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Abstract there is a gap when the representation of the fagice
is uncertain.

In this paper we consider the gravitationaldfief a  This is the reason why some alternative modetfi¢o
massive straight segment rotating in the spacenas expansion in spherical harmonic have already been
approximation to the gravitational field created &my proposed. For instance, Werfiarse the potential and
elongated celestial body. For this body, we expthe force of an homogeneous polyhedron close in shape t
potential function in closed form. In a synodicareince the asteroid. Prieto and Gémez-Tiérnwdel this type
frame, we find stationary points and their stapilit of bodies by a massive dipole; they find also that
Besides, we compute families of periodic orbithe3e axial symmetric body can be replaced by a massike w
libration points and periodic orbits may be taketoi lying in the axis of symmetry with appropriate mass
consideration for close survey of natural elongatedistribution. Halamekand Riaguas et &l.also studied
bodies in rotation. the gravitational field of a massive straight segme

In this paper, we consider the gravitationalldfie
Key words: Straight segment potential, equilibria,originated by a massive straight segment rotating
periodic orbits. uniformly about an axis perpendicular to it. Foisth
body, we express the potential function in closeunf
Introduction and also an analysis of the linear stability of the
equilibria (in a svnodic frame) is made. We found
Space agencies have included missions to smafit@le families of periodic orbits around the equilibrigy b
bodies in their current programs, like the NEAR antheans of a generalizatidh of the method of
ROSETTA missions, just to mention but a few. Th&umerically continuation of periodic orbits witiespect
missions consider the flying of a spacecraft aroand to a parametér
asteroid and even the landing itmsurface. Classically,
for bodies that looks like spheroids, the gravitasl Equations of motion
potential is expanded into series of spherical logios,
and the convergence of such series is fast enondh d_et us consider a straight segment of lendthrzl mass
only some of the first terms of the expansion aieeh M. The gravitational potential per unit mass credigd
into account. However, when the shape is irregulathis one dimensional body at a certain point Pha t
which happens in many of the celestial objectspace is given by the line integral
(asteroids, comet nuclei or planets’ satellitese lik
Phobos), these series hardly converge in the tycofi dm
the body, hence, new models that fit better thenmai U(P):_GILT
shape features of the body must be used instead.

When irregular shaped bodies are considered, ssich,gereG stands for the Gaussian constant. Assuming the
the asteroids Eros, Ida, Amaltea (J5), etc., wadohe |inear mass densitys) to be constant, this quadrature

body elongation as their main shape feature. ThFﬁay be solved in closed form, and its vald8 is
elongated shape makes pseudo-spherical approduoh to

gravitational field of this mass distribution fapin the |
true effect. Indeed, the series expansion of the U(p):_GM log rp+rp+2 , 1)
gravitational potential has its convergence guaexht 2l rp+ro =2

outside any sphere centered at the center of nfab® 0 equation that depends only on the distances: the length

body and radius such that it encloses completety thyf the segmenti2 and the distances andr, of the
mass of the body; thus, in the cases of elongateélied particle to the end points of the segment.



Asteroids anglanetary satellites belongs to the clasperiod of the rotation of the segment) as the unit oftim
of natural elongated bodies that are in pure rotatioAfter this scaling, the Lagrangian (3) is converted into
They are old objects in the solar system and have
reached the state of lowest energy for a given angular_

momentum, i.e.pure rotation about the principal axis of & =@ (2!) [_(X Y7+ - yX)
highest moment of inertia; any primeval nutation faded 1

away because nutation induces time-varying internal += (x +y )+k|og[ j]
stresses that dissipate mechanical energy through

hysteresis cycles.
Since inour model we approximate the elongatedvherek = GM/(w?(21)%). The dimensionless parameter

body by a straight segment, we shall assume that tkeis the ratio of the gravitational acceleration to

segment uniformly rotates about an axis zentrifugal acceleratiok < 1 means fast rotation of the

(perpendicular to it and fixed in the space) with angulasegment, whereds> 1 means slow rotation.

velocity w. With this, we define a synodic reference  Now, the equations of motion are

frame Oxyz. with origin at the center of ma€3, and

such that the segment lies on the a®s In this 2k

2y =-W x(l— J

synodic system the equations of motion of a point masé-

are
e _ 2ks
K+ 2wx X + wx(wx X )+wx x =-0,U(x), y+2x=-Wy = 1—2— , 4)
(s"-1)p
and inasmuch as we assuthat the rotation is uniform 5 _ \y, - _ 2kzs
(@ =0) the equations of motion become z (s> -1)p '
X—=2wy = w?x-U X wheres, d andp are the auxiliary functions defined by

. 2
yr2ax=wty-Uy, S=ry+ry, d=ry =Ty, P=Tqlp.
z=-U,,
The system (4) admits the Jacobian integral

where the potentidl is the one (1) above obtained.

