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Abstract 
 

 A first order analytical model for a general 
problem of artificial satellite’s attitude corrections 
maneuvers submitted to gravity gradient torque is 
presented in this paper. It is assumed that the satellite is 
a rigid body, with cylindrical or spherical symmetry and 
its orbit can be elliptical or circular. The problem of 
optimization is formulated as a Mayer problem and the 
control torques are provided by a power limited 
propulsion system. The state is defined by Andoyer’s 
variables and the control by the components of non-
conservative external torques in the artificial satellite’s 
axes of inertia. The Pontryagin Maximum Principle is 
applied to the problem and the optimal torques are given 
explicitly in Andoyer’s variables and their adjoints.  The 
problem of optimal  attitude  corrections given by the 
linearized Hamiltonian around the reference attitude is 
also analyzed, considering the mean Hamiltonian related 
with the gravity gradient torque.  The complete first-
order analytical solutions for the problem with fixed 
duration are gotten by simple quadratures. A law of the 
optimal control is proposed and the required optimal 
consumption is  presented. 
Key words: Attitude corrections, minimal fuel 
consumption, Mayer problem, Andoyer’s variables. 
 
 

INTRODUCTION 
 

 The satellite’s attitude represents how the 
satellite is oriented in space. The attitude expresses a 
relation between two coordinate systems and can be 
represented by the Euler angles. In this paper, we 
assumed a 3-1-3 sequence of three consecutive rotations 
about the satellite axes for the Euler angles ( φ ,  θ , ψ ),  

to define the relation between  the system of the 
artificial satellite’s principal axes of inertia (Oxyz) and 
the system OXYZ ( with  axes parallel  to the axes of the  
Earth equatorial  system ).  

The dynamic system associated to the satellite’s 
attitude maneuvers will be expressed in terms of the 
Andoyer’s variables1,2 1,2,3=i i, i ,  Ll , shown in the 

figure 1. The angular variables  1,2,3=ii  , l are angles, 

which are related to the coordinate systems Oxyz and 
OXYZ. The metric variables are defined as: L2 is the 
modulus of the total angular momentum, L1 and L3 are 

respectively the projection of 2L
r

 on the z-axis’s 

principal axis system of inertia and on the inertial Z-
axis. 
 The transformation  between  Andoyer’s 
variables and the Euler angles is well defined1,3, using 
properties of spherical trigonometric associated with the 
spherical triangle N1N2N3, shown in the figure 2. It is 
possible to prove that  this transformation  is canonical2. 

The rotational motion of the artificial satellite 
with cylindrical symmetry, considering the non-
conservative external torques and Andoyer’s variables, 
can be expressed by3: 
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where A and C are the satellite’s moments of inertia on 
the axis Ox and Oz, respectively,  and Pi and Si depend 

on the components of non-conservative external torque3 

in the system Oxyz. 
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Figure 1:   Andoyer’s Variables 
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Figure 2. Spherical Triangle N1N2N3 

with Andoyer’s variables and Euler angles 
 

The problem of optimization is formulated, 
with the dynamic system describing the rotational 
motion of the satellite given by eqs. (1), considering  the 
torques  provided by a power limited propulsion system 
and the gravity gradient torque.  

 
 

OPTIMIZATION OF THE 
ATTITUDE’S CONTROL 

 
The optimization problem of  attitude  control 

is initially introduced by Lagrange formulation, with the 
dynamical system describing the rotational motion of the 
satellite. The torques  provided by a power limited 
propulsion system and the gravity gradient torque are 
included. The state is defined by Andoyer’s variables 

, ii  , Ll i = 1,2,3, and the control by the components of 

non-conservative external torques in the artificial 
satellite’s principal axes of inertia ( Oxyz). The Mayer  
problem,  without constraints on control variables and  

fixed initial time to and fixed final time tf, is also 
analyzed here. 
 The state equations are the equations of the 
rotational motion of the satellite, including external 
torques, in the extended canonical form. For a satellite 
with cylindrical symmetry, they are given by : 
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where zyx Q  and  Q , Q  are the components of 

propulsive torque Q on the system Oxyz and  

f ( , j  i il L ) ,  j  1,...,6= ,  i=1,2,3, are functions related with 

the gravity gradient torque and Cjx ,  C jy    and Cjz  

, j  1, . . . ,6 = ,  can be found in Zanardi3.            
 The performance index J, associated with the 
fuel consumption, is introduced by:            

J = Q dt
2    1

2 ∫ ,                                             (4) 

where Q  is the magnitude of propulsive torque   Q .  
The optimization problem consists in 

determining the optimal control Q * , which  transfers 

the space vehicle from the initial state      (   0 il , 0 iL  ) at 

t0 to the final state ( f i  l , f i L )  at  tf , such that the 

consumption is a minimum.  
 The Mayer problem associated to the 
minimization of fuel consumption during the attitude 
maneuvers will be defined as follows. The state vector 
x  is defined by the Andoyer’s variables and the 
performance index J,   
 

