A LINEAR SOLUTION FOR THE ARTIFICIAL SATELLITE'S AT  TITUDE OPTIMAL CONTROL
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Abstract to define the relation between the system of the
artificial satellite’s principal axes of inertia (Oxyz) and
A first order analytical model for a generalthe system OXYZ ( with axes parallel to the axes of the
problem of artificial satellite’s attitude corremtis Earth equatorial system).
maneuvers submitted to gravity gradient torque is The dynamic system associated to the satellite’s
presented in this paper. It is assumed that thedlisaiis attitude maneuvers will be expressed in terms of the
a rigid body, with cylindrical or spherical symmetind  Andoyer’s variables® /;,L;,i=1,2,3, shown in the
its .orpit pan.be elliptical or circular. The protveof figure 1. The angular variables; ,i =1,23are angles,
optimization is formulated as a Mayer problem anel t hich are related to the coordinate systems Oxyz and
control : torques  are provided- by a power limite XYZ. The metric variables are defin)éd as:. g tr):e
propulsion system. The state is defined by And('werﬁ@odulus of the total angular momentum, dnd L, are

variables and the control by the components of no ) T - ]
conservative external torques in the artificialefiae’s respectively the projection ofL, on the z-axis’s

axes of inertia. The Pontryagin Maximum Principde iprincipal axis system of inertia and on the inérda
applied to the problem and the optimal torquesgaren  axis.

explicitly in Andoyer’s variables and their adjantThe
problem of optimal attitude corrections given the
linearized Hamiltonian around the reference atétusl

The transformation  between  Andoyer’s
variables and the Euler angles is well defirfedising
properties of spherical trigonometric associateith tie

also analyzed, considering the mean Hamiltoniaated|
with the gravity gradient torque. The completestfir
order analytical solutions for the problem with efik
duration are gotten by simple quadratures. A lawkhef

spherical triangleN;N,Ns, shown in the figure 2It is

possible to prove that this transformation isoracaf.
The rotational motion of the artificial satellite

with cylindrical symmetry, considering the non-

optimal control is proposed and the required optimaonservative external torques and Andoyer’s veembl

consumption is presented.
Key words: Attitude corrections, minimal
consumption, Mayer problem, Andoyer’s variables.

INTRODUCTION

The satellite’s attitude represents how the

satellite is oriented in space. The attitude exggesa

fuel

can be expressed by

relation between two coordinate systems and can here:

represented by the Euler angles. In this paper, wél =iL
assumed a 3-1-3 sequence of three consecutivéorsat

about the satellite axes for the Euler angles @ , ),

%:O_H+P.

dt 6Li '

dbi __OH o

dt  a¢,

i= 123" (1)
S @



where A and C are the satellite’s moments of inesti  fixed initial time t and fixed final time :f is also

the axis Ox and Oz, respectively, andaRd $Sdepend analyzed here.

on the components of non-conservative externaurq The state equations are the equations of the

in the system Oxyz. rotational motion of the satellite, including exter
torques, in the extended canonical form. For allgate

with cylindrical symmetry, they are given by :
PRINCIPAL PLANE OF
INERTIA OF THE dr

SATELLITE bt I (%_%) L, +f,(¢4;,L)+C,Q, +C1yQy

dt
PERPENDICULAR dv
PLANE TO ROTATION
ANGULAR MOMENTUM _d12 = % Lz +fz(fi ) Li ) +CZ><Q>< * CZyQy + szQz
d,
F = fs(éi' Li ) +C3>(Qx + CE'yQy+ CSZQZ
EQUATOR PLANE d_Li = Q
dt ‘
dL
dt2 = fs(gi ’Li)+C5xQx +C5yQy +C52QZ
dL,
F:fﬁ((i’l-i)J'CGxQxJ'CGyQyJ'CGZQZ’ ©)

where Q, ,Qy andQ, are the components of
propulsive torque Q on the system Oxyz and
fi(4, L), i=1..6 i=1,23, are functions related with
the gravity gradient torque andC C, and G,

