, 
periodic orbits. 
 

Introduction  
 
Space agencies have included missions to small celestial 
bodies in their current programs, like the NEAR and 
ROSETTA missions, just to mention but a few. The 
missions consider the flying of a spacecraft around an 
asteroid and even the landing on its surface. Classically, 
for bodies that looks like spheroids, the gravitational 
potential is expanded into series of spherical harmonics, 
and the convergence of such series is fast enough and 
only some of the first terms of the expansion are taken 
into account.  However, when the shape is irregular, 
which happens in many of the celestial objects 
(asteroids, comet nuclei or planets’ satellites like 
Phobos), these series hardly converge in the vicinity of 
the body, hence, new models that fit better the main 
shape features of the body must be used instead. 

When irregular shaped bodies are considered, such as 
the asteroids Eros, Ida, Amaltea (J5), etc., we found the 
body elongation as their main shape feature. This 
elongated shape makes pseudo-spherical approach to the 
gravitational field of this mass distribution far from the 
true effect. Indeed, the series expansion of the 
gravitational potential has its convergence guaranteed 
outside any sphere centered at the center of mass of the 
body and radius such that it encloses completely the 
mass of the body; thus, in the cases of elongated bodies 

there is a gap when the representation of the field force 
is uncertain. 
  This is the reason why some alternative models to the 
expansion in spherical harmonic have already been 
proposed.  For instance, Wernerl3 use the potential and 
force of an homogeneous polyhedron close in shape to 
the asteroid.  Prieto and Gómez-Tierno8 model this type 
of bodies by a massive dipole; they find also that an 
axial symmetric body can be replaced by a massive wire 
lying in the axis of symmetry with appropriate mass 
distribution.  Halamek3 and Riaguas et al.10 also studied 
the gravitational field of a massive straight segment. 
   In this paper, we consider the gravitational field 
originated by a massive straight segment rotating 
uniformly about an axis perpendicular to it. For this 
body, we express the potential function in closed form, 
and also an analysis of the linear stability of the 
equilibria (in a svnodic frame) is made.  We found 
families of periodic orbits around the equilibria by 
means of a generalization5,6 of the method of 
numerically continuation of periodic orbits witli respect 
to a parameter1. 
 

Equations of motion 
 
Let us consider a straight segment of length 2l and mass 
M. The gravitational potential per unit mass created by 
this one dimensional body at a certain point P in the 
space is given by the line integral 
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where G stands for the Gaussian constant. Assuming the 
linear mass density (σ) to be constant, this quadrature 
may be solved in closed form, and its value is10 
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equation that depends only on the distances: the length 
of the segment 2l, and the distances r1 and r2 of the 
particle to the end points of the segment. 



   Asteroids and planetary satellites belongs to the class 
of natural elongated bodies that are in pure rotation. 
They are old objects in the solar system and have 
reached the state of lowest energy for a given angular 
momentum, i.e., pure rotation about the principal axis of 
highest moment of inertia; any primeval nutation faded  
away because nutation induces time-varying internal 
stresses that dissipate mechanical energy through 
hysteresis cycles. 

Since in our model we approximate the elongated 
body by a straight segment, we shall assume that the 
segment uniformly rotates about an axis z 
(perpendicular to it and fixed in the space) with angular 
velocity ω.  With this, we define a synodic reference 
frame Oxyz. with origin at the center of mass O, and 
such that the segment lies on the axis Ox.  In this 
synodic system the equations of motion of a point mass 
are 
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and inasmuch as we assume that the rotation is uniform 
( 0=ωωωω& ) the equations of motion become 
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where the potential U is the one (1) above obtained. 
   Before continuing, a choice of units is in order. In 
words of Meyer,7 scaling and changing units are 
essentially the same thing, hence, let us take a scaling of 
the Lagrangian, as the equations of the motion are not 
modified when the whole Lagrangian function is 
multiplied by a constant. 

By defining an effective potential  
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the Lagrangian function is 
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We make the following scaling 
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which is equivalent to choose 2l the length of the 
segment as the unit of length, and P/2π  (with P the 

period of the rotation of the segment) as the unit of time.  
After this scaling, the Lagrangian (3) is converted into 
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where k = GM/(ω 2(2l)3). The dimensionless parameter 
k is the ratio of the gravitational acceleration to 
centrifugal acceleration. k < 1 means fast rotation of the 
segment, whereas k > 1 means slow rotation. 

