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ABSTRACT

In this paper the validity of neglecting the relative
effect of the gravitational force of the Earth on a for-
mation of spacecraft is studied. This relative effect is
treated as an unknown disturbance acting on the sys-
tem and all control laws are designed using a linear
model that neglects this effect. A previously designed
simple linear feedback controller is tested under dif-
ferent conditions using the linear model and the full
nonlinear model that includes the gravitational force.
All tests are carried out in the presence of saturation
limits. The results show that the linear controller ex-
hibits oscillations in the transient response and poor
robustness under certain conditions. It also exhibits a
high saturation tendency, thereby leading to increased
fuel consumption. This controller also causes a high
rise in the velocity errors at ordinary values of the
gains. Based on the behavior of this controller, new
controllers are proposed that overcome these draw-
backs without any need for modifying the gains. The
controllers, when tested under saturation limits ex-
hibit high robustness characteristics due to their low
saturation tendency and nearly eliminate oscillations
in the transient response. Since these controllers op-
erate under low control forces for a greater duration
of the maneuver, they reduce the fuel required for the
process. Simulation results are provided to show the
effectiveness of these new controllers.

1. INTRODUCTION

Spacecraft formation flying is a key technology for
space missions of the future. Relative navigation per-
mits more flexibility in the mission goals of these for-
mations. The reference point, which can be a physical
satellite of the formation or a moving point in space
about which the other satellites orbit, is called the
chief while the orbiting satellites are known as the
deputies. Formation flying of spacecraft comprises two
kinds of problems. One involves rendezvous, docking,
restructuring of or acquiring a formation, while the
other involves maintenance of the relative orbit in the
presence of disturbance forces. The former type in-
volves steering a deputy satellite with respect to the
chief from an initial state to a required final state. In

these type of problems, the relative effect of the grav-
itational force of the Earth would be small compared
to the control forces. This would make one suspect
that when a reasonably robust controller is used, the
relative effect of this force may be neglected for the
duration of the control without affecting the system
stability, thus reducing the nonlinear relative dynam-
ics equations to simple linear ones.

The present work is based on [1], in which the authors
assume that in a control dominated environment, the
gravitational force of the Earth can be neglected. In [1]
a simple feedback controller with some modifications,
along with a saturation inequality, is proposed. Our
present work addresses the various issues that arise un-
der these assumptions. It should be noted that unlike
the work in [1], the current work incorporates rela-
tive gravity models and also tests the consequences of
neglecting the relative gravitational force when con-
sidering two satellites. Neglecting the relative effect
of gravity in designing the control also means that
the control must be robust in order to work in real-
world situations. This fact is used as a basis to design
controllers that are more robust to gravitational and
disturbance inputs. A good way to impart robustness
into a stable control design with saturation limits is
to reduce the possibility of saturation, which is the
approach taken here.

The paper is organized as follows. First, the simpli-
fied relative dynamics equation that neglects the effect
of gravity is reviewed and the nominal control design
of [1] is shown. Then, a new nonlinear controller is
proposed, as well as another controller that helps to re-
duce saturation. Finally, simulation results are shown
that compare all of the aforementioned control designs.

2. CONTROL DESIGN

2.1 Simplified Relative Dynamics Equations

We first present a simplified relative dynamics equa-
tions for the purpose of stability analysis. Since we
are interested in the relative dynamics, all the vector
quantities have been expressed in the Hill reference
frame [2] of the chief satellite. It is assumed that there
is no dichotomy in the orientations of the chief and the



deputy and that the deputy maintains its orientation
with respect to the chief during the maneuver.

The relative dynamics of the linearized model, which
neglects the relative gravitational force of the Earth,
can be written as [1]

D2e = D2h +
uc

Mc

−
ud

Md

(1)

where e is the position tracking error, h is the speci-
fied deviation that determines the relative orbit of the
deputy with respect to the chief, uc and ud are the
control inputs of the chief and deputy, respectively,
and Mc and Md are constants. The operator D2 is
defined as

D2(.) = (̈.)
c
+αcn× (.)+2ωcn× ˙(.)+ωcn× (ωcn× (.))

