
OPTIMAL MOTION AND POSITION CONTROL OF NONHOLONOMIC 

FLEXIBLE ARM     
 

Felipe Eduardo de la Rosa Bocanegra 
Graduate School of Science and Technology , Keio University 

3 – 14 – 1 Hiyoshi , Kouhoku – ku , Yokohama 223-8522 – Japan 
m981889@msr.st.keio.ac.jp

Tadahiro Fujio 
Graduate School of Science and Technology ,  

Keio University 

 

Kazuo Yoshida  
Faculty of Science and Technology , Department of 

System Design Engineering , Keio University 

 

Abstract 
 

  A robot arm operating in such environments as 
spacecraft and space vehicles, attached to a space 
platform, station or satellite, has to show considerable 
ligthness. This property can be achieved by an 
underactuated manipulator with links possessing some 
flexibility. In this paper, a two-flexible-link manipulator 
with the second joint unactuated and therefore a 
nonholonomic system , is modeled and a control method 
is proposed to attain a desired position from an initial 
position. As far as this system is categorized into 
underactuated manipulators, an exact solution for the 
optimal trajectory poses considerable difficulties. In this 
case, to find the optimal trajectory and control input for 
the cost function to be minimized, we make use of the 
Ritz method. Through the application of Fourier Basis 
Algorithm, the near optimal control parameters are 
acquired, and the solution is approximated by solutions 
of some finite-dimensional systems and then those 
solutions converge to the optimal solution.  
 
Key words : Nonholonomic system, underactuated 
manipulator, flexible link, Fourier Basis Algorithm. 
 

Introduction 

 

  Nonholonomic mechanical systems ,i.e. systems with 
non integrable differential constraints on the generalized 
constraints, are a growing field of research, since such 
applications as space robot arms could show increased 
ligthness by reducing the number of actuators at joints. 
Even if nonholonomy is a mechanical property of the 
system, it has definite effects on the control problem, in 
this case the configuration space dimension exceeds that 
of the control space, because of the free joint not 
equipped with an actuator. The additional property  of 
flexibility, contributing to reduce weight, cost and 

energy consumption while still maintaining an adequate 
degree of dexterity, also adds extra difficulties to the 
control problem by increasing the generalized 
coordinates and turning the equations of motion more 
complex.      

 
Two-flexible-link model 

 

  The manipulator consists of two links, with the 
second joint free. Hence, the control is performed only 
by the torque applied to the first joint .The system’s 
general configuration is shown in Fig. 1. The modeling 
of the manipulator with flexible links is derived by using  
Lagrange’s equation.  
 
  Referring to the figure, the position of any point on   
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1 :  The 2-link configuration 
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The first link is given by  
 

                 (1) 
 

     .              (2) 
 
The position of any point on the second link is described 
by the following relation : 
 

                                   (3) 
 

                                .   (4) 
 

The parameters of the two-link flexible arm are  shown 
in Table 1. 
 

Table 1 : Parameters of the 2-link system 
l1 length of arm  1   0.5 [m] 
l2 length of arm  2   0.5 [m] 

m1 mass of elbow   4.0 [kg] 
m2 mass of payload   4.0 [kg] 
J1 inertia moment of arm1  0.0008 [kg.m2] 
J2 inertia moment of arm 2 0.00023 [kg.m2] 
J11 inertia moment of elbow  0.0088 [kg.m2] 
J21 inertia moment of payload   0.023 [kg.m2] 
Jm1 inertia moment of motor 1   0.068 [kg.m2] 
Jm2 inertia moment of motor 2   0.013 [kg.m2] 
E1I1 flexural rigidity of arm 1   3.28 [N/m2] 
E2I2 flexural rigidity of arm 2   3.28 [N/m2] 
C1 viscous rotational damping 

coefficient of arm 1 
  0.01 [N.s/m] 

C2 viscous rotational damping 
coefficient of arm 2 

  0.01 [N.s/m] 

C11 internal damping coefficient 
of arm 1 

0.0375 [N.s/m]  

C21 internal damping coefficient 
of arm 2 

0.0375 [N.s/m] 

 
 
  To analize the physical model of the system, some 
assumptions are performed as follow : 
 
a) The deformation of the arm for a simply supported 

beam with moments at both ends is assumed static. 
b) The arm is massless. 
c) The shaft friction force is negligibly small to drive the 

arm. 
d) The deformation of the arm is much smaller than the 

length of the arm. 
e) The influence of gravity is ignored. 
f) The control stick and the driving stick are rigid bodies 

and the difference of the angles between them is very 
small. 

g) The motion is restrained to the horizontal plane. 
 

