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Abstract energy consumption while still maintaining an adsgqu

degree of dexterity, also adds extra difficultiesthe

A robot arm operating in such environments asontrol problem by increasing the generalized
spacecraft and space vehicles, attached to a spaoerdinates and turning the equations of motionemor
platform, station or satellite, has to show consitee complex.
ligthness. This property can be achieved by an
underactuated manipulator with links possessingesom Two-flexible-link model
flexibility. In this paper, a two-flexible-link mapulator
with the second joint unactuated and therefore a
nonholonomic system , is modeled and a control ageth second joint free. Hence, the control is perforroaty

is proposed to attain a desired position from atialn . o
position. As far as this system is categorized int(l%y the torque applied to the first joint .The syste

underactuated manipulators, an exact solution lier tgeneral co_nflguratlor_\ IS sh_own n F'.g' L. _The m(_ngel
. . . e . of the manipulator with flexible links is derived bsing

optimal trajectory poses considerable difficultigsthis Lagrange’s equation

case, to find the optimal trajectory and contrgunfor '

the cost function to be minimized, we make usehef t

Ritz method. Through the application of Fourier Bas

Algorithm, the near optimal control parameters are

acquired, and the solution is approximated by gmist

of some finite-dimensional systems and then thosa

solutions converge to the optimal solution.

The manipulator consists of two links, with the

Referring to the figure, the position of any paint
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Introduction

Nonholonomic mechanical systems ,i.e. systems with
non integrable differential constraints on the galized
constraints, are a growing field of research, sisgeh
applications as space robot arms could show inedeas
ligthness by reducing the number of actuators iatgo -

Even if nonholonomy is a mechanical property of th"'
system, it has definite effects on the control prol) in DRI / )
Tt g
el 1

this case the configuration space dimension excweds -

of the control space, because of the free joint not v
equipped with an actuator. The additional propenty Figurel: The2-link configuration
flexibility, contributing to reduce weight, cost cn



The first link is given by

x, =, codd, +,,(
Y1 = |15inl+ 911(.

1)
)

The position of any point on the second link iscdided
by the following relation :

X, = X + 10040+ 811+ 61,+ 0 ,+ 0 ,f

Y, = Y1 +1,sinl@, +6,,+6 1,46 ,+6 2{

The parameters of the two-link flexible arm are owh
in Table 1.

Table 1: Parameters of the 2-link system

©)

1 length ofarm 1 0.5 [m]

P length of arm 2 0.5 [m]

m; | mass of elbow 4.0 [kqg]

m, | mass of payload 4.0 [kqg]

J inertia moment of arm1 0.0008 [kefjm

X inertia moment of arm 2 0.00023 [kd]n

Juu | inertia moment of elbow 0.0088 [kgn

J: | inertia moment of payload 0.023 [kd]m

Jn1 | inertia moment of motor 1 0.068 [kdm

Jnz | inertia moment of motor 2 0.013 [kem

Eil; | flexural rigidity of arm 1 3.28 [N/A

Esl, | flexural rigidity of arm 2 3.28 [N/A

C, |viscous rotational damping 0.01 [N.s/m]
coefficient of arm 1

C, |viscous rotational damping 0.01 [N.s/m]
coefficient of arm 2

C.;1 | internal damping coefficient0.0375 [N.s/m]
ofarm 1

C,: | internal damping coefficient0.0375 [N.s/m]

of arm 2

and the difference of the angles between themrig ve

small.
g) The motion is restrained to the horizontal plane.

The potential energy of the system can be expdess

in the form

U = 3E1|192 3Ealo 025,

2l 21, ©)

(4) and the kinetic energy of the system is as follows

1262 32262 .2 Ng vey
02 23,0l 2 0,0, Bl

% Im2 dz @niz % ledz BEgzziz’ (6)
where

$1=6,+6y (7)

P =P %615, +60,+6;, (8)

The dissipation of energy can be written in therfor

1 . 1_ . 1 : 1 ,
= 501912 +502922 +5011| 2o +§021|229212- 9

Applying the Lagrangian, L, and Lagrange’s equati

T=L-U, (10)

%‘k oq| 6q. .

