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ABSTRACT 

We investigate in this paper the computation of 
minimum fuel orbital transfers and rendezvous. Each 
problem is seen as an optimal control problem and is 
solved by means of shooting methods [1]. This 
approach corresponds to the use of Pontryagin’s 
Maximum Principle (PMP) [2-4] and leads to the 
solution of a Two Point Boundary Value Problem 
(TPBVP). It is well known that this last one is very 
difficult to solve when the performance index is fuel 
consumption because in this case the optimal control 
law has a particular discontinuous structure called 
“bang-bang”. 

We will show how to modify the performance index by 
a term depending on a small parameter in order to yield 
regular controls. Then, a continuation method on this 
parameter will lead us to the solution of the original 
problem. Convergence theorems will be given. 

Finally, numerical examples will illustrate the interest of 
our method. We will consider two particular problems: 
The GTO (Geostationary Transfer Orbit) to GEO 
(Geostationary Equatorial Orbit) transfer and the LEO 
(Low Earth Orbit)  rendezvous.  

1. INTRODUCTION 

The computation of optimal “bang-bang” controls is of 
particular interest because of the difficulty in obtaining 
the optimal solution when using the PMP. In this case, 
the main difficulty comes from the fact that the shooting 
function [1] may not be defined everywhere, may be 
discontinuous or non differentiable at some points and 
may have a singular Jacobian matrix on a large domain. 
This induces a very small convergence radius for the 
solving methods as Newton’s or Powell’s [5].  

One way to avoid this difficulty is to add a specific term 
to the objective function depending on a small 
parameter ε. For each ε, the optimal control associated 
with the perturbed performance index is regular and 
ε  has to be updated through a continuation or homotopy 
[6] method. This general approach, called 
“continuation-smoothing method”, has been developed 
by the authors in [7]. A statistical point of view in terms 
of density functions throws light on the method (see [7]) 

and provides a general framework for deriving new 
perturbed performance indexes and regular controls. 

2. PROBLEM STATEMENT 

2.1 Formulation 

Let us denote by x the vector of equinoxial orbital 
parameters: 
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where )v,,,i,e,a( Ωω  denotes the set of classical 
Keplerian parameters. We will use Gauss equations 
associated with parameters (1) to describe the motion of 
the satellite and the perturbative accelerations will be 
expressed in the (T,N,W) local orbital frame where 
vector T in collinear to the satellite velocity vector.  

Thus, our problem falls under the form of the following 
optimal control problem: 
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where m denotes the mass of the satellite, maxF the 
maximum thrust modulus of the engine and Isp its 
specific impulse. The constant 0g , u, 0t  and ft  denote 



 

respectively the Earth’s sea-level gravitational 
acceleration, the control variable i.e. the scaled thrust 
vector and the initial and final dates which are both 
fixed.  

In the case of an orbital transfer, all the components of x 
are fixed at time ft except the true longitude L. So, the 

final conditions take the form: 
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In the case of a rendezvous, all the components of x are 
fixed at time ft for a given number of revolutions. Thus, 

the final conditions can be written under the following 
compact form: 

 fff xtxtx −= )())((ψ  (4) 

In order to apply the PMP, we have to build first the 
Hamiltonian of problem (2) given by: 
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x and T  denote the costate vector 

and the transpose operator respectively.  

Then, the optimal control )(tu  is obtained by 
minimizing the Hamiltonian (5): 
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and this yields a “bang-bang” control law. 

In fact, let the switching function )t(ρ be given by: 
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and let us define )t(β  by: 
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Then, if 0)t(p.))t(x(g x
T = , )t(u has only to satisfy: 

 )t()t(u β=  (9) 

and if 0)t(p.))t(x(g x
T ≠ , )t(u is given by: 
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2.2 Solution method 

The PMP gives necessary optimality conditions for 
problem (2). In addition to (6), it gives the costates 
differential equations: 
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and the following transversality conditions: 

  1)t(p fm −=                (12) 

and, only in the case of a transfer: 

  0)t(p fL =                (13) 

where Lp denotes the last component of vector xp . 

