
DEVELOPMENT AND TESTING OF AUTOMATICALLY-GENERATED ACS
FLIGHT SOFTWARE FOR THE MAP SPACECRAFT

James R. O’Donnell, Jr., Ph.D., Stephen F. Andrews, David C. McComas, David K. Ward
NASA Goddard Space Flight Center

Greenbelt, Maryland 20771 USA
James.R.ODonnell.1@gsfc.nasa.gov

Abstract

Using integrated analysis and design tools for the
development of spacecraft attitude control systems
(ACS) can make the process much more efficient,
requiring less time and effort than before. The
integrated toolset used for the development of the ACS
of the Microwave Anisotropy Probe (MAP) spacecraft
includes the ability to automatically generate software
from the MAP high-fidelity (HiFi) simulation. By using
this automatically-generated code to provide portions of
the MAP ACS flight software, that part of the
development effort also became more efficient.
However, because components of the HiFi simulation
were being used to generate flight software, special
consideration needed to be given to these components
during all aspects of the ACS analysis, design, and
testing cycle. An additional benefit of the integrated
analysis and design toolset used for MAP is that it
allowed the opposite to be done; actual flight software
could be run in the HiFi simulation environment,
increasing the level of testing possible.

Key Words: attitude control systems, flight software
testing, simulation

Introduction

By integrating the attitude determination and control
system (ACS) analysis and design, flight software
development, and flight software testing processes, it is
possible to improve the overall spacecraft development
cycle, as well as allow for more thorough software
testing. One of the ways to achieve this integration is to
use code-generation tools to automatically generate
components of the ACS flight software (FSW) directly
from a high-fidelity (HiFi) simulation. In the
development of the Microwave Anisotropy Probe
(MAP) spacecraft (see Figure 1), currently underway at
NASA’s Goddard Space Flight Center, approximately
1/3 of the ACS flight software was automatically
generated. In this paper, we will examine each phase of
the ACS subsystem and flight software design life
cycle: analysis, design, and testing.

In the analysis phase, we scoped how much software
would be automatically generated and we created the
initial interface. The design phase included parallel
development of the HiFi simulation and the hand-coded

flight software components. Everything came together
in the test phase, in which the flight software was tested,
using results from the HiFi simulation as one of the
bases of comparison for testing. Maintaining good
configuration control was an issue for the HiFi
simulation and the flight software, and a way to track
the two systems was devised. Finally, an integrated test
approach was devised to support flight software testing
at both the unit- and build-test levels that used the HiFi
simulation to generate data for performance verification.

Figure 1: The MAP Spacecraft

Another benefit of the simulation and code-
generation application used on the MAP project is that it
supported bringing flight software and test data into the
HiFi simulation environment. This capability was used
to incorporate the flight software Kalman filter into the
HiFi simulation and also to import flight software test
data for comparison and performance verification.

We will conclude our discussion with a summary of
the lessons learned thus far using automatically-
generated code for the MAP project.

Analysis Phase

In the early stages of the MAP project, it was
necessary to make the initial decisions regarding the use
of automatically-generated flight software, including
whether or not to use it, which code-generating tool to
use, and how much of the system’s flight software was
to be generated automatically. These decisions were a

part of the initial system engineering design of the
spacecraft and the project.

System Engineering

The decision to use automatically-generated code
using the AutoCode module of ISI’s MatrixX integrated
toolset was made in an attempt to address some of the
lessons learned from previous in-house spacecraft
developments at Goddard. Following the development
of the XTE and TRMM spacecraft, a need was seen to
limit the manual interfaces required to design and
develop an ACS subsystem. The design system used for
those spacecraft was characterized by a large
duplication of effort, with three separate teams—the
analysts, the flight software developers, and the
developers of the hybrid dynamic simulator (HDS) used
to test the flight software—designing the same system
independently.

This method relied on written documentation to
describe any changes in the control algorithms that must
be reflected in all three systems. One person was
dedicated to the development of the HiFi simulation,
which was not useful in the linear analysis of the
system, and another person was a dedicated
“documentation engineer”, needed to keep the flight
software and test simulation teams informed of changes.
This system was prone to manual implementation
errors and misunderstandings, which resulted in the
FSW team not always initially implementing the
algorithms as the design team had envisioned them.