(2)
where αcn denotes the rate of change of the angular
velocity, ωcn, of the chief with respect to the reference
frame (see [3] for more details). For circular orbits,
the constant angular velocity of the chief satellite is

ω ≡ ωcn =

[

0, 0,

√

µ

r3
c

]T

(3)

where rc is the radius of the circular orbit of the chief
and the angular velocity is expressed in the chief’s Hill
frame. The desired relative distance between the chief
and the deputy satellites can be assumed to be con-
stant during the duration of the control. With these
assumptions, the relative dynamics equation reduces
to the very simple equation given by

ë + 2[ω×]ė + [ω×]2e = w −
ud

Md

(4)

where
w = D2h +

uc

Mc

(5)

and [ω×] denotes the cross product matrix [2], and all
derivatives are taken with respect to the chief.

2.2 Linear and Nonlinear Controllers

We denote the simple feedback controller used in [1]
as C1. It can be written as

ud = Md(K1e + K2ė + w) (6)

where K1 and K2 are positive definite. It will be
seen in the results that for the case of the saturated
controller C1, since the initial position error is much
higher than the velocity error, the correction of the
position error leads to a high rise in the velocity er-
ror before saturation occurs in the opposite direction
in order to reduce the velocity error. To prevent this
phenomenon, a new controller is designed here by in-
creasing the contribution from the velocity error terms.
This controller is written as

ud = Md[K1e + K2ė + K3(ė
T ė)ė + w] (7)

where K3 is positive definite. For simplicity, the
feedback gains are chosen to be diagonal with K1 =
k1I3×3, K2 = k2I3×3 and K3 = k3I3×3, where k1 k2

and k3 are positive. Substituting the controller de-
fined by Eq. (7) into Eq. (4) and neglecting the higher
powers of the components of the angular velocity ω

in relation to K1, the relative dynamics of the system
become

ë + {K2 + 2[ω×]}ė + K3(ė
T ė)ė + K1e = 0 (8)

A candidate Lyapunov function is chosen as

VL =
(eT K1e) + (ėT ė)

2
(9)

where K1 is a 3 × 3 matrix. Note that VL is positive
definite when K1 is positive definite. Taking the time
derivative of VL we obtain

V̇L = ėT (K1e + ë) (10)

The controller C2 leads to stability since the derivative
of the candidate Lyapunov function, after substituting
Eq. (8) into Eq. (10), becomes

V̇L = −ėT {K2 + 2[ω×]}ė − ėT {K3(ė
T ė)}ė (11)

which is negative semi-definite when K2 and K3 are
positive definite. Asymptotic stability follows from the
global invariant set theorem [4].

2.3 Controller to Reduce Saturation

In this section we design a controller with the intention
of reducing the possibility of saturation. As seen in the
previous section, when the gain matrices K1, K2 and
K3 are constants and positive definite, the structure
of the controller in Eq. (7) gives rise to asymptotic
stability. Using that as our basis, the basic structure
of the controller C2 is retained but the constant feed-
back gain matrices are replaced by variable ones. The
following controller is proposed:

ud = Md

(

K1

1 + (eT e)n
e +

K2 + K3(ė
T ė)

1 + (ėT ė)m
ė + w

)

(12)
where n and m are positive real numbers less than 1
and all the gain matrices are positive definite. Note
that in Eq. (12), when the tracking error is large, the
denominator is large, which balances out one or more
of the force components in the numerator, thereby re-
ducing the possibility of saturation. The constant 1
is added to avoid division by zero when the tracking
error is zero. The reason for choosing the second term
in the control structure goes along similar lines. With
this control structure, the relative dynamics equation,
after substituting Eq. (12) into Eq. (4), can be written
as

ë +
K2 + K3(ė

T ė)

1 + (ėT ė)
m ė + 2[ω×]ė +

K1

1 + (eT e)n
e = 0

(13)



2.3.1 Stability Proof

To prove the stability of controller C3, the following
candidate Lyapunov function is considered:

