
ORBIT VARIATION AND MANEUVER ABOUT WSO/UV  

Wang Hai-hong(1,2), Liu Lin(1,2), Hu Song-jie(2)

(1) Astronomy Department, Nanjing University, Nanjing 210093, China, E-mail:xhliao@nju.edu.cn 
(2) Institute for Space Environment and Astrodynamics, Nanjing University, Nanjing 210093, china, 

E-mail:xhliao@nju.edu.cn 

ABSTRACT 
WSO/UV (World Space Observatory/Ultra Violet) is a 
spacecraft that will be located near the collinear 
equilibrium point 2  of Sun-Earth space revolving 
around the Sun, it's almost fixed with respect to the Sun 
and the Earth and its motion is period or quasi-period 
(i.e., the halo or Lissajous trajectory) around . 
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For circular restricted three-body problem, the motion 
near 2  can be conditionally stable; the motion of 
small mass object P is periodic or quasi-periodic in the 
case of linear problem. In fact, the orbit of the Earth 
move around the Sun is elliptical (the orbital 
eccentricity is ), considering this factor, 
period or quasi-period trajectory does exist or not? 
What's more, there are some other dynamical 
mechanism, such as gravity of large planets (Venus, 
Mars and Jupiter et al) and radial pressure et al, periodic 
or quasi-periodic trajectory associated with initial 
disturbance will change or not? It is concerned the 
maintenance. 
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In this article, problems described above will be 
discussed, discipline and range of the variation of the 
orbit after the orbit insertion of WSO with the complete 
dynamical model, and give the amount of fuel needed 
for the orbit maintenance and the plan of control. 

1. INTRODUCTION 
WSO/UV will be located at the one of the Earth 
opposite to the Sun and will rotate synchronously with 
the Earth revolving around the Sun. There are two 
advantages: one is the reduced effect of the Sun, another 
is the facility of transmitting observation data to the 
Earth. It’s necessary to maintain WSO/UV in the 
vicinity of a special point fixed in a rotating coordinate 
system. Such special points exist in the restricted 
three-body system of the Sun-Earth(Moon)-particle 
system and we call such special points collinear 
Lagrangian equilibrium points. In this paper the 
Earth(Moon) is referred to as the centre of mass of the 
Earth and the Moon. The reason why WSO/UV can be 
kept in the vicinity of an equilibrium point is concerned 
with the stability of these points. 

2. COLLINEAR EQUILIBRIUM POINTS OF 
THE RESTRICTED THREE-BODY 
PROBLEM 

Due to the negligible mass of WSO/UV relative to the 
mass of the Sun or the Earth, the problem of the motion 
of WSO/UV moving under the gravitational influence 
of the Sun-Earth(Moon) pair is restricted three-body 
problem. In this restricted three-body system the Sun 
and the Earth(Moon) are the two primary masses and 
WSO/UV is the small particle with negligible mass. If 
the two primary masses are moving in circular orbit, the 
distance between them is constant and they move about 
their common centre of mass at a constant angular 
velocity. In these circumstances it is natural to the 
introduction of a rotating coordinate system – synodic 
coordinate system C-xyz (see Fig. 1). The origin C is 
the centre of the two primary masses P1, P2 and x-y 
plane is the orbital plane of the two primary masses 
moving around C, and the two masses always lie along 
x axis. P1,P2 and P denote the Sun, the Earth(Moon) and 
the small particle (WSO/UV), respectively. The 
equations of motion of the small particle P are 
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Here we choose the dimensionless unit system as 
follows 
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where 1M  is the mass of the Sun and 2M  is the mass 
of the Earth(Moon), and µ  is defined 
by 2 1 2( )M M Mµ = + . 
Eqn. 1 has three collinear equilibrium solutions and two 
triangular equilibrium solutions. For the 
Sun-Earth(Moon) system, and the 
coordinates of 3 collinear equilibrium points are: 

63.0404 10µ −= ×

                

       (4) 
1 1 1 1

2 2 2 2

3 3 3 3

( , , ) (-0.9899859817,0,0)
( , , ) (-1.0100752006,0,0)
( , , ) (1.0000012668,0,0)