  The potential energy of the system can be expressed 
in the form  
 
 

                                ,        (5) 
 
 
and the kinetic energy of the system is as follows 
 
 
                                                      
 
 
 

                                     (6) 
 
where  
 

             (7) 
 

         .             (8) 
 

The dissipation of energy can be written in the form : 
 
 

                                 .    (9) 
 
 
Applying the Lagrangian , L , and Lagrange’s equation : 
 
 

                    ,               (10) 
 
 
                               ,        (11) 

                                           
 
where the set of identified generalized coordinates is 
 

        ,          (12)                       
 
with θ1, the rotation angle of the first arm; θ2, the 
rotation angle of the second arm; θ11, the deflection 
angle of the first link on the shoulder; and θ21, the 
deflection angle of the second link on the elbow. Then, 
the equations of motion are obtained in the form : 
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                           ,     (13) 
              

where, θ is the vector of generalized coordinates, M is 
the matrix of coefficients, τ the applied torques, and the 
vectors C, h, and B are as indicated below. 
 

      ,             (14) 
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    .              (18) 
 
From here, the State Equation form (19) is obtained as 
follows 
 
 
 
 
 
 

                               (19) 
 
 
 
                                   , 
 
 
where, “u” is the input, i.e. the torque applied to the first 
joint, expressed by the acceleration of the angle θ1. 
 

    
Conditions of nonholonomic nature 

    
  The holonomic or nonholonomic nature of the system 
has to be determined, and for this purpose, the 
conditions of integrability of the dynamic equation (20) 
relative to the free joint is examined. Since no input 
term explicitly appears in equation (20), this may be 
interpreted as a constraint involving generalized 
coordinates as well as their first and second-order time 
derivatives. 

 
                                     .  (20) 

 
 
For this equation, the property of partial integrability has 
to be examined. If partial integrability holds, possible 
further integrability to a constraint of the form f(q,t)=0 
must be investigated. If such a constraint exists, the 
equation (20) is said to possess the complete 
integrability property, or in other words, to be 
holonomic2. The ability to discern between holonomic 
and nonholonomic constraints is crucial, since the 
former can be used to reduce the system dimension by 
eliminating some coordinates. In this case, the condition 
for partial integrability is not fulfilled , since  
 

                         .             (21) 
 
Therefore, the system has proved to possess 
nonholonomic nature, i.e. to be a nonholonomic system. 
 
 

The Fourier Basis Algorithm 
    
  In order to obtain a near optimal solution for the 
problem of positioning the arm system from an initial 
configuration to a final configuration, the Fourier basis 
algorithm is applied. This kind of algorithm has already 
been applied successfully for computing optimal 
solutions for a variety of systems. It is assumed that the 
system is controllable so that the problem is solvable. 
The nonlinear system can be described by a general 
expression of the form, 
 

      ,             (22) 
 
with x(0)=x0 , and the cost function to be minimized 
corresponding this system should be written in the 
form : 
 

                       ,      (23) 
 
with 
 

      ,             (24) 
 
and 
 

  ,             (25) 
 
where, x(tf) is the actual final position , xdes is the final 
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desired position and M , Q are the weighting matrices. 
Rewriting the cost function in terms of the control input 
u , we have 
 

                                  ,   (26) 
 
where the weighting matrices M and R are adequate 
diagonal matrices. Since the system is controllable, there 
exists a solution u ∈ L2([0,T]), here L2 denotes the 
Hilbert space of measurable vector –valued functions of 
the form : 
 

                                    (27) 
 
If ei is an orthonormal basis, e.g., the Fourier basis, a 
function u , in basis terms, can be expressed as 
 

    ,              (28) 
 
for some sequence α = (α1,α2, . . . ). The idea of the 
Fourier basis algorithm is to approximate the solution by 
solutions of some finite-dimensional systems, introduced 
by restricting the control to the first n terms of the basis1. 
By applying the Fourier basis method, we obtain the 
following expressions : 
 
 

                                  (29) 
 

                                     (30) 
 
 

                            .     (31) 
 
                  

It is demonstrated that as n→∞, solutions of the finite 
dimensional systems converge to the optimal solution. 
Finally, the cost function can be expressed in a general 
form as 
 

                               .     (32) 
 
This variational approach to obtain a direct way to solve 
the problem is the Ritz method.  
 