By the preliminary design stage for the Medium
Explorers (MIDEX) program, of which MAP is the
second mission, tools existed that would make design,
analysis and development an integrated process,
allowing a reduction in manpower and a reduction in
development time, consistent with the philosophy of the
MIDEX program. There was also an interest in reusing
software and developing reusable model/software
libraries for quicker mission designs in the future. The
integrated analysis and design toolset selected, MatrixX
from Integrated Systems, Inc., was selected because it
possessed the desired capabilities. The MatrixX
components used for MAP include a linear analysis tool
(XMath), a graphical environment for developing and
executing nonlinear simulations (SystemBuild), an
automatic code generation product (AutoCode), and a
documentation generation product (DocumentIt).1

Scoping

For maximum gains in the efficiency of the design
process, it is desirable to do as much as possible using
the MatrixX integrated toolset. In theory, this would
include designing, analyzing, simulating, performing
code generation, and documenting the entire ACS

subsystem. However, since this was the first time that
these techniques and this product was used on a flight
project at Goddard, it was decided to limit the scope of
the portions of the system that would be “AutoCoded”
in order to minimize risk.

It was decided early in the process not to AutoCode
portions of the HiFi simulation to be used both in the
flight software and in the HDS, for fear of an error
going undetected by being replicated in each. It was
decided to use AutoCode for the control law algorithms
and system momentum calculations only. This limited
risk by not automatically generating code for any flight
software component that required a direct interface to
ground commands or to the spacecraft sensors and
actuators. Further, because the control laws had a high
algorithm-to-code ratio and a clearly defined interface
to the rest of the system, they provided a good test of
the code-generation method. A final benefit to using
AutoCode primarily on the spacecraft control laws is
that the controllers are good candidates for reuse on
future missions.

It is interesting to note that, in the early, analysis
phase of the MAP spacecraft development, one
component of the ACS subsystem—the Kalman filter
used for onboard attitude determination—was identified
as a good candidate for reuse and also “going the other
way”. Flight software implementing a Kalman filter
existed and had been tested and flown on other
spacecraft, so it could be reused for MAP. Because
MatrixX’s SystemBuild simulation component supports
the use of existing software within its simulations, it
would be possible to include the flight Kalman filter
inside the HiFi. As will be discussed later in this paper,
the ability to move flight into the HiFi simulation,
enables it to be more completely and thoroughly tested.

Initial Interface Design

During the analysis phase, it was necessary for the
analysis and flight software teams to begin discussing
the interface design. It was necessary to design the HiFi
such that one or more of its pieces would interface in a
compatible way with both the other parts of the HiFi
and the flight software. At this point in the project, it
was necessary to consider two things:

Input/Output Interface: In SystemBuild, the inputs
and outputs to a given portion of the simulation
determine what information is available each cycle, as
well as what information that block may provide. To
support the flight software as well as the HiFi
simulation, this list of inputs and outputs might need to
be augmented with other points of interest.

Simulation Parameters: As opposed to inputs and
outputs, which normally can change each control cycle,
simulation parameters are quantities such as control

gains of spacecraft mass properties. While it is desirable
to be able to change these parameters both within the
simulation and during flight, they do not change very
often. It was decided that SystemBuild’s %VAR
capability, which allows a variable to be assigned as a
parameter for an element of the simulation, would
provide a way of implementing these parameters in the
HiFi and would map into flight software tables, which
provide the same function on-orbit.

Design Phase

Previously, the early design phase of a spacecraft
ACS, particularly could done without worrying about
too many outside considerations. For example, while the
linear analysis and low- and high-fidelity simulations
are being developed, they can normally be focused
exclusively on satisfying the needs of the design process
and the analysts. In the development of the MAP ACS,
however, because of the use of AutoCode and
DocumentIt, it was necessary to design the system from
the start with these considerations in mind. This was
particularly true because the SystemBuild HiFi
simulation forms the cornerstone for everything else.