L x y z
L x y z
L x y z

=⎧
⎪ =⎨
⎪ =⎩

 



→
→

→

→ →

 
Fig. 1. Synodic coordinate system C-xyz  

3. ORBITAL CHARACTER NEAR THE 
COLLINEAR EQUILIBRIUM POINTS 

Since WSO/UV will be located near 2 , it’s important 
to research the stability of the motion of small particle 
near three collinear equilibrium points with small 
position displacement. Given initial displacement 

L

, ,x yξ η∆ = ∆ =  z ζ∆ = , then from Eqn. 1 we can obtain 
the equations of the motion with small displacement as 
follows: 
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where et al. indicate that the 20

xxΩ nd order partial 
derivative of with respect to positions are evaluated 
on the equilibrium points, denotes 2

Ω
(2)O nd order small 

disturbance. For three collinear equilibrium points, the 
linearized form of Eqn. 4 is 
   0 02 , 2 ,xx yy zzξ η ξ η ξ η ζ− = Ω + = Ω = Ω ζ

0C
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and (or )denotes distance between the three 
equilibrium points and the Sun (or to the Earth(Moon)), 
also

1r 2r
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For the Sun-Earth(Moon) system, the value 
of , and associated with 、 and are 1d 2d 3d 1L 2L 3L

1 1 2 3

2 1 2 3

3 1 2 3

: 2.5326591755, 2.0864535651, 2.0152106639
: 2.4843167188, 2.0570141899, 1.9850748554
: 0.0028250833, 1.0000026604, 1.0000013302
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1 2 3 4 5 6, , , , ,C C C C C C are integral constant. From Eqn. 8 
we find the motion of small particle P with small 
disturbance near  is unstable and P will be away 
from  fast. On the other hand, selecting suitable 
initial conditions to make can make the 
motion to be conditionally stable. The initial conditions 
are 

1L

1L

1 2 0C C= =

        ( )
2
2

0 0 0 2
2 2

,
d

d
d 2 0ξ η η α ξ

α
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

     (12) 

and Eqn. 8 deforms to 
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Apparently, motion described by Eqn. 13 is restricted to 
be near i and its trajectory is quasi-periodic. Eqn. 12 is 
the maneuver condition  to maintain the WSO/UV near 

point. 
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4. PLOTS OF THE MOTION NEAR 
COLLINEAR EQUILIBRIUM POINTS IN 
SYNODIC COORDINATES SYSTEM 

4.1 Motion near  2L

Only initial manoeuvre is implemented according to 
Eqn. 12 and the initial condition is 0 0 0 0 , 
the whole integrating interval is 126 days. Results (see 
Fig. 2 and Fig. 3) demonstrate a disperse trajectory. 
Hence, we can not maintain WSO/UV near the point 
with only initial manoeuvre is implemented. 
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Fig. 3 

4.2 Motion near  3L

Only initial manoeuvre is implemented, the specific 
initial condition is 0 0 0 0 , the whole 
integrating interval is 10000 days. Results (see Fig. 4 
and Fig. 5) demonstrate better stability than that near 2  
and WSO/UV will remain near with only initial 
manoeuvre is implemented. 
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Fig. 4 

 
Fig. 5 

4.3 Compare of the conditional stability near 
and  1 2,L L 3L

From numerical results we can see that the conditional 
stability near 3 is much better than that near 1 or 2 . 
One possible explanation is given as follow: a small 
particle near 3  will make up a restricted two-body 
system with the Sun, then the Earth(Moon) is just a 
small disturbing source and the quantity of the 
disturbance is very small (about in 
dimensionless), so the motion of small particle could be 
stable near ; on the other hand, when a small particle 
is near 1 or 2 , distance to the Earth(Moon) is much 
smaller and then the Earth(Moon) is not a small 
disturbing source any more, so the small particle will be 
away from the stable region fast. We also could explain 
the phenomenon from the following truth: the quantity 
of 1 associated with 3  is much smaller than that 
associated with 1 or 2  (see Eqn. 11), from Eqn. 8 we 
know that bigger quantity of 1d makes less stability, thus 
we can understand the reason why small particle near  
is more stable than particle near or . 
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5. ORBIT MAINTENANCE OF WSO/UV 
Orbit manoeuvre according to Eqn. 12 can maintain 
WSO/UV near .  2L
Specific initial conditions according to Eqn. 12 
are 4