VL =

∫

∞

t ėT K1e

1 + (eT e)n
dt +

1

2
ėT ė (14)

With K1 = k1I3×3, where k1 is positive, we can write

VL = k1

∫

∞

t ėT e

1 + (eT e)n
dt +

1

2
ėT ė (15)

VL must first be shown to be positive definite. Defining
s ≡ eT e, we can write

1

2

ds

dt
= ėT e (16)

The second term in Eq. (15) is zero if and only if ė

is zero. To show the positive definiteness of the can-
didate Lyapunov function, it is sufficient to show that
a necessary condition for the first term in Eq. (15) to
vanish is e = 0. Denote the first term by β:

β ≡ k1

∫

∞

t ėT e

1 + (eT e)n
dt =

k1

2

∫

0

s ds

1 + sn
(17)

Since the integrand in Eq. (17) is always greater than
zero, the integral β is also positive, the exception being
the case when s = 0. The necessary and sufficient
condition for s = 0 is e = 0, which is therefore also
the necessary condition for β = 0. Thus the positive
definiteness of the candidate Lyapunov function VL is
proved.

Taking the time derivative of VL gives

V̇L =
ėT K1e

1 + (eT e)n
+ ėT ë

= ėT

(

K1e

1 + (eT e)n
+ ë

)

(18)

Substituting Eq. (4) into Eq. (18) the time derivative
of VL can be written as

V̇L = −ėT

(

K2 + K3(ė
T ė)

1 + (ėT ė)m
+ 2[ω×]

)

ė (19)

In Eq. (19), [ω×] is a constant skew-symmetric matrix
and the first term is always positive definite whenever
K1 and K2 are positive definite. Thus, the term in
the brackets is always positive definite. Asymptotic
stability follows directly from the global invariant set
theorem.

3. SIMULATION RESULTS

This section presents the results obtained by using
the controllers C1, C2 and C3 for the saturated and
unsaturated cases. The response using the nonlinear
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Fig. 1. Unsaturated Controller C1

model, which takes into account the relative gravita-
tional force, is compared with the linear model, which
neglects this force. A low Earth orbit of 6700 km is
chosen. For the purpose of simulations, an inclination
difference of 0.001 is chosen between the desired and
the actual positions of the deputy satellite with respect
to the chief satellite. The values of the gains k1, k2 and
k3 (k3 for C2 and C3 only) are chosen to be 0.1, 1.5
and 1, respectively.

Figs. 1 and 2; 3 and 4; 5 and 6 compare the responses
of the unsaturated and the saturated controllers for
C1, C2 and C3, respectively. It can be seen from these
figures that the saturated and unsaturated controllers
exhibit a great difference for controller C1, while they
are almost the same for C2 and C3. This is because C2
and C3 operate under low control forces, due to the in-
creased emphasis on the velocity terms. To understand
this we first investigate the transient responses of the
velocity errors for the three controllers. Figs. 7, 8 and
9 show that the transient response involves high peaks
in the error velocities for C1 but not for C2 and C3.
This fact can be explained as follows: Since the initial
position error is high compared to the velocity error,
a low emphasis on the latter terms leads to saturation
for a greater duration of time and a consequent rise
in the velocity errors, before these increasing velocity
error terms can diminish the effect of the high (though
decreasing) position errors leading to either a loss of
saturation or saturation in the opposite direction. But
when the contribution from the velocity terms is high,
the effect of the position errors gets diminished much
earlier, thereby reducing the saturation tendency. As
will be shown later, an increased emphasis on the ve-
locity terms within the limits of stability leads to low
control forces.