[ ]x= l l l1 2 3 1 2 3L L L J
T

.                       (5)  

 
The dynamic system is described by equations (3) and  
by the differential equation associated with J: 
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This system can be represent by: 
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 The performance index is now given by: 
 

  t( J=J ff ) ,                                                           (8) 
 
and the boundary conditions are determined by the 
initial state  x0 = (  ,   ,  0)i i 0 0l L and the final state  

x f = (  ,   ,  J ) i i f f fl L  ,  i =  1,2,3 . 

 Following the Pontryagin Maximum Principle4, 
the adjoint vector px  is introduced and the Hamiltonian 

function is formed using eqs. (3) and (6): 
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The optimal torques Q* must be selected so 
that the Hamiltonian function reaches   its maximum 
value: 
 

Q x Qx*  =  arg  max  (  ,   ,   )  H  p . 

 

The equations of control ( stationary conditions) are 
given by: 
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Solving the system (10), the control Q*,  is 
given by: 
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and the maximum Hamiltonian function H* , computed 
by   (9)  and  (10), can be expressed by: 
 

H H* = * (  ,   )x x p .                                               (12)     
 

The adjoint  variable PJ is a first integral of the 

canonical system  defined by H*   and its value, 
obtained from the transversality conditions, is equal  -1. 
Consequently, the order of the dynamic system which 
describes the problem is reduced and the Hamiltonian 
assumes the form: 
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where 

ε
∑   and 

ε δ,
∑ means that  ε  and δ  assume the 

values: +1  and -1; H0
* is the unperturbed Hamiltonian 

associated with the torque-free rotational motion, HG
*  

and HQ
* are the perturbed functions.  HG

*  is 

associated with the gravity gradient torque, and HQ
*  is 

related with optimal control. The two first parcels of the 
eq. (13) is associated with the conservative system : 

)( ** G0  HH    +   and the other parcel  (HQ
* ) is 

associated with the non-conservative system.   
 
 

ATTITUDE OPTIMAL CORRECTIONS 
 

The problem of optimal attitude corrections, 
with fixed duration, given by the linearized Hamiltonian 
around the reference attitude is considered. 
 The reference attitude is given by the solution 
of the torque-free rotational motion1,2 :  
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The analytical solution for the attitude 
maneuvers, considering only the propulsive torque, is 
described by following Hamiltonian: 
 

H* = H0
*  + HQ

*  ,                                                (18) 

with  H0
* and  HQ

*  defined by eqs  (13) and (15), 

respectively, and linearized around the reference attitude 
defined by (17). 

A first order analytical solution for the problem 
of attitude corrections can be gotten by simple 
quadratures. This solution will be expressed by: 
 

∆  =   E   Dx xp
0

+  ,                                                        (19) 

 

where : ∆ x   represents the variations determined over  
the Andoyer’s variables; px0

 means the initial values of 

the adjoint variables; E is a 6x6 matrix, related with the 
propulsive system and D is a 6x1 vector, related with the 
solution of non-perturbed problem. The adjoints 
variables are first integral of the canonical system, 

associated by the maximum Hamiltonian H* , linearized 
around the reference attitude. 
 The solution (19) represents a complete 
solution for the  attitude optimal corrections and 
contains secular terms and short periodic terms. The six 
integration constants must be determined in order  to 
satisfy the two-point boundary value problem, which 
consists in starting in initial condition A0 at initial time 
and  reaching the final attitude A1 at fixed final time . 
 The non-null elements of the matrices  D  and E, 
are given by: 
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where  ∆t   is the duration of the maneuver. 
 For artificial satellite with spherical 
symmetry, A = C, the analytical solutions given by   (18) 

to (20) simplifies, since  H0
* is computed by:  
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and d 01 = , e e12 = 21, e e13 = 31, e e16 = 61, 
e e 014 = 15 = . 
 

 The attitude’s corrections maneuvers problem 
can be simplified if we consider only the secular terms. 
The Hamiltonian function associated to long duration 
maneuvers is described by eqs. (14) and (18), with the 
perturbed Hamiltonian given by: 
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 The differential equations for the maneuvers 
are: 
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  The simplified analytical solutions for eqs. 
(23) are given in the matrix form as: 
 

∆  =   E   DS Sx xp
0

+ ,                                           (24)    

 

where the subscript S means the secular part, with non-
null elements  of the matrices DS  and  ES are presented 
in Santos et al5 . 
 The analytical solutions for the optimal 
corrections of the artificial satellite with spherical 
symmetry , whose Hamiltonian is described in the eqs 
(18), (21) and (22), are also given by the matrix form 

(24), but [ ]T00002d0 =  SD  , with     2 2  t  d ∆= ω  

and e e e 014 = 15 = 16 = . 
 

