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ABSTRACT

The Meteosat Second Generation (MSG) is a family of
geostationary spin stabilised satellites, with an imaging
instrument (SEVIRI) capable of providing
measurements of stars, Earth horizon and Earth
landmarks, apart from the images used for
meteorological purposes. This instrument has a 20 kg
mirror that rotates around an axis parallel to the S/C X
axis (Z axis corresponds to the spin axis, X axis points
out the satellite through the SEVIRI field of view and Y
form the right-handed reference system). This rotation
can be described as an initial stage in which the mirror
is positioned in the starting point to obtain the
meteorological data, a second stage in which the
instrument is fixed (doing calibrations), and a final stage
in which the meteorological images are taken. This
movement (specially first and last stages) generates a
variation in the inertia matrix of the satellite, resulting in
nutation effects during the scanning and retracing
phases. The present paper describes the dynamical
modeling and the simulation of this effect, taking into
account not only the inertia properties, but also the
effect of anti-nutation measures provided by the design
of the spacecraft (passive nutation dampers and a
special profile in the positioning of the SEVIRI mirror).

1. FORMULATION OF THE DYNAMICS

The formulation used to describe the attitude dynamics
is the well-known Euler’s equations in its complete
form, that is taking into account the variation of the
inertia matrix with respect to the time. Then, the general
equation that describes the MSG attitude can be written
as:
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Being J the inertia matrix, ω
r

 the rotation vector and

T
r

the external torques. The time-dependant part of J, is
going to complicate the formulation of the dynamical
behaviour of the spacecraft.

2. CUSTOMISATION OF THE EQUATIONS TO
THE MSG CASE

In order to use the operational data provided by the
manufacturer, the main customisation of equation 1 is

the splitting of the inertia matrix in two: the spacecraft
without the moving instrument, and the moving
instrument itself.

The other important effect to be taken into account is
the passive nutation damping placed in the spacecraft
frame.

As external torque only the solar radiation will be taken
into account.

2.1. Decomposition of the inertia matrix

As it has been mentioned, the approach taken in the
current study is to distinguish between the SEVIRI, and
the spacecraft-without-SEVIRI inertia. The manoeuvres
are not considered, hence the latter one can be
considered as constant. Moreover, the SEVIRI is
rotating, so this rotation has to be added up when
computing the angular momentum. Taking all this into
account, the formulation of the corresponding
differential equations can be written as follows:
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Where SEVJ is the SEVIRI inertia matrix, BJ is the S/C

inertia matrix (w/o the SEVIRI instrument), and η
r

is the
SEVIRI rotation.

And isolating the differential term ω
r

:
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This is the form in which the equations are solved in the
simulations.

2.1.1. The SEVIRI inertia matrix (and derivatives)
Because the SEVIRI is moving continuously, and
displaced from the theoretical centre of gravity of the
spacecraft, the inertia matrix will be expressed in such a
way as to be able to use homogeneous transformations.
This way, the rotation/displacement of the instrument
w.r.t. the spacecraft reference frame is applied through
the use of a 4x4 transformation matrix. The



homogeneous inertia matrix is different from the
standard one, although the mapping is quite
straightforward. The general formulation of this matrix
can be defined by:
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Where Ji (i=x, y, z) corresponds to the moments of
inertia around the coordinate axis (as they appear in the
typical inertia matrix), Pij (i, j=x, y, z; i≠j) are the cross
products, iCG (i=x, y, z) are the coordinates of the centre
of gravity and M is the mass of the body.
Assuming that the initial matrix is given with reference
to the principal axis of inertia, the matrix is given by:
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The mapping between the diagonal elements of both
kinds of inertia matrices (standard and homogeneous)
is:
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If the matrix has to be expressed in a different reference
frame, then the expression to be used is:
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Where B
SEVĴ is the homogeneous inertia matrix of the

SEVIRI instrument with reference to the body-fixed
reference frame, SEV

SEVĴ  is the homogeneous inertia

matrix of the SEVIRI instrument with reference to the
SEVIRI reference frame (subscripts refer to elements
and superscripts refer to reference frames), and T is the
homogeneous transformation matrix from SEVIRI to
S/C body reference frame. In this case, this matrix is
defined by:
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Where θ is the SEVIRI rotation angle, and pi (i=x, y, z)
is the coordinates of the origin of the SEVIRI reference
frame with reference to the S/C body reference frame.