(11)

To analize the physical model of the system, some
assumptions are performed as follow :

a)The deformation of the arm for a simply supported
beam with moments at both ends is assumed static.

b)The arm is massless.
¢) The shaft friction force is negligibly small to dei the

arm.

where the set of identified generalized coordingtes

=18, .6,.6,,.06,

with 6,, the rotation angle of the first arn,, the
rotation angle of the second ar;;, the deflection
angle of the first link on the shoulder; afd;, the

(12)

d)The deformation of the arm is much smaller than th@eflection angle of the second link on the elbowe,
length of the arm.

e) The influence of gravity is ignored.
f) The control stick and the driving stick are rigiodies

the equations of motion are obtained in the form :



mBg+hdol+cldG Br. (13

where,0 is the vector of generalized coordinates, M is
the matrix of coefficientsy the applied torques, and the

Ma18) + Mooy + Mgy + Myu8, +hy =0 (20)

vectors C, h, and B are as indicated below. For this equation, the property of partial integrability has
. to be examined. If partial integrability holds, possible
q=[61,6,,60,1,6,,] (14) further integrability to a constraint of the form f(q,t)=0
must be investigated. If such a constraint exists, the
L My, Mg M _equatlor?_ (20) is said t(_) possess the complete
M M M integrability property, or in other words, to be
M(6) = 1 22 23 24F (15) holonomié. The ability to discern between holonomic
1 Mg Mgy My, and nonholonomic constraints is crucial, since the
a1 My My My former can be used to reduce the system dimension by
. eliminating some coordinates. In this case, the condition
hd, oldih, h, hy hjT, (16) for partial integrability is not fulfilled , since

o .1 ;
— (@' M z0 . 21
cbg o o o an o, M7 @
1

Therefore, the system has proved to possess
nonholonomic nature, i.e. to be a nonholonomic system.
B=[1 0 0 Q" . (18)

From here, the State Equation form (19) is obtained as The Fourier BasisAlgorithm
follows

In order to obtain a near optimal solution for the
problem of positioning the arm system from an initial

\ A 0 Y configuration to a final configuration, the Fourier basis

\'fj 0 ; algorithm is applied. This kind of algorithm has already

\* 0 been applied successfully for computing optimal
d \.ﬁ 0 solutions for a variety of systems. It is assumed that the
— \\:'; 1 (19) system is controllable so that the problem is solvable.
ot \"f The nonlinear system can be described by a general

v (M) expression of the form,

‘\")I (M) : )

A (M;) : , x(t) = f(x(t),u(t)), (22)

with x(0)=% , and the cost function to be minimized
where, “U” is the input, i.e. the torque applied to the firstorresponding this system should be written in the

joint, expressed by the acceleration of the afigle form:
J=0¢ Mox, + ZAxTQAxdt (23)
Conditions of nonholonomic nature
with
The holonomic or nhonholonomic nature of the system
has to be determined, and for this purpose, the A%, =X(tf) = Xges (24)

conditions of integrability of the dynamic equation (20)

relative to the free joint is examined. Since no inpuind

term explicitly appears in equation (20), this may be

interpreted as a constraint involving generalized AX = X(1) = X des (25)
coordinates as well as their first and second-order time

derivatives. where, x({) is the actual final position 4 is the final



desired position and M , Q are the weighting magric . (33)

Rewriting the cost function in terms of the contirgbut

u, we have Replacing the expression for u in equation (26§ th
rewritten expression is:

1 95 | mei o] ot

J:(xf—xd)TM(xf—xd)+ZuTRudt , (26)

where the weighting matrices M and R are adequate
diagonal matrices. Since the system is controllghkre

. T . .
exists a solution uJ Ly([0,T]), here L, denotes the I@dj M@Iﬁ&djaﬂallz (34)
Hilbert space of measurable vector —valued funetioin

the form :

At this point, an efficient approach to minimizidgp) is
u(t) Ebl(t),--o um(t)g, t §O,T]. (27) quadratic programming. For this effect, the compora
of the Hessian about a poiat, is developed using its
If e is an orthonormal basis, e.g., the Fourier basis, Taylor expansion :
function u , in basis terms, can be expressed as