 If we consider the satellite with the 
cylindrical symmetry and the influence of the gravity 
gradient torque, the Hamiltonian function will be given 
by (13), (14) e (22). The Hamiltonian function 

HG
* associated with the  gravity gradient torque , taking 

in account terms up to the inverse of the cubic of the 
distance between the Earth’s center of mass and the 
satellite’s center of mass and assuming circular orbit,  
the orbital inclination and the longitude  of ascending  
node equal zero degree, is given by: 
 

[ ]H
L

p I JG =
20

3 10 -
r

[C - A] cos ∗ −




3
4

1 3 2µ
cos  

[ ][ ]- cos20 - + - +p I J J I1 3 1 32 2 2 2cos cos cos





 

[ ]        + 30     p J I1 3 2
−





cos cos ,                            (25) 

where  µ  is the Gaussian constant and  r  is the radial 

distance. 
             If the satellite’s orbit is circular and the gravity 
gradient torque is taken in account during the long 
duration maneuvers, the analytical solutions are also 
given by eq. (24), but the elements of  

[ ]T0003d2d1dSD =  are expressed by: 
 

[ ] [ ]d
r

C - A cos t 1 = 1
C

1
A 10 +

3
20

-−
















L
L

I J
3

4
1 3 2µ

cos ∆  

[ ]d
r

C - A cos2 = 1
A 20 -

3
20

- 2 +L
L

I J
3

4
1 3 2µ 















cos     

[ ]         +   t1 3 2 2− 


cos cosJ I ∆  

[ ]d
r

C A  t3 =
3

-

20
  3

4
1 3 2µ

L
J I









 − cos cos ∆ .                (26) 

 

            For elliptic orbit, the Hamiltonian HG
* , 

taking in account terms up to second order in  
eccentricity and assuming the orbital inclination and the 
longitude  of ascending  node equal zero degree,  has the 
following form: 
 

[ ] [ ]{H
L

p I JG =
3

C A

20

3
2

2
10

a
-

- -1 + e cos∗ 









3
1 3

2

4

µ
cos  



[ ][ ]- cos20 - + - +p I J J I1 3 1 32 2 2 2cos cos cos





 

[ ]        + 30     p J I1 3 2
−





cos cos .                            (27) 

 
where  a  is the semi-major axis and  e  is the 
eccentricity . In this case , the analytical solution has 
also the matrix form (24), with   

[ ]T0003d2d1dSD =  and  

 

[ ][ ]d
4a

C - A t1 =
3

20

3
2

2 +1 + e - cos
3

1 3 2µ
L

I J








 cos ∆     
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C

 - 1
A

  10 L        
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4a
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3
20

3
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3

1 3 2µ
L

I J








 − cos     

 

[ ] ]  + +  1
A 20   t 1 3 2 2− cos cosJ I L∆  

 

[ ][ ]d
a
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3

C-A

20

3
2

2

4
1 + e - cos

3
1 3 2µ

L
J I









 cos ∆ .         (28)   

 
 

THE OPTIMAL CONSUMPTION 
 

 The optimal  consumption  J  that is 
necessary for the satellite’s attitude correction  is 
obtained by quadrature of the equation: 
 

       Q  &J = ∗1
2

2
,                                                  (29) 

 

where the components of the optimal torques are 
expressed in terms of the Andoyer’s variables and their 
adjoints by: 
 

[Q (x = - + -1 1

2

2

2
1 1 2
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sin 
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L J

p

L
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2
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2
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 sin 

sin sen +∗ p

L
J I

p

L I
Jl l  
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1 2 3

 
2

cos cos sin sin cos cos(     )P P J P I J I Jl .             (30) 
 

         In terms of the elements of the matrix E and the 
initial values of the adjoint variables, the optimal 
consumption is given by: 
 

 e e e e11 10
2

22 20
2

33 30
2

44 10
2

+ + + +∆J =
1
2

1
2

1
2

1
2

p p p P  

+ + +  + +e e e e55 20
2

66 30
2

21 10 20 31 10 30
1
2

1
2

P P p p p p  

 

+ + + + +e e e e61 10 30 23 20 30 34 30 10 36 30 30p P p p p P p P  

 

            +  + + +e e e42 20 10 45 10 20 46 10 30 p P P P P P  

 

                         +  +e e56 20 30 62 20 30P P p P .                     (31) 
 

 In the case where only the secular terms are 
considered, the eq. (31) is simplified  and given in terms 
of the elements of the matrix ES: 
 

 e e e e11 10
2

22 20
2

33 30
2

44 10
2

+ + + +∆JS =
1
2

1
2

1
2

1
2

p p p P  

 