0 1 10ξ −= × , , , 0
4

0 1 10η −= × 3
0 1 10ζ −= × 0ζ = . To 

restrict the maximum velocity change is less than 
1m/s, the interval is chosen as 4 days and the total 
manoeuvre is 912 times, thus WSO/UV will be stable 
near 2 for 10 years and the main science objects will be 
satisfied. If the maximum

V∆

L
V∆ is set to 2m/s, the interval 

can be much longer. Results have been shown in Fig. 6 
and Fig. 7. 

 
Fig. 6 

 



 
Fig. 7 

6. ORBIT MAINTAIN IN REAL FORCE 
MODEL 

There are two primary difference between the real force 
model and the simplified force model (circular restricted 
three-body model): firstly, the orbital eccentricity of the 
Earth(Moon) with respect to the Sun is about 0.017, 
that’s to say the orbit of the Earth(Moon) is a 
time-variable ellipse; secondly, other solar planets’ 
gravity has influence to the motion of WSO/UV. Since 
the quantity of the influence above is small enough, 
dynamical characters given by simplified force model 
are hold although there are some quantitive variation. 
It’s still possible to remain WSO/UV near though 
limited orbit manoeuvre implemented. 

2L

6.1 Equations of motion in real force model 
Apparently, it’s suitable to choose the mean ecliptic 
coordinate system with respect to solar barycentre of 
J2000, orbit elements and ephemeris of solar planets 
including the Earth(Moon) are given in this system, in 
fact the mean orbit elements used in our calculation are 
from [3]. If , ER R , and p denote the position vectors of 
WSO/UV, the Earth(Moon) and the planet, respectively. 
The equations of motion of WSO/UV is 
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where pµ denotes the dimensionless mass of the planet, 
E∆ and p∆ are position vectors of WSO/UV with respect 

to the Earth(Moon) and the planet, they are defined by 
         ,E E P PR R R R∆ = − ∆ = −

)
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6.2 Obtaining the conditions for manoeuvre 
To maintain WSO/UV near 2 , conditions derived from 
Eqn. 12 are still available in the real force model, just 
notice that the parameters used in Eqn. 12 should be 
associated with the temporal value derived from the 
time-variable elements of the Earth(Moon). 

L

A transformation of coordinate system is necessary in 
the calculation of conditions for manoeuvre. In the 
temporal synodic coordinate system, the barycentre of 
the Sun and the Earth(Moon) are still constant  

         ( ) (1 2,0,0 , 1,0,0T Tr rµ µ′ ′= = −      
(16) 
the location of 2 does not change in the dimensionless 
coordinate system and its coordinate is . 
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If ( ), ,r x y z and ( ), , ,r x y z t denote the position and 
velocity in the temporal synodic system C-xyz, R and 
R denote that in the J2000 mean ecliptic coordinate 
system, transformation from to  is ( , )R R ( , )r r
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(20) 
where , , ,f iω Ω are elements of the Earth(Moon) with 
respect to the Sun and they are derived from mean 
orbit[3], ( )xR θ and ( )zR θ are defined by 
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6.3 Some results from numerical simulation for 
manoeuvre in real force model 

The initial epoch is 52544.5MJD = and the interval of 
maintenance is 10 years. 
Initial conditions according to Eqn. 13 are   4

0 1 10 ,ξ −= ×
4 4

0 0 01 10 , 1 10 , 1 10η ζ ζ 4− −= × = × = × − , the manoeuvre 
interval is 4 days and the change of velocity V∆ is less 
than 1m/s, total manoeuvre is 912 times. Fig. 8 and Fig. 
9 demonstrate the results. 
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