SystemBuild is a graphical block diagram editor
used to construct the desired simulation. Its two basic
element types are “blocks”, which represent the
functional elements of a simulation, and “SuperBlocks”,
which can be used to group other blocks and/or other
SuperBlocks into hierarchies. SystemBuild comes with
a wide assortment of blocks that can implement linear
and nonlinear systems, continuous and discrete systems,
as well as a variety of user-definable blocks that can be
used to include arbitrary functionality into a simulation.

High Fidelity (HiFi) Simulation Development

Figure 2 shows a drawing of the top-level
SystemBuild SuperBlock of the MAP simulation, which
gives an idea of the pieces of the MAP system that are
being modeled, as well as how the simulation is
organized. At the top level, everything has been
organized into three SuperBlocks, named “ACS”,
“ACE”, and “Models”. These SuperBlocks are used for
the following simulation elements:

ACS: The ACS SuperBlock contains elements of the
simulation that correspond to the aspects of the MAP
flight software contained in the main processor,
including those elements from which flight software
will be automatically generated (see the Code
Generation section, later in this paper). Other than FSW,
the ACS SuperBlock also models some of the ground-
based commanding.

ACS ACE MODELS

Non-Autocode

Autocodable

Figure 2: MAP High Fidelity Simulation

ACE: The ACE SuperBlock models the needed
elements of the MAP Attitude Control Electronics
(ACE). In the MAP spacecraft, the ACE is used to
implement the independent Safehold Mode and to
provide the interface to most of MAP’s sensors and
actuators. Because the MAP simulation uses
engineering units and does not go to the level of counts
and voltages, it was not necessary to model those
interfaces in the ACE SuperBlock. Instead, the two
functions that are modeled are the independent Safehold
and the interface that takes the thruster commands from
the ACS SuperBlock and converts them into an
appropriately sized pulse width.

Models: In the Models SuperBlock, the actual
physics of the MAP spacecraft and environment are
modeled. This includes the models of the spacecraft
attitude, position, and velocity, environmental
disturbance models, and models of MAP’s sensors and
actuators.

Flight Software Interface Considerations

HiFi Simulation: Figure 3 shows the ACS
SuperBlock, divided into the portion to being
AutoCoded (the Autocodable SuperBlock) and the
portion that wasn’t (the Non-AutoCode SuperBlock).
The inputs and outputs of the Autocodable SuperBlock
provide the main interface between the AutoCode and
non-AutoCode portions of the MAP ACS flight
software. Very early in the design of the HiFi, this
interface was clearly defined between the developers of
the HiFi and the flight software.

 SystemBuild uses %VARs in order to parameterize
aspects of a simulation. These are parameters that can
be included within SystemBuild blocks that are tied to
XMath variables, allowing them to be set and changed
when a simulation is begun. In the MAP ACS flight
software, parameter tables are used to fulfill the same
function. The initial stages of the design set the standard
of using the %VARs in the Autocodable SuperBlock as
a single flight software table, which allowed them to be
consistently set and changed in either the HiFi or the
flight software.

Figure 3: MAP HiFi ACS SuperBlock Showing AutoCode Section

Naming Convention: A small but important aspect of
developing the HiFi such that its AutoCoded portions
would be compatible with the flight software involved
the names of the inputs, outputs, and parameters. The
naming convention, determined in cooperation with the
flight software developers, made the task of interfacing
the AutoCode flight software more straightforward.

Exception Protection: The final consideration that
needed to be applied to those parts of the HiFi to be
AutoCoded was including protection from
mathematical. Normally, exceptions are not a concern in
a simulation; either the simulation tool will handle them
or they will cause an error and exit. However, in flight
such errors are unacceptable.

Having identified the potential problem, though, the
solution was easily implemented. In addition to
protecting from divide by zeros by checking the divisor
before performing the division, the HiFi AutoCode
blocks also implement common flight software practices
such as checking in a small delta range about a value
rather than checking for exact equality.

Configuration Control

When developing flight software, the issue of
configuration management is very important. Because
the success of the mission and the safety of the
spacecraft depends on the quality of its software, it is
important to be able to track all changes. Because of the
use of AutoCode to generate some of MAP’s flight
software, the configuration control issue now applies to
parts of the HiFi simulation.