For the SEVIRI, the values of px, py and pz can be
defined as:
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Fig. 1: SEVIRI position w.r.t. S/C

The resulting matrix, once the transformation is applied
is:
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Then, the standard inertia matrix of the SEVIRI
instrument (applying the mapping between the
homogeneous and standard inertias) is as follows:
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The derivative with respect to time is:
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2.2. Nutation Damping

The MSG S/C has two types of nutation damping:
• Active Nutation Damping (AND)
• Passive Nutation Damping (PND)

The first one corresponds to an active control performed
by the on-board AOCS and based in measurements
taken from the accelerometers. It is only used during the
LEOP.

The second one is the one to be modelled. The S/C has
two passive nutation dampers, which contains a special
fluid that due to the effect of movement and dissipation
provides a mean to achieve the dumping of the nutation.
Two different models have been developed to describe
this effect.

2.2.1. Simple model
The first one was a very simple model of a viscous
angular damper mounted on the y-axis. The viscous
torque generated by this model is described in eq. (13)
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Where B is the viscous damping, and ω
r

is the angular
velocity vector.
The resulting Euler equation is as follows:
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2.2.2. Not so-simple model
The second model corresponds to an equivalence of the
physics of the PND with a spring-mass system. This is
more accurate than the model presented in the previous
section, although it is much more computationally
expensive since it requires 7 state variables (as will be
showed later). The typical formulation is:
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Where M is the mass of the system, q is the distance
measure along the line where the spring-mass is placed,
F is the force applied, K is the characteristic constant of
the spring and B is the viscous force.
In order to allow the proper use of standard
mathematical packages, the formulation of the spring-
mass system has to be done in terms of state variables
(in this case, position and velocity):
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This formulation is used for both dampers, so two
systems of these will be used. This explains the increase
from three state variables (the three components of the
angular velocity) to seven.
The new state vector Γ is defined by the following
variables:
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Where q1 is the linear displacement of the first PND, vq1
the linear speed of the first PND, q2 is the linear

displacement of the second PND, vq2 the linear speed of
the second PND.
Let’s assume that the variation of the inertia of these
dampers are negligible (this will imply a simplification
in the matrix that multiplies the derivative term in the
left-hand side in the equation of the dynamics). The
structure of the equations is as follows:
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Remind only that u

r
is the alignment of the damper, and

r
r

is the position of the mass.
The first three rows of the right-hand side are the right-
hand side of the Euler equation (see eq. 3), with the only
difference that the inertia of the PNDs has to be added.
The following two rows corresponds to the dynamics of
the first PND, and the last two ones to the second PND.
The matrix Λ  can be called pseudo-inertia matrix, since
it contains the information of the inertia of the system,
but also the coupling between this inertia and the
dynamics of the two dampers. The matrix has a
dimension of 7x7. Taking in to account that the problem
is quite sensitive to these dimensions (because of the
short steps to be taken during the numerical integration)
let’s take a look at its structure:







=





























−−−

−−−
=Λ

DC
A

rrrrrr

rrrrrr

J

yxxzzy

yxxzzy

TOT

0

1000coscoscoscoscoscos
0100000
0010coscoscoscoscoscos
0001000
0000
0000
0000

222222222222

111111111111

αβγαβγ

αβγαβγ

(19)
Where cosα, cosβ and cosγ are the cosines that define
the alignment of the dampers (i.e. the components of
u
r

), and rij corresponds to the j component of dumper i.
The matrix is divided in 4 boxes, and its structure (along
with the existence of the identity matrix in the fourth
box of the diagonal) allows obtaining the inverse of a
7x7 matrix by the inversion of a 3x3 matrix and the
multiplication of a 4x3 matrix and a 3x3 matrix:
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3. SIMULATIONS

3.1. Inputs

The second step (once the model is defined), is setting-
up the inputs to the system. For the present work, and
extrictly speaking, there is just one input to the system,



which is the solar torque. There is also another source of
“perturbation”, which is the movement of the SEVIRI
instrument. It causes the inertia matrix to vary, and
hence modify rotations around the three axes. For this
reason, the angle of the instrument will be taken into
account, and considered as input in the present study.
The angle shows the typical cycle in the scanning
process, which is:

• Retracing: coming back to the initial position
to start the scanning.