,j = 1,...,6, can be found in Zanardi

The performance indek, associated with the
fuel consumption, is introduced by:

Figure 2. Spherical Triangl&l;N,N3
with Andoyer’s variables and Euler angles J= % J det ’ @)

The problem of optimization is formulated, ) ) .
with the dynamic system describing the rotationalhereQ is the magnitude of propulsive torque .

motion of the satellite given by egs. (1), consinigrthe The optimization problem  consists in
torques provided by a power limited propulsion systenfletermining the optimal contro® *, which transfers
and the gravity gradient torque. the space vehicle from the initial state /¢ ,L;y ) at

to to the final state ¢;,L;;) at {, such that the
OPTIMIZATION OF THE consumption is a minimum. .
, The Mayer problem associated to the
ATTITUDE'S CONTROL L . : .
minimization of fuel consumption during the attitud
The optimization problem of attitude controlManeuvers will be defined as follows. The statetarec

is initially introduced by Lagrange formulation,tithe X S defined by the Andoyer's variables and the
dynamical system describing the rotational motibthe ~ Performance index J,

satellite. The torques provided by a power limited T

propulsion system and the gravity gradient torqres axz[ﬁl l, 3 Ly Ly Lg J] . (5)
included. The state is defined by Andoyer's vaeabl

¢i, Ly, =123, and the control by the components 0f‘l’he dynamic system is described by equations (@) an

non-conservative external torques in the artificiapy the differential equation associated with J:
satellite’s principal axes of inertia ( Oxyz). TMayer

problem, without constraints on control variabéexl



dJ _ 1 [sz + Qﬁ + (i] . ©6) Q; _ _ P1Cax + P2Cox + P3Cax + PoCoy + PsCoy

dt 2 P,
This system can be represent by: o P1Ciy + P2C2y + P3 Cay + P,Csy + PsCyy
yo o P
dx J
— “F(x.Q) (7) . Cy, + p3Ca; + P + P,Cs, + PsC
d1 Q. =- P2Y2z * P3la; PJ1 2-52 7 T3¥6z  (17)

The performance index is now given by: and the maximum Hamiltonian functiod” , computed

I =3(t), ®) by (9) and (10), can be expressed by:

” , H*=H*(x, px). 12
and the boundary conditions are determined by the

initial state Xo = (/jo . Lio , O)and the final state The adjoint variable fis a first integral of the

X = (G SUER. ). i= 123 ~ canonical system defined byi" and its value,
~ Following the Pontryagin Maximum P”DC@G obtained from the transversality conditions, isaqul.
the adjoint vectorp, is introduced and the Hamiltonian Consequently, the order of the dynamic system which

function is formed using egs. (3) and (6): describes the problem is reduced and the Hamiltonia
assumes the form:
H(X'p)(!Q): i-in+in + * * * *
[C A] L A 22 H :Ho +HG +HQ’ (13)

+ Pafa(4i, L) + pofa (45 L) - pda(fin i) +

+Pofs(0i, L) + P 6, L) + prf CpuQy +
Gy QPG Qr Gy Qe G
+ P3[CauQyx+ CoyQy+ C3,Q] +P1 Q + HG*:i[pifi+Pifi+3], (15)
+ P [CxQy +C5yQy+ C5, Q] + Pyl Gox Q =

+ + + 1 P [ + + ] . 9 * 2 2
Coy Q + G2 QZ] 2 G- g+ g ®) Ho = 2p1 —+ p22 [cotzl + coPJ +
2 L2 sin“J 2L2

where: Hy = [%—%] Lipy ++ Lobs (14)

The optimal torques Q* must be selected so
that the Hamiltonian function reaches its maximum% P22 +% P32 -%[cot\] + cotl coéz] +

value: L5 sind
P, P3 COY PP
* = ecog!l + €l5) -
Q arg maxH & ,py, Q ) +L% o sin]+2L28in]§ SURRP)
Tir;tznet?tfatlons of control ( stationary conditionsg a i 22!33 [cotl + cot) coéz] +
g y: L5 sinl
_ P