0J
U=y ae (28) Ja,+9]= J[an]+<6_aa ,J>
for some sequence = (03,0, . . . ). The idea of the 2 .
Fourier basis algorithm is to approximate the sotuby +1 a_‘i 0,0 +o@||3j , (35)
solutions of some finite-dimensional systems, itrced 2\0a a,
by restricting the control to the first n termstioé basi&
By applying the Fourier basis method, we obtain thehere
following expressions :
a| ; o
: 2al, ~2@ eI
u(t) = _Zoaiq (29) "
i=
ut)=ag+ta,+a,+-t+a,+ - (30) and
n aZJ n . . I.
U(t)=%+2|acosnt+q simt( . (31 5.2 =2ﬁYfTMYf +ZlZif@|@d |-de_|i|4 (37)
i=1 a, i=

It is demonstrated that as-mo, solutions of the finite Then, the Jacobian Y(t) and the Hessiaft) £an be
dimensional systems converge to the optimal solutioexpressed by egs. (38) and (39) respectively
Finally, the cost function can be expressed in regsd

form as Y, =Y(t) = O (38)
oa
J(u(t)) = J(ag,ag,ay, -8, ) . (32) )
Zit :Zihg—a % gt) : (39)
This variational approach to obtain a direct wagatve oa

the problem is the Ritz method. Since an expressidor the differential equation for Y is
needed, it can be obtained from the expressiony (29
Now, the algorithm to solve for optimal, that is,a  (38), and the general form of the state equation :
O 1, of minimum cost linking initial and final

configurations will be constructed. By making Rwith x=h + g%
a control time t=2, and considering the Fourier basis in =h +g , (40)

Za (0t - %. ’ JJ)) with E = ((t).ex1).. - ..(); then



solve the equations of the system as well as the
calculation of the Jacobian. Examine the obtained

aY _y= 0 0x _ 0 0x data.
ot otoa  da ot e)lf the last xf1,) satisfies the expected objectivg, x
0 exit; otherwise repeat from step (d).
o

& Positioning the Flexible Arm

The proposed method to attain an optimal corgfol

_iﬁ\m hw@g’@ the motion of the 2-flexible-link nonholonomic
“EMba 'R da doa

manipulator is applied for four cases. The initad
final configurations are listed in Table 2. Thetasta

r X I m dg X variable vector is
= U h +
2. X 0a 'R X da

. . . . T
. E@ I @ X qel'ebell'HZl’el'ezelle 2] . (44)
= U h +
> X 'k m 0x
I P Table 2 : Initial and Final Position
= ik 9 + ht@ . (41) Initial Position % Final Position
i X 0x | ](0,0,0,0,0,0,0,0) (20,0,0,0,0,0,0,0)

Il |(0,0,0,0,0,0,0,0) (20,20,0,0,0,0,0,0)
Finally, in order to obtain an expression to updgtéhe Il |(25,0,0,0,0,0,0,0) (50,20,0,0,0,0,0,0)
modified Newton’s method is used IV | (30,0,0,0,0,0,0,0) (75,0,0,0,0,0,0,0)
323 L Then the Fourier basis became :
Qpy = 0p — K Fye) F ) (42)
a, E H{1/2, Sn[1t], Coq1t], Sn[2t], Coq 2t],

. . . -+, Sn[30t],Cos[30t]} . (45)
Since the Hessians; Hf the component functions are

difficult to compute, by applying Newton these term
can be ignored. Then the expression for the updatedThe weighting matrices used for each case are sirown

becomes the Table 3. The time parameters agg0tand t= 2t
[an+YfTM@d |—de] Table 3 : Weighting matrices
Ay =0 — U = , (43 Weighting Matrix
[1+Y{ MY, | || M=diag[3000,3000,3000,3000,0,3000,3000,3000]

_ Il | M=diag[3000,3000,3000,3000,0,3000,3000,3000]
wherep U (0,1) is a parameter. Il | M=diag[2000,2000,2000,500,0,500,500,500]
IV | M=diag[2000,500,500,500,0,2000,2000200]

Summarizing the steps to follow to constructllasis
algorithm :
_ ) . Simulation Results
a)lnput : The initial value ¥, the final desired valug;x
and the system’s equation.