When development of the MAP HiFi simulation
began, there was not a release version of a configuration
management tool that could be used along with
SystemBuild. Also, because of the way that
SystemBuild saves its simulations, it was not a simple
task to develop a configuration management plan. The
plan that was devised and used included the following
points:

Baseline Simulations: A series of baseline
simulations were developed that exercised all of the
different modes and operating conditions of the MAP
HiFi. Then, whenever a new version of the HiFi was set
to be released, these baseline simulations were rerun to

ensure that the only changes that occurred in the
performance of the simulation were those expected
based on the changes made in the HiFi itself.

Revision History: As blocks were changed in the
HiFi, a list of the changes was maintained. Initially, this
list was kept in a separate text file. After discussions
with members of the Applied Physics Laboratory
(APL)2 who were using automatic code generation tools
from The Mathworks’ Matlab family of products, the
revision history was kept within the simulation itself,
using SystemBuild’s Text block (see Figure 4).

Figure 4: HiFi Revision History Text Block

By keeping a revision history within each
SystemBuild SuperBlock, it was easy to tell at a glance
what had changed and when. Also, using “SystemBuild
Access” tools, it was possible to extract the revision
histories from throughout the HiFi and assemble a
report covering the changes through the simulation.

Parameter Database: One final technique that was
needed to control the configuration of the HiFi
simulation, the flight software, and the HDS, was a way
to make sure that each of these systems was configured
in the same way. In previous projects, parameter
changes—such as spacecraft properties or controller
gains—would be changed in each system manually, and
propagating these changes to each system was a time-
consuming and inefficient task.

For the MAP project, a flight software parameter
database was developed that was used to populate each
MAP system with the parameters that it needed to run.
Where these parameters were the same for different
systems, the values in the database were linked so that a
change in one would automatically be reflected in the
others. Reports for each system (HiFi or HDS
initialization scripts, flight software initialization files)
could be generated from this common database.

Testing Phase

Flight software testing at Goddard goes through a
number of stages. The first level of testing, unit testing,
is usually done by the flight software developer, and is a
low-level series of tests used to show that each software
component or module works. After unit testing, build
testing and then acceptance testing is done to verify that
all of the software components work correctly together
and provide the functionality that will allow the
spacecraft to meet its requirements.

Using automatically-generated code as part of the
flight software for MAP introduced some additional
requirements and opportunities for the testing phase of
the project.

Unit Testing

Ideally automatic code generation would make the
time to translate the algorithms into flight code
negligible. This can only be achieved if the translation
process were guaranteed to be perfect. Since this is not
the case, unit testing must be performed. The MAP team
employed two phases of unit testing. The first phase
treated the automatic code as a black box. Nominal
inputs were fed into the automatic code and the outputs
were verified. The goals of black box testing were to
verify that the automatic code was properly integrated
into the manual code and to verify the automatic code’s
nominal functional behavior. The second phase of unit
testing, known as white box testing, “opened” up the
automatic code to isolate and test individual code paths.
The goals of the white box testing were to test all code
paths and to test boundary conditions.

Since white box testing is laborious and since the
automatic code was being inspected, we didn’t
introduce white box unit testing until after several
releases had been made. This strategy allowed the
algorithm-to-flight code translation process to be as
efficient as possible when the number of changes were
more frequent without sacrificing the quality of our unit
testing on the final product. The black box testing
environment was established during the first software
build and was rerun for every build. Since this effort
was nearly automated it didn’t slow down the flight
software build process.

Figure 5 shows the black box unit test environment.
The HiFi outputs simulation results, simulation inputs,
and the automatic code to the unit test platform. The
unit test driver is linked with the FSW controller classes
and the automatic code. Five HiFi test cases, one for
each operational mode, were used as the test suite. This
data was run through the FSW and the FSW results
were compared to the HiFi results. This testing has

consistently shown that the automatically generated
code accurately represents the SystemBuild design.