P1C1x +P2Cax +P3C3x +PCo, +PjQy =0 + ZZL L cotl Y& cos +ely )+
P;:C1y +P2Coy +P3Cay + PoCsy + P3Cqy + P3Qy =0 ? &
P2C,, + P3C3z + P+ P,Cy, + P3Cy, + PjQ; =0. (10) + ZZ—P?’ {cotJ Y ecosl(+elp) -

2 €

Solving the system (10), the control Q*, is

given by: - %Cotl {Zscos( + 205 } Y ed cod(+ 20 +

€ £,0

+ €ly) % y8cos(l + 2] + zsfz)” .
€,0



P3Py P3Ps
+—=>=_%¢ecos(J +&l, )+—2| =sinZ, +
2L,sin IZ ( 2) 2 { > 2
+7Zs sin2(J + &4, )+ > edcos(l +28J +

4e sinl ¢ 5

+s€2)}+P1chos]-;PlP3[ cos(( +J )+
+cos(-J)+ %Z cosl(+dJ +¢e/y )} -
£,0

% P, P{ cos( + 2 )+ cos I(-2J ¥

% >ecos( +2¢€] +0l5) } (16)
€,0
where Y and > means thate and & assume the

€0

values: +1 and -1H0* is the unperturbed Hamiltonian

€

associated with the torque-free rotational motib’(@;*
and HQ*are the perturbed functions. HG* is

associated with the gravity gradient torque, fhl\g* is

related with optimal control. The two first parcelsthe
eg. (13) is associated with the conservative syste

(Hy +Hg ) and the other parcel I—{Q*) is
associated with the non-conservative system.

ATTITUDE OPTIMAL CORRECTIONS

The analytical solution for the attitude
maneuvers, considering only the propulsive tordse,
described by following Hamiltonian:

H*: HO* + HQ* , 189
with Ho and Hq defined by eqs (13) and (15),

respectively, and linearized around the referettiteide
defined by (17).

A first order analytical solution for the problem
of attitude corrections can be gotten by simple
quadratures. This solution will be expressed by:

Ax = Epy, + D, (29)
where : Ax represents the variations determined over
the Andoyer’s variablespx0 means the initial values of

the adjoint variables; E is a 6x6 matrix, relatathwthe
propulsive system and D is a 6x1 vector, relatet thie
solution of non-perturbed problem. The adjoints
variables are first integral of the canonical syste

associated by the maximum Hamiltonigh , linearized
around the reference attitude.

The solution (19) represents a complete
solution for the  attitude optimal corrections and
contains secular terms and short periodic terms. stk

rT{ntegratlon constants must be determined in order

satisfy the two-point boundary value problem, which
consists in starting in initial conditiong/at initial time
and reaching the final attitude At fixed final time .

The non-null elements of the matrices D and E,
are given by:

di= At dy=a, At
The problem of optimal attitude corrections, At
with fixed duration, given by the linearized Hamiitan ell:—z—-nz— €14 =% [% - %] AP
around the reference attitude is considered. I—20 sin”J
The reference attitude is given by the solutlone 11| cosTA % es = L AR
of the torque-free rotational motibh: c A -
_ _ e sm@z - Si5g e At
St — 1= — - .= 335 5 . o-
= Lo *or(t=1o) 50 0, sirl sid 3, sin?i
Uy = Loyt (t—1to) €14=85= @g=At €15= &4 = COJA t
(=1 L =L J.
3~ “30 i i0 €1o :%{C?S;A_t cot. (Slﬂfz S'Wzo)}
i=123; (17) L5gL sin“J w,sind
cotl 1 = = = =
where the bar means reference attitude and [ A]Z[COS(J +elp ) -cos{ + Sf20)]
L =L_cosd , L =L_cosl, o= [7-—_ E
1 2 3 2 cotl

and @, :%EZ.