  Now, the algorithm to solve for optimal α , that is, α 
∈ l2 of minimum cost linking initial and final 
configurations will be constructed. By making R=1, with 
a control time t=2π , and considering the Fourier basis in 
 
 

        .        (33) 
 
Replacing the expression for u in equation (26), the 
rewritten expression  is : 
 
 

                                
 

(34) 
 
 
At this point, an efficient approach to minimizing J(α) is 
quadratic programming. For this effect, the computation 
of the Hessian about a point αn is developed using its 
Taylor expansion : 
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where 
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and 
 
 
                                        . (37) 

 
 
Then, the Jacobian Y(t) and the Hessian Zi(t) can be 
expressed by eqs. (38) and (39) respectively 
 

                       (38) 
 
 
                               .          (39) 

 
Since an expression for the differential equation for Y is 
needed, it can be obtained from the expressions (29), 
(38), and the general form of the state equation : 
        
  

    ,           (40) 
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Finally, in order to obtain an expression to update α, the 
modified Newton’s method is used 
 
 
 

                                   .     (42) 
                         
 

Since the Hessians Zif of the component functions are  
difficult to compute, by applying Newton these terms 
can be ignored. Then the expression for the updated α 
becomes  
 
 

                                     ,  (43) 
 
 
where µ ∈ (0,1) is a parameter. 
 
  Summarizing the steps to follow to construct the basis 
algorithm : 
 
a) Input : The initial value x0 , the final desired value xd, 

and the system’s equation. 
b) Output : The control input linking x0 and xd ; in this 

case, the Fourier parameter α . 
c) Choose an orthonormal basis , in this case the Fourier 

basis, and retain the first n elements, to set the order 
of the series. 

d) Choose the parameter of the Newton’s method µ ,and 

solve the equations of the system as well as the 
calculation of the Jacobian. Examine the obtained 
data. 

e) If the last x(αn) satisfies the expected objective xd, 
exit; otherwise repeat from step (d).  

 
Positioning the Flexible Arm 

 
  The proposed method to attain an optimal control of 
the motion of the 2-flexible-link nonholonomic 
manipulator is applied for four cases. The  initial and 
final configurations are listed in Table 2. The state 
variable vector is  

 
                           .      (44) 

 
 

Table 2 : Initial and Final Position 
 Initial Position x0 Final Position xd 
 I (0,0,0,0,0,0,0,0) (20,0,0,0,0,0,0,0) 
 II (0,0,0,0,0,0,0,0) (20,20,0,0,0,0,0,0) 
 III (25,0,0,0,0,0,0,0) (50,20,0,0,0,0,0,0) 
 IV (30,0,0,0,0,0,0,0) (75,0,0,0,0,0,0,0) 

 

Then the Fourier basis became : 
 

                                           

                                .         (45) 

 

The weighting matrices used for each case are shown in  
the Table 3. The time parameters are : t0=0, and tf = 2π. 
 

Table 3 : Weighting matrices 
 Weighting Matrix 
I            M=diag[3000,3000,3000,3000,0,3000,3000,3000] 
II    M=diag[3000,3000,3000,3000,0,3000,3000,3000] 
III M=diag[2000,2000,2000,500,0,500,500,500] 
IV M=diag[2000,500,500,500,0,2000,2000200] 
 
 

Simulation Results 
    

The results of the simulation are shown in the time 
history plots for the angles θ1, θ2 ,θ11, θ21 and the 
corresponding velocities. Also the plots for the Time 
History of the input control torque are shown as well as 
a view of the animation for each case. Firstable, the 
plots for the Time History of angles are shown in 
Figures 2 to 5. For all cases, the dashed line represents 
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Figure 6 : Case I, Time History of Velocities



the angle θ1; the dashed-and-dotted line represents the 
angle θ2 ; the dotted line is deflection angle θ11 ; and the 
solid line is the deflection angle θ21. 
 