Automatic
Code

Inputs Outputs

Test
Results

data file data fileAutoCode

linked to

linked to

FSW
Controller

Classes

H
iF

i P
la

tf
or

m
U

ni
t

T
es

t
P

la
tf

or
m

HiFi Simulation

Unit Test Driver

Figure 5: Test Procedure for AutoCoded Software

The white box testing consisted of a unique test
driver being written for each section of the automatic
code being tested. This testing proved to be very
important and uncovered several problems that were
then able to be corrected. The unit test driver calls the
hand coded FSW controller functions and not the
automatically generated code. Driving the test from this
level verifies that the manual code and the automatic
code are properly integrated. Since XMath scripts
managed and documented the HiFi test cases, the FSW
developers didn’t require much of the analyst’s to get
necessary information. Defining common controller
interfaces in both the HiFi and the FSW and having a
standardized data file format were the drivers that
empowered the unit tests. These activities could occur
with or without automatic code generation, but were
used in this case because of it.3

Build and Acceptance Testing

Once build testing was begun, there were fewer
special considerations needed because of the use of
AutoCode. However, there were considerable benefits
from the use of the MatrixX integrated toolset that
greatly enhanced the efficiency of the build testing
effort.

In previous projects, data from flight software
testing was generally used to verify the correct
performance of the spacecraft ACS by plotting the data
and then running a comparable HiFi simulation for
comparison. For the MAP project, the general outline of
the process remained the same, but the integrated nature
of the toolset improved the process considerably. In the
past, the people performing the flight software tests

were a different group than the analysts verifying the
test performance. Typically, one of the analysts was
responsible for running most or all of the HiFi
simulations, which created a potential bottleneck for
testing. Finally, comparing the test and HiFi simulation
data was often a matter of looking at two sets of plots.

Telemetry Import and Manipulation

By using various parts of the MatrixX integrated
toolset, along with some tools based on the underlying
Unix operation system, it was possible to automate
many of the above steps for flight test verification. The
first step of this was to import the telemetry from flight
tests into the XMath environment. This was done by
writing an XMath command that in turn automatically
wrote and executed a Unix shell script to reformat the
data to make it compatible with XMath. Then the
XMath command imported the data and saved it in its
own format.

Once the flight test data was available within the
XMath environment, it became possible to
automatically tie in the other MatrixX components.
XMath tools were written to produce a number of
standard plots. Also, it was possible to analyze the test
data to learn about how the corresponding test was run.
This, in turn, made it much easier to set up HiFi
simulations for comparison, as discussed in the next
section.

Automatic Simulation Generation

Once the flight test data was in a format compatible
to XMath, it was possible to write XMath commands to
analyze flight test data; looking for such things as mode
transitions, commanded attitude changes, initial
position, velocity, time, and attitude. In order to allow
more than just the primary developer to run HiFi
simulations, the HiFi had originally been set up to run
based on a standard set of XMath script files. Several of
these files set up the nominal state of the system, and
were produced from the flight parameter database
mentioned earlier, and were common to all HiFi
simulations. The main script file was set up specifically
for each simulation, and included all off-nominal
parameter values and other simulation-specific initial
conditions and system changes and events.

For flight test verification, it became possible to
produce HiFi simulation script files automatically,
based on values within the test data itself. This meant
that just about anyone could run HiFi simulations, and
that flight software testers could run their own
comparisons (though flight software performance
verification still required analyst review). Further, plots
could be produced that put flight test and HiFi

simulation data on the same plot, thus making
performance verification much easier (see Figure 6).

Flight Software Testing Using the HiFi Simulation

One additional benefit of using the MatrixX package
other than automatic code generation, though related to
it, was SystemBuild’s ability to include user-written C
code into its simulation though what it calls a User Code
Block (UCB). This capability was used on the MAP
project to run the actual flight onboard Kalman filter
within the HiFi simulation. Running the flight filter in
the HiFi allowed the existing filter flight code to be
tested before it made it into the actual flight software
(see Figure 7). Also, because of the greater degree of
control possible with the HiFi versus the HDS testing
environment, it allowed the flight filter to be tested and
stressed in ways that could not be done in the testing
lab. Because the HiFi runs faster than real time, it also
allowed more testing to be done.

There were other benefits to being able to use and
test the flight Kalman filter within the simulation
environment. By conducting tests to cover failure
scenarios, it is possible to generate backup values for
the filter to be used in the event that the failure occurs
in-flight. Also, because the actual code is being run in
the simulation, it makes performing comparisons
between flight software tests and HiFi simulations
easier. Finally, an incidental benefit of using the flight
software Kalman filter in the HiFi as a UCB is that it
sped up the simulation.