e3=- ]Zs cos(J + sfz )-

2,005 Zsinl



- cosQ +€Z20)] - M
L5gw,sinl sin

616:'%[6 % [co$|_+3)+ codl J]ﬁ% -

——Z[COS(I +3J +s€2) cos(

]

(,0 £,0
1
+————>lsin(l +¢ly) -sin(l +s€20)]
2L,q00,sin €
1 SIAt
€91 = o CO“ (S|n€2 Sln€20)
L3sind | sid @
€2 == cotl coﬂ(sen€2 -semzo)
Lzo(*)z
20
€y3=63= - cotl At +
Lzosan
+ ;cot‘](smz SWZO)
Lzooozst
cotl .
24 o Z[
+ b cogd AT

1 P L
S -
€26~ "7a {G% szae[ sin( + 2J +&8(, )- sin( +

23 +879)] - [cos{ +23 )+ cos{ - 23 1 %} .

cotJ
sin(l +ef5) - sin{ +¢/ -
* 3, = [sin@el2) - sinf +cizo |

i cotl 1 .
4E2052[2%[
+zes[sin(|'. 28] +¢ly)- sir(l -
€,0

. Zé[sin(l_+ 23 + 205 )- sinfl + 23 + 3z )
€,

[sin(j +ely) - sinQ + SZzo)]

€34= &3=2 ———
€ 2L ,w,sin

€36= &3= == [ - %Z[ COSZG+£Z2 )-
3

_COSZ(j + SZzo)] -?]r-“_ %6[Sin(l_+26j+e762 )-
€,

-sin(l' + 257 +&lyq) - 1(cosZZz - coszzzo)

€0 = _C Z[sm(J +ely)-si(d +s€201
Loo W3 ¢

€46 = ea4=-§[ cos( +J )+ cod( 3])3 t

sin(l +38J +&lp)- sin(l +8J +¢ely)
20, 2,6[ ]

€56 = 965:-%[cosf+23 ) cod(-23 ])3 t

sin(l' +38J +&l,) - sin(l +3J +el50)
40.)2 8,6 [ ]
1

G61=——————X[sin(i +elp) - Sin(l + elz0)|
2L20co23|nJ €

cotJ

210w

col [qr . — = - -
—| 52 S|n(| + 22f2)- Slr(l + zfzo) -
4'—20(02[2 e[ ]

€go0 = Z[ sin(l +¢/5)- sin +s€20)]

-% Zé[sin(l_- %] +505)- sin( - 2] +5?20)]]

[sm(l 28] + sfz) sin(l - 28] + szo)] (20)
g, 6

where At is the duration of the maneuver.
For artificial satellite with spherical
symmetry, A = C, the analytical solutions given i{§8)

to (20) simplifies, sinceHO* is computed by:

oL
Ho = =2 p, (21)

and d=0 ep=€;, e33=6, €=6,
e4=€5=0

The attitude’s corrections maneuvers problem
can be simplified if we consider only the secuknts.
The Hamiltonian function associated to long duratio
maneuvers is described by egs. (14) and (18), thith
perturbed Hamiltonian given by:

HQ*= 1 p120 +p20[cot I +cot® I+
2[50 sin“J



procotd (24), butdg =[o dp 0 0 0 0T ,with dy=@, At

* p30 } %[Plo * on + Pso} P2

sin?l L3 sinJ and g4=g5= g= 0
P cotl o If we consider the satellite with the
30 +PoPyy cosJ - > Pgo[ 10[ co$l +J) + cylindrical symmetry and the influence of the gtavi
sinl gradient torque, the Hamiltonian function will biven
_ by (13), (14) e (22). The Hamiltonian function
2087 - 3)]- PygfcosT +23) + cofl 23 )}}. @2 ) _ , _ _
Hg associated with the gravity gradient torque ,rgki