Now, the equations of motion are 
 

,
p)1s(

kzs2
Wz

,
p)1s(

ks2
1yWx2y

,
sp

k2
1xWy2x

2z

2y

x

−
−=−=















−
−=−=+









−=−=−

&&

&&&

&&&

  (4) 

 
where s, d and p are the auxiliary functions defined by 
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The system (4) admits the Jacobian integral  
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and since 0)zyx( 222 ≥++ &&& , there results that 

0W2C ≥− , that is to say, for a given set of initial 
conditions, the orbit must be inside the region 
determined by the zero velocity surface 

)z,y,x(W2C = .  These surfaces are precisely the level 

contour surfaces of the hypersurface 
0C)z,y,x(W2)C,z,y,x(f =−= . 

   In this paper, we deal exclusively with motions on the 
plane xy.  Studies about motions on other coordinate 
planes or in the space will appear elsewhere.9 
   Restricting ourselves to motions on the plane in which 
the straight segment rotates, the function W(x, y) is 
represented in Fig. 1, and its zero velocity curves, that is 
to say, the contour levels of this surface, appear in Fig. 
2. As the later figure suggests, there are four equilibria, 
two of the elliptic type on the y-axis, and two of the 
hyperbolic type on the x-axis, but the figure corresponds 
to a particular value of the parameter k, in this case, 
k=1. 



Figure 1. The effective potential W(x, y, 0). 
 

The equilibria 
 
Let us find the equilibria of the equations (4). Obviously 
the third equation vanishes only when z = 0, hence the 
possible equilibria will be located on the xy-plane. The 
other possibilities are x = 0 and 2ks = (s2 - 1)p, or y = 0 
and 2k = sp.  Let us determine the position of these 
equilibria. 
   Equilibria on the x-axis, that will be denoted as 
collinear points are those that satisfy the conditions y = 
0 and 2k = sp. Firstly, let us assume that the point is 
outside the segment and let us denote by ζ the distance 
from the equilibria to one of the end points of the 
segment. In this situation, the condition 2k = sp is 
converted into 
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either the equilibria is the positive or negative semi-
axis. This cubic has only one positive root, and it is zero 
(that is to say, is exactly at the end point of the segment) 
for k = 0 (no rotation). Hence, there are two collinear 
equilibria, symmetric with respect to the origin. 
 
Figure 2. Zero velocity curves on the xy-plane. 
 
   One could think of obtaining some other equilibria 
inside the segment, albeit it has no physical meaning.  
Although from the equations there is a third equilibrium 
inside the segment for 0 < k < 1/8, this solution does 
not exist, for inside the segment s=1, which is a 
singularity of the potential function W.  Consequently, 
we conclude the two equilibria obtained as solutions of 
the previous cubic are the only ones on the x-axis, that 
will dubbed E1 (x > 0) and E3 (x < 0), symmetrical each 
other with respect to the y-axis. 
   Equilibria on the y axis, that will be denoted as 
equilateral points, are those that satisfy the conditions 
x=z=0 and 2ks = p(s2-1). Since x = 0, there follows that 
the distance to the end points of the segment r1 = r2 = r 
(hence their name of equilateral), and besides, r > 1/2.  
With this, the condition 2ks = p(s2-1) reads 
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but this cubic has only one root in the interval (0.5, ∞); 
thus, there are two equilateral equilibria, E2 (y > 0) and 
E4 (y < 0), symmetrical each other with respect to the x-
axis. There is possible to obtain an explicit formula for 
the solution of a cubic equation; in this case, the real 
root is 
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Linear stability 

 
In order to determine the stability of the equilibria 
above found, one needs the variational equations of the 
system (4).  By defining a vector ξξξξ = (ξ1, ξ2, ξ3, ξ4) as 
the variations 
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the variational equations of (4) is the system 
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where the second derivatives are 
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that must be evaluated at the equilibria. The problem 
being symmetric with respect to the two coordinate 
axes, x and y, the stability of the point El is the same as 
its symmetric E3, and the same happens for the points E2 
and E4. 
 
Stability of the collinear points El and E3 
 
The coordinates of the collinear point El are (xo, yo) = 
(1/2 + ζ,, 0), hence 
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With this, the second derivatives (7) of the potential W 
evaluated at the point El are 
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but k and ζ  satisfy the equation (6), that is to say, 

2/)32(k 23 ςςς ++= . Replacing this value of k in 

the above derivatives, there results 
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The matrix A of the variational equations is now 
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where we put b = 1/(4ζ(1 + ζ)).  Note that b =b(ζ) is 
monotone in the interval (0, +∞). 