So, the PMP yields a TPBVP defined by the states 
differential equations with initial and final conditions 
(see (2), (3) and (4)) and by (7), (8), (9), (10), (11), (12), 
and (13) in the case of a transfer. Then, the numerical 
solution of problem (2) reduces to the computation of 



 

the zero of a function, called the shooting function, 
whose unknown is vector )t(p 0 . 

2.3 Numerical issues 

When solving the shooting equations associated with a 
“bang-bang” optimal control problem, numerical 
difficulties arise. First, for computing the shooting 
function itself it is necessary to integrate a system of 
Ordinary Differential Equations (ODEs) whose right-
hand side is a discontinuous function of time. So, 
common algorithms like Runge-Kutta’s one with 
adaptive step encounter problems to achieve the 
required precision especially when the number of 
switching dates is large [8-9] and the shooting function 
is then evaluated with a poor precision. On the other 
hand, the convergence theorems for Newton’s method 
require the equations to be twice continuously 
differentiable and require their Jacobian matrix to be 
non singular in the vicinity of the solution. So, 
Newton’s or Powell’s methods often fail to converge in 
the case of non smooth equations. This is why 
smoothing techniques are so useful in this framework. 

3. THE CONTINUATION-SMOOTHING 
METHOD 

3.1 The method 

The basic idea of the method developed in [7] is to 
deduce the solution of problem (2) from the successive 
solutions of an auxiliary problem. This one takes the 
following form:  
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where F is a continuous function and where ε is 
assumed to be in the interval ]0,1] . 

Depending on the properties of F and according to the 
vocabulary used in mathematical programming, this 
approach may be called a penalty or a barrier one. In 
fact, if ∞+→)w(F  as w approaches one or zero, F is 
called a barrier function otherwise it is a penalty one.  

The “continuation-smoothing method” consists first in 
solving problem (14) for 1=ε . Then, after defining a 
decreasing sequence of  ε  values 01 n21 >>>= εεε K , 
the current TPBVP for problem (14), associated with 

n2k,k K== εε  is solved with the solution of the 
previous one as a starting point. This iterative process 
terminates for example when a certain precision on the 
performance index is reached: 

   ( ) 0.)u(J)u(J 1kkkk1k1k
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where 
k

uε denotes the optimal control solution of 

problem (14) for kεε = .  

Now, in the case F satisfies one of the two following 
properties: 

          [ ]1,0w0)w(F ∈∀≥              (16) 

                  [ ]1,0w0)w(F ∈∀≤              (17) 

some interesting propositions can be derived (see [7] for 
the proofs). If  F satisfies (16), we obtain: 

Proposition 1: 
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A similar proposition can be derived in the case F 
satisfies (17) with the inequalities in reverse order.  

Moreover, in both cases we have the following result: 

Proposition 2: 
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3.2 Choice of function F 

The useful quadratic penalty approach corresponds to 
the following function F: 

 [ ]1,0w)w1.(w)w(F ∈∀−=               (18) 

which satisfies property (16).  

The logarithmic barrier approach corresponds to the 
following function F: 

       ] [1,0w)w1log()wlog()w(F ∈∀−+=     (19) 



 

which satisfies property (17) and yields the following 
optimal control for problem (14): 

Let )t(ρ be given by (7) and let us define )t(εβ by: 
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and if 0)t(p.))t(x(g x
T ≠ ,  )t(uε is given by: 
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As the switching function )t(ρ is continuous with 
respect to time t, it is clear from (20), (21) and (22) that 

)t(uε satisfies the same property. Let us notice that 
function F given by (19) is a barrier function. 

4. NUMERICAL RESULTS 

4.1 The GTO-GEO transfer 

In the case of a high thrust GTO-GEO transfer, our 
approach based on optimal control leads to the same 
strategies than the methods based on mathematical 
programming: The maneuvers are mainly located at the 
apogees and almost collinear to vector T. The 
consumptions are very closed due to a low variation of 
the thrust direction. Mathematical programming 
methods indeed assume that the thrust direction is 
constant in an inertial frame and try to compute the 
thrust dates and directions for a given number of thrusts. 