The differential equations for the maneuverén account terms up to the inverse of the cubichef
q distance between the Earth’'s center of mass and the
satellite’s center of mass and assuming circulditor

} the orbital inclination and the longitude of astieq

are:

R IR R

P1o Paocotd HGD— 3 M [C A]{ p_Lo[l 3cod I]cosJ
- 4L20 r

node equal zero degree, is given by:

E%osian Lgosin J

- pzol[l- 3co¢ | }coszj+[1- 3co§5] o8l | +

a A dt “at L2sinJ q -
+ Pao |1-3cof J| cod } , (25)
. @[cotzl_ + cold _pgoC.OtE where p is the Gaussian constant and r is the radial
L5 L5gsin| distance.
d, Pyocotl Pso ~ If the satellite’s orbit is circuland the gravity
at = 27 gradient torque is taken in account during the long
Lgosinl Lgo sirfl duration maneuvers, the analytical solutions as® al
dn, Ry oncos] Pso[ cos{+ 3 ) cod(-J ]) given by eq. (24), but the elements of
dt Ds=[d1 d» d3 0 0 0]" are expressed by:
dL _
2 _
F—F’locos‘] + Py - B %A L
1 d1=[i—i L10+—3[ < [1- 3co¢ I]cos]At
-1 30[cos(| +23) + cofl - 23)] C A a3l L
dL. _ _ _
-2 = '*Plo[COS(|+J)+CO$|-J)] - d, =+ Ly 3“ _'A[1-3CO§I](:052J+
dt 2 AT 43 Ly
1 - -_— - -_—
- = on COS(l + 2J) + CO$| - 2J) + P30. (23) _ _
2 [ ] +[1—30052J] cogl}At
The simplified analytical solutions for egs.
(23) are given in the matrix form as: dg= K S ( ] [1 3c02 J] cod At . (26)
43\ Lyg
Ax = Esp+ D, (24)

For elliptic orbit, the HamiltoniarHG*,

¢ taking in account terms up to second order in
null elements of the matricesstand ks are presented occentricity and assuming the orbital inclination dhe

in Santos et al longitude of ascending node equal zero degres,tie
The analytical solutions for the °pt'ma|followmg form:

corrections of the artificial satellite with spheai
symmetry , whose Hamiltonian is described in the eq (
C- AJ

where the subscript S means the secular part, naitih

(18), (21) and (22), are also given by the matasnf He 0_3u 1+ ¢

{ plo[l 3cod I] cod -

4L,



- pzol[l- 3co r}00525+[1- 3CO§5] co8l | + + co¥y sirf, cog) Cani (sin¢y cod, +
,Sin
+ Pao |1-3cof I| cod } . (27) + cod; sif, cab) +P, sh cog +

+P sinl sirflsin{’2+ cos, (cd_s s+ din cbs 69% )
where a is the semi-major axis and e s th o_ P3
eccentricity . In this case , the analytical santihas 6 Lo SW sind col Losinl Smgzsed *
also the matrix form (24), with - ) -

+P, + Pcos) + P,(cog, sih sih - cbs cdy. (30)

Dg=[d1 d» d3 0 0 0" and

g _ﬂ[c-A]
1- 3 =
42\ Ly

In terms of the elements of the matrix rifl ¢he
initial values of the adjoint variables, the optima
consumption is given by:

1+ :2” 92 1 -30032 I_] codAt +

11T,
* [E " bwo zellp10+ 5 ezzpzo+ %3930+ 8Pl +
d i(c_- A] 1432 [1_ 3c02 r] c0ld + +5655P20+§ 6P50 + 81P10P20+ BiProP3o +
4a° Log 2

+€g1P10P30+ €2P 2P 30" €3P L 1 € R B

+ [1— 3coé j] cod I_] At + % Lao +€42P20P10 *€4 18 20 +€ 4B 16 30+

3
0= 3[ Lzo]

THE OPTIMAL CONSUMPTION

+€56P20P30 €6 of 30 (31)