The characteristic equation of this matrix is 
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which discriminant, ∆ = 9b2 + 10b +1, always is 
positive in the domain where b is defined. 

The eigenvalues of the matrix 
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are such that 02
2,1 >λ  and 02

4,3 <λ . Therefore since 

01 >λ ,  the collinear equilibria are always unstable. 

 
Stability of the isosceles points E2 and E4. 
 

The isosceles point E2 is the point with coordinates (xo, 
yo) = (0, (r2 - 1/4)1/2), where the distance r is the real 
root of the equation 4r3 - r - 4k = 0. In this case, there 
results 
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and the second derivatives (7) of the potential W 
evaluated at the point E2 are 
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by replacing the value of k as a function of r in the 
above derivatives, there results 
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Now, the matrix A of the variational equations is  
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where we called a = 1/(4r2).  N.B. since 1/2 < r < ∞ 
then 0 < a < 1. 

The characteristic equation is ,0a)a3(24 =−++ λλ  

and its discriminant, ∆ = 4a2 - 12a + 1 has a root at 

2/)223(ac −= . Thus, for 0 < a < ac,  ∆ > 0, for a 

= ac, ∆ = 0, whereas for ac < a < 1, ∆ < 0. 
Since the eigenvalues are 
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there follows that for 0 < a < ac, all eigenvalues have 
null real part, and for ac < a < 1 two eigenvalues (λ2, 
λ4) have negative real part and the other two (λl, λ3) 
have positive real part, hence the isosceles equilibria, 
are unstable. In terms of r, the critical distance rc 

equivalent to ac is 2/)223(r 2
c += . Thus, for 1/2 < r 

≤ rc, all eigenvalues are pure imaginary, and for rc < r < 
∞, the isosceles equilibria, are unstable.  Alternatively, 
one can think of k for the critical value; in this case, 
from the relation r3 - r /4 = k, there follows that 
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For 0 < k < kc, the isosceles equilibria are stable, and 
for kc < k the isosceles equilibria are unstable. 
 

Periodic orbits 
 
It is known that close to both stable and unstable 
equilibrium solutions, there can exist periodic orbits 
(see, for instance, Szebehely12 p. 231 ff.). These 
solutions are small ellipses in linear approximation.  
Similarly to the three-body problem, we will look for 
these kind of solutions around both collinear and 
equilateral points of the straight segment potential. 

In order to compare with previous works, we select 
the parameter k = 1, that is the value chosen by 
Scheeres11 when approximates a triaxial ellipsoid of 
uniform density to the main features of the asteroid 
Eros. Note that this minor planet is irregularly shaped 
with length 40.5 km, width 14.5 km and thickness 14.1 
km; therefore we consider the potential of a straight 
segment of length 2 l = 40.5 km. 

To find families of periodic orbits, we use the method 
of numerical continuation with respect to a parameter.  
The method is essentially the one given by Deprit and 
Henrard1 with some additions made in Lara et al.5,6. The 
process addresses a Boundary Value Problem for the 
variational equations relative to conservative dynamical 
systems with two degrees of freedom. 

Briefly, it consists of the following: starting with a set 
of initial conditions close to one periodic solution, we 
correct this initial set to obtain initial conditions for a 
true periodic orbit.  Then, we vary the value of the 
parameter (the Jacobian constant C in the present case), 
and by calculating and refining a tangent prediction we 
obtain new initial conditions corresponding to a periodic 
orbit for the new value of the chosen parameter. In order 
to improve the prediction, we must numerically 

integrate the equations of motion and their tangent and 
normal variations, the variational equations associated 
with this solution. The main feature of this method, is 
that it splits the normal displacements along an orbit 
from the tangent ones: the later, indeed, are secular in 
nature.  For details, the reader is addressed to Ref. 1, 5. 
   For convenience, in what follows we refer to the 
energy function h = -C/2 instead of the Jacobi constant 
C. 
   For the collinear points we found that conditions for 
the existence of small ellipses around them are fulfilled 
in linear approximation. Then we use that 
approximation of a periodic orbit to take into account 
the non-linearity of the problem and compute periodic 
orbits.  Figure 3 shows the family of periodic orbits for 
variations of the energy function, around the collinear 
point E1. 
 
 
 

Figure 3. Family of periodic orbits around E1. 
 

The situation is quite different for the isosceles points 
where conditions for the existence of small ellipses 
around them are not fulfilled. We proceed in a different 
way. 