Figs. 10, 11 and 12 show the transient response at a
low control saturation limit (Fsat = 0.1N) for con-
trollers C1, C2 and C3, respectively. Since C2 and C3
operate under low control forces for a greater duration
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Fig. 2. Saturated Controller C1, Fsat 5N
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Fig. 3. Unsaturated Controller C2
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Fig. 4. Saturated Controller C2, Fsat 5N

of time, their transient responses are less susceptible
to changes in the saturation limit than C1. Note that
the increased oscillations in C1 lead to a large dis-
agreement between the linear and the nonlinear model
responses. But, from Fig. 12, we see that controller C3
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Fig. 5. Unsaturated Controller C3
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Fig. 6. Saturated Controller C3, Fsat 5N

Table 1. Unsaturated vs. Saturated Controllers

Controller Fsat Fuel (Linear) Fuel (Nonlinear)

C1 ∞ 2752N 2749N

C1 0.1N 1552N 1340N

C2 ∞ 867.3N 857.2N

C2 0.1N 147.7N 131.4N

C3 ∞ 65.9N 71.3N

C3 0.1N 38.3N 41.1N

has equivalent linear and nonlinear model responses,
which indicates that it is the most robust controller
of the three. The z direction, which is the dominant
axis, control inputs for the linear and nonlinear model
responses are shown in Figs. 13 and 14, respectively.
Table 1 shows the required fuel for all controllers.
Clearly, the amount of control effort is significantly
reduced using controllers C2 and C3 as compared to
using C1, while also providing a faster decay time.

Our analysis in terms of position and velocity errors
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Fig. 7. Saturated Controller C1, Fsat 5N
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Fig. 8. Saturated Controller C2, Fsat 5N

can also be applied to test the system behavior when
the control parameters are altered. Since increased
emphasis on the velocity (position) error terms leads
to lower (higher) control forces, any parameter change
that causes more contribution from the velocity (po-
sition) error terms must increase (decrease) the time
duration of the maneuver. This analysis is applicable
only within the limits of stability and when there are
no oscillations. (A high increase in the position term
contribution tends to create oscillations in the system.)
An example illustrating this for controller C2 is shown
in Fig. 15.

We have seen how controllers can be designed intel-
ligently in order to reduce the saturation tendency.
Control saturation occurs when the contribution from
the position and the velocity terms are not properly
matched so that one of them dominates over the other,
as in the case of controller C1. Apart from promot-
ing control saturation, this domination also leads to a
high rise in the value of the dominated variable, since
the control is saturated in one direction for a greater
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Fig. 9. Saturated Controller C3, Fsat 5N
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Fig. 10. Saturated Controller C1, Fsat 0.1N
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Fig. 11. Saturated Controller C2, Fsat 0.1N

duration of time. Further, control switching may also
take place, which can give rise to oscillations. The
following type of controllers is proposed:

ud = Md[K1e + K2ė + f(ė) + w] (20)

where the function f(ė) is chosen in such a way that
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Fig. 12. Saturated Controller C3, Fsat 0.1N
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Fig. 13. Linear Control for C1, C2 and C3

the controller would asymptotically stabilize the sys-
tem apart from preventing a high rise in the velocity.
The latter condition can be satisfied by using higher
powers of the velocity errors in the control. For testing
this type of controller, the function f is chosen to be

f = K3(ė
T ė)

2
ė, where K3 is a positive definite matrix.

Results indicate that this controller provides even bet-
ter characteristics than controllers C2 and C3 (see [3]
for more details).

4. CONCLUSIONS

The assumption of neglecting gravity in the control
design of formation flying spacecraft has been studied.
Two controllers, C2 and C3, have been designed by
taking a careful look at the limitations of the original
saturated simple feedback controller C1. For the un-
saturated and 5N saturated cases, all controllers had
similar responses for their respective nonlinear and lin-
ear model uses. Though controllers C2 and C3 take a
longer time for the maneuver, the fuel consumption
itself is reduced, a fact which is due to the low control
forces. The real power of these new controllers was
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Fig. 14. Nonlinear Control for C1, C2 and C3

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500
0.1 
0.01
1

Time (seconds)

T
ra

ck
in

g
E

rr
o
r

N
o
rm

(m
et

er
s)

Fig. 15. Variation of k1 for Controller C2

evident when the saturation limit was small (0.1N),
which should that both the C2 and C3 controllers had
better transient response characteristics over C1 and
consumed much less fuel.
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