Next, the plots for the velocities of the angles are shown 
from Figure 6 to 9. As for the angles’ plots, the dashed 
line represents the velocity of θ1, the dashed-dotted the 
velocity of θ2, the dotted line the velocity of θ11 and the 
solid line the velocity of θ21 .  
 
 

The input control, the torque applied to the first joint, 
obtained through the algorithm is represented in Figures  
10 to 13, for each case. The abscissa indicates the 
division of time and the ordinate indicates the torque. 
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Figure 10 : Case 1, Time History of Torque 
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Figure 2 :Case I, Time History of Angles
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Figure 3 : Case II, Time History of Angles
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Figure 4 : Case III, Time History of Angles
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Figure 5 : Case IV, Time History of Angles
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Figure 8 : Case III, Time History of Velocities
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Figure 7 : Case II, Time History of Velocities



 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the figures,we can see a similar pattern for cases II 
and III; the applied torque and the angular velocities 
have very close values. This could indicate that within 
certain range the behavior is almost the same despite the 
different targets. Except the first case, the curves for 
torque show only one peak value about the point where  
 
 
 
 
 
 
 
 
 
 
 
 

Figure14 :(0,0,0,0,0,0,0,0)    (20,0,0,0,0,0,0,0)    
each link reaches its maximum angle. Finally, the 
animation of the controlled motion from the initial 
position to the desired target is shown in the following 
views, Figures 14 to 17. 
 

 
 
 
 
 
 
 
 
 
 

Figure15: (0,0,0,0,0,0,0,0)     (20,20,0,0,0,0,0,0) 
 
 
 
 
 
 
 
 
 
 
 

Figure 16:(25,0,0,0,0,0,0,0)   (50,20,0,0,0,0,0,0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
Figure 17: (30,0,0,0,0,0,0,0)    (75,0,0,0,0,0,0,0)    

    
The position of the second joint (solid line) and the 
position of the tip of the second link (dotted line) 
obtained in each case, are also expressed in polar 
coordiantes (r,θ) and shown in Figures 18 to 21. From 
these graphs we can see more clearly the trajectories 
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Figure 11 : Case II, Time History of Torque 
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Figure 12 : Case III, Time History of Torque 
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Figure 13 : Case IV, Time History of Torque 



followed by the points, and notice the similarity of 
patterns among some of the cases. The left side graph 
represents the radius r and the right side graph 
represents the angle θ. 

 

 
 
 
 
 
 
 

Figure 18 : Case I  
 
 
 
 
 
 
 
 
 

Figure 19 : Case II 
 
 
 
 
 
 
 
 
 
 

Figure 20 : Case III 

 

 

 

 

 

 
 
 

Figure 21 : Case IV 
Conclusions 

 

The proposed Fourier basis algorithm has been 
applied to solve the problem of finding the near optimal 
control input necessary for the accurate positioning of a 

two-flexible-link manipulator with a free joint. The 
nonholonomic nature of the system is one of the 
conditions to take into account in order to attain a 
reliable response. The modeling of the manipulator was 
derived using Lagrange principle, in addition to this, the 
flexibility of the links has been introduced considering 
the deformation of a beam. Besides the construction of 
the algorithm itself, where the parameters µ and the 
choice of the order of the Fourier series are important 
steps to reach the closest possible solution to the optimal 
solution, the choice of the weighting matrix M is also an 
important step in order to acquire significant and valid 
results. In this case, the results obtained through this 
method showed the validity of the procedure, since they 
are attained taking into account the conditions of 
nonholonomy and flexibility, two characteristis that are 
usually studied separately. Also by minimizing the cost 
function involving the energy and the position error, the 
method achieves a near optimal solution for the problem 
of controlling the motion and position of this kind of 
underactuated mechanism. The possibility of applying 
the algorithm for a multiple-link manipulator, in other 
words, to generalize the method for more than two links 
is being considered due to the effectiveness of its 
achievements. 
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