Summary of Lessons Learned

The ACS for the MAP spacecraft has been under
development for over three years, with just over a year
until the scheduled launch. In that time, a number of
lessons have been learned concerning the use of
automatic code generation techniques.

AutoCode Scope: Using a relatively small scope for
automatically generated code for this first mission was a
good idea; there is certainly more that could have been
done, but it will be much easier to do more on the next
mission with what we have learned on the MAP
spacecraft.

AutoCoding HDS: Even though the original design
philosophy considered AutoCoding the HDS software
as well as the flight hardware, it was decided that the
HDS models be developed independently, to reduce the
possibility of an error slipping through the cracks
because it was replicated in both the flight software and
in the test environment.

Configuration Management and Maintainability:
Because MatrixX is a commercial product which has
seen at least one major upgrade during the lifetime of
the MAP project, it is currently an open issue of how to

deal with upgrades since AutoCode output may vary
from version to version. This affects maintainability,
and may require reused software to be completely
retested from mission to mission.

Learning Curve: Because of the learning curve
needed the first time this toolset were used, using
AutoCode and MatrixX may not have saved as much
development time for MAP. However, it has already
been seen at Goddard that, using MatrixX and the MAP
HiFi as a base, it is possible to develop an initial HiFi
for a new project in a fraction of the time necessary in
the “FORTRAN HiFi” days. It is on future projects that
significant gains can be made using these tools.

XMath Environment: XMath proved to be very
useful, as it was possible to import flight test data and
automatically create HiFi comparison simulations, run
simulations, and plot test and verification data on the
same plot. This allowed all of the members of the
testing team to perform their own test verifications.

Development Process: One of the more dramatic
changes in the ACS FSW development process is that
many people are performing multiple roles. The analysts
have participated in every activity, performing analysis,
writing requirements, reviewing code, writing test
procedures, and verifying test performance. Developers
helped to write the requirements, reviewed the
AutoCode, developed code, and supported the
performance verification. The tools brought the team
closer together but also allowed them to work more
independently and efficiently. Many participants have
worked as system engineers with a specialty.

References
1Ward, D. K., et. al., “Use of the MatrixX Integrated
Toolkit on the Microwave Anisotropy Probe Attitude
Control System”, 21st AAS Guidance and Control
Conference, Breckenridge, CO, 1999.
2Salada, M. A., and Dellinger, W., “Using MathWorks’
Simulink® and Real-Time Workshop® Code Generator
to Produce Attitude Control Test and Flight Code”, 12th
AIAA/USU Conference on Small Satellites, 1998.
3McComas, D. C., et. al., “Using Automatic Code
Generation in the Attitude Control Flight Software
Engineering Process”, 23rd Software Engineering
Workshop, Goddard Space Flight Center, 1998.

X
Ax

is
 (d

eg
/s

ec
)

0

0.1

0.2

0.3

0.4

-0.1

0.5
m2bobs_l2a_kf_asta_dss: Estimated Spacecraft Rates [p_acs_rates]

Y
Ax

is
 (d

eg
/s

ec
)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.05

0.05

Time (seconds)
100 200 300 400 500 600 700 800 900 1000 11000 1200

Z
Ax

is
 (d

eg
/s

ec
)

0

0.5

1

1.5

2

2.5

-0.5

3

EST (HiFi)
ACS EST (p041)

Fri Dec 18 199808:32:00 Fri Dec 18 199808:32:00 Fri Dec 18 199808:32:00

HiFi Version: mapdb_1_3

Figure 6: MAP HiFi vs Flight Software Test Data for Science Mode Simulation

Time (sec)
200 400 600 800 10000 1200

An
gu

la
r E

rro
r

0.5

1

1.5

2

0

2.5
Estimation and AST Errors [mobs_w]

AST
Estimation

Fri Dec 18 199812:10:28

HiFi Version: mapdb_1_3

Observing Mode Nominal Run [mobs_w]
 * Rate Source: IRU
 * Kalman Filter Enabled: Flight Software UCB Implementation
 * Gyro Dynamics Disabled

Figure 7: MAP Flight Kalman Filter Estimation Error from HiFi Simulation