The result
history p@) 0
Correspogdlr
"History OEth(
a view (é th,
plots forath(
Figures Ztoso

<

b)Output : The control input linkinggxand ¥ ; in this
case, the Fourier parameter

¢) Choose an orthonormal basis , in this case theiérour
basis, and retain the first n elements, to sebtider
of the series.

d)Choose the parameter of the Newton’s methgdnd

0 20 40 60 80 100
Time 2 TT/100[s]
Figure6: Casel, TimeHistory of Velocities



the angleb,; the dashed-and-dotted line represents thehe input control, the torque applied to the fijnt,
angleB, ; the dotted line is deflection andlg ; and the obtained through the algorithm is represented guiféis

Angle [deg]

Angle [deg]

solid line is the deflection ang@y;. 10 to 13, for each case. The abscissa indicates the
division of time and the ordinate indicates thejtm.
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Next, the plots for the velocities of the angles sinown Figure9: CaselV, TimeHistory of Velocities

from Figure 6 to 9. As for the angles’ plots, theslded
line represents the velocity 6f, the dashed-dotted the
velocity of 8,, the dotted line the velocity &, and the
solid line the velocity 06,; .



4
— 2 E
E o} i
g4t 3
S -6 F 3
F -8
0 20 40 60 80 100
Time 27100[s]
Figurel1l: Casell, TimeHistory of Torque Figurel5: (0,0,0,0,0,0,0,0) —»(20,20,0,0,0,0,0,0)
4 3
— 2 E
E o} E
54t
S -6 f 3
~ s E
0 20 40 60 80 100
Time 27100[s]
Figure12: Caselll, TimeHistory of Torque
E. :
<, ]
= ]
g_z ] Figure 16:(25,0,0,0,0,0,0,00—(50,20,0,0,0,0,0,0)

Time 27100[s]
Figure13: CaselV, Time History of Torque

From the figures,we can see a similar patterndses I
and Ill; the applied torque and the angular velesit
have very close values. This could indicate thahiwi
certain range the behavior is almost the same wetyE
different targets. Except the first case, the csirfar
torque show only one peak value about the pointevhe

=

Figurel4 :(0,0,0,0,0,0,0,0—»(20,0,0,0,0,0,0,0)
each link reaches its maximum angle. Finally, th&he position of the second joint (solid line) arte t
animation of the controlled motion from the initialposition of the tip of the second link (dotted Jine
position to the desired target is shown in theofslhg obtained in each case, are also expressed in polar
views, Figures 14 to 17. coordiantes (6) and shown in Figures 18 to 21. From
these graphs we can see more clearly the trajestori

Figure 17: (30,0,0,0,0,0,0,0—(75,0,0,0,0,0,0,0)




followed by the points, and notice the similarity o two-flexible-link manipulator with a free joint. Eh
patterns among some of the cases. The left sidghgranonholonomic nature of the system is one of the
represents the radius r and the right side gramlonditions to take into account in order to attain

represents the angbe
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Conclusions

80 100

reliable response. The modeling of the manipulaias
derived using Lagrange principle, in addition tts ththe
flexibility of the links has been introduced coresithg
the deformation of a beam. Besides the construaifon
the algorithm itself, where the parametgrsand the
choice of the order of the Fourier series are irgmtr
steps to reach the closest possible solution toptienal
solution, the choice of the weighting matrix M Isaan
important step in order to acquire significant asmdid
results. In this case, the results obtained throtinigh
method showed the validity of the procedure, sihey
are attained taking into account the conditions of
nonholonomy and flexibility, two characteristis thae
usually studied separately. Also by minimizing ttuest
function involving the energy and the position ertbe
method achieves a near optimal solution for thélera

of controlling the motion and position of this kirod
underactuated mechanism. The possibility of appglyin
the algorithm for a multiple-link manipulator, irther
words, to generalize the method for more than inksl

is being considered due to the effectiveness of its
achievements.
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The proposed Fourier basis algorithm has been

applied to solve the problem of finding the neatiropl
control input necessary for the accurate positigrha