Before continuing, a choice of units is in order. InC =2W(X,y,z)- (x +y +2° ), (5)
words of Meyer, scaling and changing units are
essentially the same thing, hence, let us take a scaling of : 2.2 .2
the Lagrangian, as the equations of the motion are naorfd since (X“+y®+2°)=0, there results that
modified when the whole Lagrangian function isC—-2W =20, that is to say, for a given set of initial

multiplied by a constant. conditions, the orbit must be inside the region
By defining areffective potential determined by the zero velocity surface
C =2W(x,Y,z). These surfaces are precisely the level
_ w? 5 9 contour surfaces of the hypersurface
W—U(x,y,z)—T(x *y°) @) f(xy,z,C)=2W(x,y,z)-C =0.
In this paper, we deal exclusively with motionstioa
the Lagrangian function is plane xy. Studies about motions on other coordinate

planes or in the space will appear elsewfiere.

1,0 .o o Restricting ourselves to motions on the plane in which
=§(X +YT)ra(xy - yx)-W. 3) the straight segment rotates, the functhM, y) is
represented in Fig. 1, and its zero velocity curves, that is
to say, the contour levels of this surface, appear in Fig.
2. As the later figure suggests, there are four equilibria,
two of the elliptic type on thg-axis, and two of the
hyperbolic type on thg-axis, but the figure corresponds

to a particular value of the parameterin this case,
which is equivalent to choos2l the length of the -1

segment as the unit of length, aR®/r (with P the

We make the following scaling

r-2r, tot/w



Figure 1. The effective potential(x, y, 0). 31/3 +(36k+ /—3+1296k2 )2/3

The equilibria 32/3 1 (36K +y-3+1206k2 )1/3

Let us find the equilibria of the equations (4). Obviously
the third equation vanishes only whes 0, hence the
possible equilibria will be located on thg-plane. The In order to determine the stability of the equilibria

other possibilities are= 0 and2ks= ($*- 1)p, 0ry = 0 346 found, one needs the variational equations of the

and_2_k = . Let us determine the position of thesesystem (4). By defining a vectdi= (&, & & &) as

ethpna._ . . the variations
Equilibria on thex-axis, that will be denoted as

collinear points are those that satisfy the conditigns

0 and 2k = sp. Firstly, let us assume that the point is

outside the se_gmgnt and let us denote iye _distance h o | ) ¢ (4)is th

from the equilibria to one of the end points of thdhe variational equations of (4) is the system

segment. In this situation, the conditi@k = sp is

Linear stability

§=(,9,%,%),

converted into 0 0 1 0) (&
= Af = 0 0 0 1| |&

2¢3 +3¢% +¢-2k =0, (6) §=AL= Wy ~Wy, 0 2 &

-W,, -W,, -2 0
either the equilibria is the positive or negative semi- i W <
axis. This cubic has only one positive root, and it i® zer o
(that is to say, is exactly at the end point of the segmen{here the second derivatives are
for k = O (no rotation). Hence, there are two collinear 2k d 2(s?>-1) s?+d?
equilibria, symmetric with respect to the origin. Wiy = =1+ —=xk —+ >3 T3 ,

ps p pcs p”s
Figure 2. Zero velocity curves on the-plane. W o 2k( p- 2 )

)(y - A il
One could think of obtaining some other equilibria P33

inside the segment, albeit it has no physical meaning. +2ks— ps2 20(s2 +1)+(s2 -1)(s2 +d2
Although from the equations there is a third equilibriunWy, =%— y2ks at 3 )+ > X > )
inside the segment fd¥ < k < 1/8, this solution does p(s® -1) P (s-1)°(s+1)

not exist, for inside the segmestl, which is a
singularity of the potential functio. Consequently, (7)
we conclude the two equilibria obtained as solutions of
the previous cubic are the only ones onstlaxis, that
will dubbedE; (x> 0) andE; (x < 0), symmetrical each that must be evaluated at the equilibria. The problem
other with respect to theaxis. being symmetric with respect to the two coordinate

Equilibria on they axis, that will be denoted as axesx andy, the stability of the poinE, is the same as
equilateral points, are those that satisfy the conditiong symmetricE;, and the same happens for the poiibits
x=z=0 and2ks = p(s>-1). Sincex = 0, there follows that andE,.
the distance to the end points of the segmentr, = r
(hence their name of equilateral), and besides,1/2.  qability of the collinear points E, and E,
With this, the conditior?ks = p(s>-1) reads