+ + +  + +e e e e55 20
2

66 30
2

12 10 20 23 20 30
1
2

1
2

P P p p p p  

 

    + + +  e e e45 10 20 46 10 30 56 20 30P P P P P P .                   (32) 
 

 
NUMERICAL SIMULATION 

 
 

In this section, numerical results are presented 
for a long-time attitude maneuver of a cylindrical 
satellite. The effects of gravity gradient torque are not 
included in this simulation. The minimal consumption,  
the magnitudes of the optimal torques and the evolution 
of the analytical solution are computed by using eqs 
(32), (11) and (24), respectively. The   physical 
characteristic of the satellite, the initial state and the 
final state are presented in the following tables. The 
initial values for the adjoint variables are gotten  
numerically solving the algebraic system (24). 
            The temporal evolutions  of the Euler angles 

( φ , θ , ψ  ) and their rate variations (φ&  ,θ& , ψ& )     are 



shown in the figures 3 and 4, respectively, during  the 
attitude maneuver . The propagations of  the Andoyer 
variables ),,,,,( 321321 LLLlll are shown in 

the figures 5 and 6. The  magnitudes of the optimal 
torques and the magnitude of the performance index  are 
presented in the figures 7 and 8, respectively. 
 
 
Table 1 – Physical characteristic 
Initial mass =  1.0x 103 kg 
Principal  Moments of inertia 

A  =  B  =  3.95x102 kg  m 2 
C  =  1.05x102 kg  m 2 

 
 
 

Table 2  - Initial and Final values for the  
Euler Angles and their Rate Variations 

Initial Attitude 

t0 = 0.0 s 

 Final Attitude 

t f  = 5.0x104 s 

φ0 = 1.0x101 deg φf = 1.3x101 deg 

θ0 = 1.5x101 deg θf = 1.7x101 deg 

ψ0 = 1.0x101 deg ψ f = 1.1x101 deg 

 &φ0 = 2.0x10-3 deg /s &φf = 1.7x10-3  deg /s 

&θ0 = 2.0x10-3 deg /s &θf = 2.0x10-3  deg /s 

&ψ0 = .2.0x10-3 deg /s &ψ f = 1.5x10-3 deg /s 

 
 
 

Table 3  -   Initial  Adjoint  Variables 
                        p10     =    - 3.858x10-1   

                       p20    =    - 6.671x10-1     

                       p30     =      1.0x10-2 

                       10P      =   - 1.91x10-2  

                       P20      =   - 1.91x10-2 

                      P30      =   - 1.78x10-2 

                      PJ0      =    - 1.0 

 
 
 
 
Table 4 :  Terminal Values for the Andoyer’s Variables 

Initial Attitude 
t0 = 0 s 

Final Attitude 
tf= 5x104 s 

l10  = 8.55x101 deg l1f = 8.70 x101 deg 

l20 =1.97 x102 deg l2f  =1.98 x102 deg 

l30 = 1.07 x102 deg l3f  =1.1 x102 deg 

L10  = 2.35 x10-1  kg  m2 / s L1f  =  1.87 x10-1 kg  m2 / s 

L20  = 5.21 x10-1 kg  m2 / s L2f  = 5.00 x10-1 kg  m2 / s 

L30  = 2.57 x10-1 kg  m2 / s L3f  = 2.12 x10-1 kg  m2 / s 
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Figure 3a – Evolution of Euler Angle θ 
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Figure 3b – Evolution of Euler Angle ψ 
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Figure 3c– Evolution of Euler Angle φ 
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Figure 4a – Evolution of Rate variation θ&  
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Figure 4b – Evolution of rate variation ψ&  
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Figure 4c – Evolution of rate variation φ&  
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Figure 5a – Evolution of the Andoyer variable 1l  
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Figure 5b – Evolution of the Andoyer variable 2l  
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Figure 5c – Evolution of the Andoyer variable 3l  
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Figure 6a – Evolution of the Andoyer variable 1L  
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Figure 6b – Evolution of the Andoyer variable 2L  
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Figure 6c – Evolution of the Andoyer variable 3L  
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Figure 7a – Evolution of control variable Qx 
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Figure 7b – Evolution of control variable Qy 
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Figure 7c – Evolution of control variable Qz 
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Figure 8 – Evolution of the performance index J 
 
 

CONCLUSION 
 
The first order solution presented here for the 

optimal maneuvers for artificial satellite’s attitude 
corrections shows that the perturbations due to the 
gravity gradient torque and to the propulsive system 
are uncoupled and that is possible to establish an 
optimal control law for artificial satellite’s attitude. 
The presented results are similar to the solution 
determined for orbit corrections maneuvers made 
with identical  propulsion system6. 
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