Far away from the origin, the segment will be seen as 
a point and consequently the problem is approximately 
the two body problem. Therefore initial conditions of a 
circular solution of the two body problem will 
correspond to an orbit around the segment that is 
approximately periodic. The initial conditions of this 
solution are improved with a corrector algorithm until 
finding an exact periodic solution around the segment.  
The initial orbit of the family of periodic orbits around 
both isosceles points E2 and E4 presented in Fig. 4 was 
computed in that way. An analogous family was found 
around the center equilibria of the rotating triaxial 
ellipsoid approximating Eros (see Fig. 5 and 6 of Ref. 
11).  
 
 
Figure 4. Family of periodic orbits around the isosceles 
points; two graphics with different scales are plotted in 
order to appreciate the variation in shape of the orbit 
when close to the straight segment. 
 

As well as for the ellipsoidal model we found periodic 
orbits in the rotating frame that are both direct and 
retrograde orbits (in the inertial frame). Table I provides 
initial conditions corresponding to the orbits plotted in 
the figures; in all cases 0xy == &  while y& is computed 

from the integral relation (5), where h = -C/2.  The 



periodicity condition is max | ξ(0) - ξ(T) | < 10-11 where 
ξ means any of the coordinates or velocities. 

For the orbits of each family, we computed an index 
of stability, namely the trace k = | Tr(T) | of the 
matrizant of the associated Hill equation at the end of 
one period1 T. As it is well known, when k > 2, the 
characteristic exponents of the orbit are of the unstable 
type; if k < 2, they are of the stable type; and k = 2 
represents a case of indifferent stability. 

The evolution of the stability index k for the collinear 
family is presented in Fig. 5. Note that for h ∈ [-l.2253, 
-1.2194] the periodic orbits present a linearly stable 
character, although those orbits approach very close to 
the right end of the segment (closer than l/30). Out of 
that small interval of the energy function, the numerical 
integration through very few periods of the (unstable) 
periodic orbits tends to derail onto either escape or 
collision orbits despite integrating the problem by 
recurrent power series that is an extremely accurate and 
stable procedure2. The numerical evidence of the 
existence of a second integral of the motion4 for only 
small regions of the configuration space9 is responsible, 
we believe, to that behavior. 
   Figure 6 presents the evolution of  k along the direct 
isosceles family.  This family shows a stable behavior 
except for values of h in the approximate interval [-
1.61140, -1.41161], where the values of k grow highly 
due to the strong instability of the periodic orbits.  The 
family around the isosceles points made of retrograde 
orbits (in the inertial frame) is always stable. 
 
 
Figure 5. Family of periodic orbits around the El 
collinear point: stability index k versus the energy 
function  h.  The dashed line (k = 2) separates stability 
from instability. Note the small stable region in the 
down right corner of the figure. 
 
 
Figure 6. Evolution of k along the isosceles family. 
Below: magnification of the termination of the family. 
Dashed lines (k = 2) separates stable and unstable 
regions. 
 

Conclusions 
 
The gravitational field of a very elongated celestial body 
is modeled by a massive straight segment rotating in the 
space. For this logarithmic potential we found 

equilibria, their stability and also we found families of 
periodic orbits. 
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Table 1 

Initial conditions of the orbits of the collinear (above) and 
isosceles (below) families presented in Fig. 3 and 4. The reference 
value of the energy function for the collinear family is hc = -
1.550740055311294. 
 
 

h-hc x T k 
0.335 1.792182810836383 7.155750267372269 4.2776 
0.331 1.765929688280791 6.978643504804138 1.7248 
0.325 1.739208382339637 6.806226616848227 2.2766 
0.311 1.695847754541601 6.544080468680613 8.7342 
0.281 1.633231253652561 6.209587612224323 16.0027 
0.239 1.569880626706139 5.933802211977488 22.2754 
0.149 1.460681999181959 5.609609930635675 35.4615 
0.000 1.243708008046054 5.336073142540486 68.1469 
 

h x T k 
-1.4111 1.878546858604925 19.31279120369169 0.176 
-1.4117 1.865586848357960 19.01847708393285 3.329 
-1.4230 1.808819329973669 17.96397712790325 174.969 
-1.4410 1.760197734862181 17.20650488604653 306.521 
-1.4600 1.720952599384964 16.61779843262338 335.352 
-1.4800 1.686422190168124 16.06906977490361 297.563 
-1.5100 1.645215087497171 15.24572057735213 183.967 
-1.5400 1.622353538964723 14.28477902249745 76.138 
-1.5700 1.638486553450859 13.07315509037703 20.468 
-1.6200 1.786910290595456 11.06837493868003 0.813 
 

 