The coordinates of the collinear polftare(x., Yo) =
4r3 -r -4k =0; (12 + ¢, 0), hence

but this cubic has only one root in the interval (&%, S=2¢+1, d=-1, p=¢(1+¢)

thus,there are two equilateral equilibrig; (y > 0) and

E. (y < 0), symmetrical each other with respect toxthe With this, the second derivatives (7) of the poteritial
axis. There is possible to obtain an explicit formula fogvaluated at the poif; are

the solution of a cubic equation; in this case, the real

root is



k(1+2¢) The isosceles poiri, is the point with coordinatg,,

Wi =-1-— 2 Vo) = (0, (r? - 1/4)¥?), where the distanceis the real
¢°(1+¢) root of the equatiodr® - r - 4k = 0. In this case, there
w =0, results

W.
W k(1+2¢)

_1+ ,
2¢%(1+¢)?

W s=2r, d=0, p=r2,

and the second derivatives (7) of the poteniidl

but k and ¢ satisfy the equation (6), that is to &Y\ aluated at the DO, are

k=(2c3+3c2 +¢)/ 2. Replacing this value of in

the above derivatives, there results k
WXX:_1+_3’
r
1
W. -3-— W,, =0,
- 2¢(1+¢) Y o s
— kK(1-8r“)+r~ —4r
W,y =0, W, = ( : ) g :
1 re(-1+4r<)
Wyy =———.
4¢(1+¢)

by replacing the value df as a function of in the

. . ) . above derivatives, there results
The matrixA of the variational equations is now

Wxxz—iz,

0 0 1 0 w _0‘"

| o o0 o0 1 o
3+2b 0 0 2| We. = 34_1
yy 42
0 -b -20 r

Now, th trixA of th iational ti i
where we pub = U(4Z(1 + ). Note thatb =b(J) is ow, the matrixA of the variational equations is

monotone in the interv4D, + ).

The characteristic equation of this matrix is 0 0 10
= 0 O 0 1
A% +(1-b)A? -(3+2b)b =0, a 0 0 2
0 3-a -2 0
which discriminant,4 = 9b? + 10b +1, always is
positive in the domain wheteis defined. where wecalleda = 1/(4r%). N.B. sincel/2 < r < o
The eigenvalues of the matrix then0< a< 1.
12 The characteristic equation ig* + 12 +(3-a)a=0,
Ao :ii(—1+b+\/9b2 +10b+1) , and its discriminantd = 4a’ - 12a + 1 has a root at
V2 ac=(3—2\/§)/2.Thus, forO<a<a, 4>0,fora
1/2 _ _
/13’4=i%(—1+b—\/9b2+10b+1) , =2 4= 0 whereas for, < a< 1, 4<0
2 ince the eigenvalues are

are such tha’r/ii2 >0 and /1%4 <0. Therefore since

1/2
Mo =¢i(—1+\/4a2 —12a+1j ,

A, >0, the collinear equilibria are always unstable. , 2

1/2
Sability of the isosceles points E, and E,. Aza = ii(—l—xMaz —12a+1j ,



integrate the equations of motion and their tangent and
normal variations, the variational equations associated
there follows that fo0 < a < a, all eigenvalues have with this solution. The main feature of this method, is
null real part, and foe, < a < 1 two eigenvaluegl,, that it splits the normal displacements along an orbit
As) have negative real part and the other {p 4;) from the tangent ones: the later, indeed, are secular in
have positive real part, hence the isosceles equilibrfa@ture. For details, the reader is addressed to Ref. 1, 5.
are unstable. In terms af, the critical distancer, ~ FOr convenience, in what follows we refer to the
. . energy functiorh = -C/2 instead of the Jacobi constant
equivalent ta, is rc2 =(3+ 2\/5)/ 2.Thus, forl/2<r c %y
<., all eigenvalues are pure imaginary, andrfer r < For the collinear points we found that conditions for
o, the isosceles equilibria, are unstable. Alternativelyhe existence of small ellipses around them are fulfilled
one can think ok for the critical value; in this case,in linear approximation. Then we use that

from the relation® - r /4 = k, there follows that approximation of a periodic orbit to take into account
the non-linearity of the problem and compute periodic
_1 - orbits. Figure 3 shows the family of periodic orbias
Ke ) (8+5\/§) 3+22 = 4548007039, variations of the energy function, around the collinear
pointE;.