3
1+3 ez][l 308 J]COMt (28) In the case where only the secular terms are

considered, the eq. (31) is simplified and giveterms
of the elements of the matrixE

AJg = 2ellp10+2922p20+ %3p30+ 8Pl +

The optimal consumption J that is
necessary for the satelite’s atfitude corrections — +ZessP)+ 2 P+ 82 ProP2o+ &d0Pa0 +
obtained by quadrature of the equation:

Jz%QDZ, (29)

where the components of the optimal torques are
expressed in terms of the Andoyer’s variables &edr t

+€45P10P20 + €418 30+ €568 B 30 (32)

NUMERICAL SIMULATION

adjoints by: In this section, numerical results are presented
for a long-time attitude maneuver of a cylindrical
o_ QCOSfl P cod/; cotd + cof ( cds cés - _satellite. The _effe_cts of_gravity gra_di_ent torque ao'g
LZst L2 included in this simulation. The minimal consumptio
_ P the magnitudes of the optimal torques and the ¢eolu
- sinfy sirY, cod )] - == (co¢; cof, - of the analytical solution are computed by using eq
Losinl (32), (11) and (24), respectively. The physical
- sirf, sif, cod ) + P, sih sih + characteristic of the satellite, the initial stated the

final state are presented in the following tabl€he
initial values for the adjoint variables are gotten
numerically solving the algebraic system (24).
i - - The temporal evolutions of the Eulemlas
Q']:Eang_1+iﬁ sin¢,cotd + cotl ( sif; cds, + P . e o
Losind L, (@, 6,9 ) and their rate variationsp(,0,y ) are

+P siri_coi1 sif, + sify (cds sin+ din cbs éos| )



shown in the figures 3 and 4, respectively, duritige
The propagations of the Ando

attitude maneuver .

variables(?¢,,¢,,/4,L;,L,,L; Jare shown in

the figures 5 and 6. The magnitudes of the opti
torques and the magnitude of the performance inalex
presented in the figures 7 and 8, respectively.

Table 1— Physical characteristic

Initial mass = 1.0x 10kg

Principal Moments of inertia

A = B = 3.95x16kg m?
C = 1.05x16kg m?

Table 2 - Initial and Final values for the
Euler Angles and their Rate Variations

Initial Attitude
tO =0.0s

Final Attitude
t; =5.0x10s

(o = 1.0x10 deg

@r = 1.3x10 deg

6 = 1.5x10 deg

B¢ =1.7x10 deg

Y= 1.0x10 deg

¢ = 1.1x10 deg

@ = 2.0x10% deg /s

@f= 1.7x10° deg /s

90 =2.0x10° deg /s

Gf =2.0x10° deg /s

Po=.2.0x10° deg /s

We=1.5x10°deg /s

Table 3 - Initial Adjoint Variables

Pio = -3.858x19

Poo = -6.671x18

P3g = 1.0x16

Po = -1.91x18

Po = -1.91x18

Py = -1.78x18

P = -10

Table 4: Terminal Values for the Andoyer’s Variab

Initial Attitude
to=0s

Final Attitude
t= 5x10's

l10 =8.55x10 deg

£15 = 8.70 x10 deg

l50 =1.97 x18 deg

lo¢ =1.98 x16 deg

l30 =1.07 x18 deg

lq¢ =1.1 x16 deg

1,0 =2.35x10 kg nf/s

Lyt = 1.87x10 kg nf/s

Lo =5.21x10 kg nf/s

Los =5.00x10t kg nf/s

Lyg =257 x10 kg nf/s

L =2.12x10 kg nf/s

es
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CONCLUSION

The first order solution presented here for the
optimal maneuvers for artificial satellite’s attit
corrections shows that the perturbations due to the
gravity gradient torque and to the propulsive syste
are uncoupled and that is possible to establish an
optimal control law for artificial satellite’s attide.
The presented results are similar to the solution
determined for orbit corrections maneuvers made
with identical propulsion systém
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