Let us consider now a medium thrust transfer to a final 
orbit with a lower semimajor axis than the GEO orbit. 
This backup case of a GTO-GEO transfer could be 
completed for example by an electric TOP-UP. The data 
are as follows: 
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We consider in this case a Keplerian motion without 
any gravitational perturbation. The optimal consumption 
obtained by solving problem (2) with the “continuation-
smoothing method” is equal here to: 

  kg1.3085)t(mm f0 =−                (26) 

For the same number of maneuvers, the consumption 
obtained with mathematical programming is equal to 
3140.4 kg. The difference (55 kg) comes from the 
optimization of the thrust direction and induces an 
important increase of the satellite lifetime (about 36 
weeks). In fact, the variation of thrust direction is more 
important here than in a classical GTO-GEO transfer 
(see Fig. 2). This underlines the interest of optimal 
control in this case. The first maneuver is located at the 
first perigee and the other ones are located at the 
following apogees (see Fig. 1). The optimal trajectory, 
the thrust history and the evolution of the orbital 
parameters are given below: 

 

Fig. 1. Trajectory with GEO orbit in dotted line 

 
Fig. 2. Control history – 16 maneuvers 



 

 

Fig. 3. Orbital parameters and mass of the satellite 

4.2 The LEO rendezvous 

In the following, we take into account Earth’s 
oblateness in Gauss equations. 

In the case of classical rendezvous between almost 
circular orbits, optimal control leads to the same 
strategies than a software based on mathematical 
programming and the associated consumptions are very 
closed. The maneuvers are located on the first and the 
last orbits and the two optimization methods make use                                                                                                                                                                                                
of the natural drift of the angle Ω.  

Remark: The final longitude for the rendezvous is fixed 
to (deg)N*360vL Rffff +++= Ωω . The optimal 

number of revolutions RN is determined by trying 
different values around TN , the number of revolutions 
for the transfer problem which has to be solved first. 

Let us consider now a rendezvous between slightly 
elliptical orbits associated with the following data: 
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The optimal consumption obtained by solving problem 
(2) with the “continuation-smoothing method” is equal 
here to: 
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The first maneuvers are not located on the first orbits 
(see Fig. 5 and Fig. 7 below) and our tool based on 
mathematical programming is not able to guess such 
a strategy alone. More precisely, if we tell the tool at 
which orbit begins the first maneuver, it obtains in three 
impulsive maneuvers: 

        +∞==− maxf0 F  withkg407.19)t(mm       (31) 

Let us notice that the consumption obtained in (30) 
with N40Fmax = is lower than the one obtained in (31). 
This is due to the fact that the mathematical 
programming tool encounters difficulties to locate with 
precision the longitude of the first maneuver. 

Now, if we locate as an initial guess the first maneuver 
at the first orbit (like in the case of a rendezvous 
between circular orbits) our mathematical programming 
software remains stuck to this solution which is a local 
minimum for the problem. Four maneuvers are needed 
and the associated consumptions are equal to: 
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When +∞≠maxF  the mathematical programming tool 
assumes again that the thrust direction is constant in an 
inertial frame. As the number of maneuvers is fixed here 
to four, the thrust durations are rather long hence the 
difference between the two consumptions in (32). In this 
case the maneuvers should be split in order to reduce 
this gap. Let us see now the solution obtained with 
optimal control: 

 

Fig. 4. NF 40max = - Part 1/2  



 

 

Fig. 5. - NF 40max = - Part 2/2 - 12 maneuvers (7 + 5) 

 

 
Fig. 6. NF 4max = - Part 1/2  

 
Fig. 7. NF 4max = - Part 2/2 - 45 maneuvers (25 + 20) 

5. CONCLUSION 

We have shown in this paper that in case of medium 
thrust orbital transfers, optimal control allows to save 
fuel compared to mathematical programming methods. 
The gain comes from the optimization of the thrust 
direction, considered as a function of time.  

Moreover, in case of non classical rendezvous problems 
between elliptical orbits, optimal control computes the 
optimal strategy that can be used as an initial guess for a 
mathematical programming software. Without this 
initial guess mathematical programming tools remain 
stuck in general to a local minimum of the problem.  

Finally, in the framework of shooting methods, we have 
demonstrated that smoothing techniques are very 
efficient for solving such “bang-bang” optimal control 
problems (transfers or rendezvous) even in the case of a 
large number of maneuvers. Moreover, let us notice that 
automatic differentiation tools make now the 
computation of the right-hand side of the costates 
differential equations straightforward. 
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