For 0 < k < k, the isosceles equilibria are stable, and
for k. < k the isosceles equilibria are unstable.

Periodic orbits Figure 3. Family of periodic orbits aroun;.

It is known that close to both stable and unstable !N€ situation is quite different for the isosceles points

equilibrium solutions, there can exist periodic orbit¥/here conditions for the existence of small ellipses
(see, for instance, SzebeHglyp. 231 ff). These around them are not fulfilled. We proceed in a different

solutions are small ellipses in linear approximation/ay: » _
Similarly to the three-body problem, we will look for Far away from the origin, the segment will be seen as

these kind of solutions around both collinear ang POINt and consequently the problem is approximately
equilateral points of the straight segment potential. the two body problem. Therefore initial conditions o_f a
In order to compare with previous works, we selecdreular solution of the two body problem will
the parameterk = 1, that is the value chosen bycorrespond to an o_rb|t arou_n_d_ the se_g_ment that_ is
Scheeréd when approximates a triaxial ellipsoid ofappr(_)X|mater periodic. _The initial Cond|t|on_s of thls_
uniform density to the main features of the asteroigflution are improved with a corrector algorithm until
Eros. Note that this minor planet is irregularly shape nding an exact periodic solution around the segment.

with length 40.5 km, width 14.5 km and thickness 14%he initial orbit of_ the family of periodic _orbiFs arodin
km; therefore we consider the potential of a straigftoth isosceles points, andE, presented in Fig. 4 was
segment of length = 40.5 km. computed in that way. A_n a_nalogous fam|ly was found
To find families of periodic orbits, we use the method@ound the center equilibria of the rotating triaxial
of numerical continuation with respect to a parametef!liPSoid approximating Eros (see Fig. 5 and 6 of Ref.

The method is essentially the one given by Deprit art)-
Henrard with some additions made in Lara ef&lThe
process addresses a Boundary Value Problem for the

variational equations relative to conservative dynamic&i9ure 4. Family of periodic orbits around the isosceles
systems with two degrees of freedom. points; two graphics with different scales are plotted in

Briefly, it consists of the following: starting with ats Crder to appreciate the variation in shape of the orbit

of initial conditions close to one periodic solution, we/Vhen close to the straight segment.

correct this initial set to obtain initial conditions for a L —
true periodic orbit. Then, we vary the value of the As well as for the ellipsoidal model we found periodic
parameter (the Jacobian constérin the present case), orbits in the rotating frgme. that are both direct _and
and by calculating and refining a tangent prediction W_@_trograde _o_rb|ts (in the |nert_|al frame). Tat_)le I prowdt_as
obtain new initial conditions corresponding to a pedodiNitial conditions corresponding to the orbits plotted i
orbit for the new value of the chosen parameter. In ordHt€ f|gure§; in all casey =x=0 whiley is computed

to improve the prediction, we must numericallyfrom the integral relation (5), where = -C/2. The



periodicity condition is max §(0) - &T) | < 10" where equilibria, their stability and also we found families of

£means any of the coordinates or velocities. periodic orbits.
For the orbits of each family, we computed an index
of stability, namely the trac& = | Tr(T) | of the Acknowledgements
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Table 1
Initial conditions of the orbits of the collinear (above) and
isosceles (below) families presented in Fig. 3 and 4. Tleearafe
value of the energy function for the collinear familyhs= -
1.550740055311294.

h-h,

X

T k

0.335
0.331
0.325
0.311
0.281
0.239
0.149
0.000

1.792182810836383
1.765929688280791
1.739208382339637
1.695847754541601
1.633231253652561
1.569880626706139
1.460681999181959
1.243708008046054

7.155750267372269
6.978643504804138
6.806226616848227
6.544080468680613
6.209587612224323
5.933802211977488
5.609609930635675
5.336073142540486

4.2776
1.7248
2.2766
8.7342
16.0027
22.2754
35.4615
68.1469

X

T

-1.4111
-1.4117
-1.4230
-1.4410
-1.4600
-1.4800
-1.5100
-1.5400
-1.5700
-1.6200

1.878546858604925
1.865586848357960
1.808819329973669
1.760197734862181
1.720952599384964
1.686422190168124
1.645215087497171
1.622353538964723
1.638486553450859
1.786910290595456

19.31279120369169
19.01847708393285
17.96397712790325
17.20650488604653
16.61779843262338
16.06906977490361
15.24572057735213
14.28477902249745
13.07315509037703
11.06837493868003

0.176
3.329
174.969
306.521
335.352
297.563
183.967
76.138
20.468
0.813