• Calibration: short period in which the mirror is
calibrated against a black body.

• Scanning: the image is obtained.

The shape of the angle profile can be seen in the
following figure, and although it varies depending on
the season, the shape is typically the same:
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Fig. 2: Angle profile of SEVIRI

Although it looks a straight line, the motor used to move
the mirror is a stepper one, so if a more detailed view of
the profile is taken, the real shape is:
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Fig. 3: First 4 seconds of the SEVIRI angle

The initial rise is modelled as an S-curve (which is the
typical one for servoing electric motors), and it lasts for
5% of 1-revolution time. It can also be seen that after
the first step, there is a revolution with no movement at
all (from now on defined as waiting step, being the
nominal a 1-waiting step). The reason for that is to
minimise the nutation produced by the SEVIRI
movement taking advantage of the nutation fade-out due
to the lack of input. There is also another of these

“blank” steps, just one step before reaching the target
position.
The input will consist in two consecutive cycles as the
one described, mainly to avoid the transient terms in the
first one, and see the steady-state effects in the second
one.

3.2. Results

The following sections will show figures with three
different plots, each one corresponding to the x, y and z
components respectively of the satellite rotation vector
in spacecraft reference frame (in rad/s).

3.2.1. Simple model of damper. Nominal profile

Fig. 4 shows the results after simulating 2 nominal
cycles of the SEVIRI instrument.
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Fig. 4: Results of the simulation (simple dumper,
nominal profile).



The effect of the nutation is clearly seen around 1000
seconds in the middle graph, with maximum amplitude
of less than 5x10-4 rad/s.

3.2.2. Simple model of damper. No waiting steps

Fig. 5 shows the results of the simulation.
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Fig. 5: Results of the simulation (simple damper, no
waiting step)

The most remarkable aspect of the graph is the
increment in the amplitude of the nutation (during the
transient mode) about 50 % with respect to the results
shown in Fig. 4 (which confirms the suitability of the
nutation damping approach).

3.2.3. Simple model of damper. 2-waiting steps

Fig. 6 shows the results of the simulation.
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Fig. 6: Results of the simulation (simple dumper, 2-
waiting steps)

This is the worst case among the ones showed in the
present study. It can be explained by the starting of a
new nutation cycle (after the stop) on a state that
corresponds to a maximum in amplitude of the nutation
fade-out.

3.2.4. Simple model of dumper. 6-waiting steps.

Fig. 7 shows the results of the simulation.
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Fig. 7: Results of the simulation (simple damper, 6-
waiting steps)

The peak values observed are pretty similar to the ones
observed in the 1-cycle stop. This time the SEVIRI
rotation is stopped almost one nutation cycle, which
implies a quite long progress in the nutation fade-out.
The reason for higher mean-peak values can be found in
a non-optimal start of the new nutation cycle.

3.2.5. Not so simple model of dumper.

The implementation of the more accurate model of the
dumper into the simulation does not provide much more
information to the one obtained with the simpler one. In
fact the maximum values and timing are equivalent. For
standard mathematical packages like MatLab, SciLab or
Matlab it implies simulations of more than 2 hours,
which does not justify its use since the characteristic
results are almost the same.

4. CONCLUSIONS

It has been presented a formulation of the attitude
dynamics of the MSG satellites taking into account the
variation of the inertia due to the movements of the
SEVIRI instrument. The PND implemented by the
manufacturer has been modelled as well. The results
showed in the graphs correspond quite exactly to the
reality that can be sensed through telemetry readings,
which confirms the correctness of the model. The
simulations of the model with the spring-mass dampers
have shown that the increase in accuracy does not
justify the high amount of time spent in the simulations.

The implementation of this model using a standard
programming language such as Fortran90 or C++,
would increase the performance of the model and ease
its use for off-line analysis of the attitude behaviour of
this operational family of spacecrafts.
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