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ABSTRACT

This paper presents an approach to the robust design of
space trajectories in which uncertainty in both
spacecraft subsystems and trajectory parameters play an
important role. Both aleatory and epistemic
uncertainties are considered and represented by
evidence theory. The optimisation is then performed
with a novel hybrid coevolutionary algorithm. This
methodology is applied to the design of aerocapture
trajectories on Mars. Some interesting results will be
presented.

1. INTRODUCTION

Many design problems, in aerospace engineering,
are characterised by a certain level of uncertainties
especially in the early phase of the design. This is
particularly true for aerocapture manoeuvres since the
result of the atmospheric pass is sensitive to a number of
different parameters (ballistic coefficient, entry velocity,
lift-to-drag ratio, atmospheric density, etc...), associated
to different disciplines (structures,
aerodynamics,mission analysis, etc...), which in general
are not completely defined (epistemic uncertainty) or
are subject to stochastic variations (aleatory
uncertainty). Not only are these design problems
affected by uncertainties but often they are also aiming
at minimising a number of different objectives of
different nature at the same time with a consequent
coupling of the effects of uncertainties associated to the
computation of each objective. Therefore it would be
desirable, especially in the early phase of the design, to
compute solutions which are robust with respect to
uncertainties, by minimising the associated dispersion,
and deriving an index of reliability of the obtained
solutions. In recent times, robustness optimisation or
reliability enhancement techniques have received a
growing interest in multidisciplinary design and
optimisation (MDO)[1,2,3] and can represent a
promising tool also in mission analysis and design.

In this paper, an approach based on a hybridisation
of a branching technique with co-evolutionary
algorithms[8,9], is proposed for the search of solutions
that are robust to uncertainties.

Here both aleatory and epistemic uncertainties are
taking into account wusing evidence theory[l].

Robustness is expressed as the confidence or belief in
the goal attained and in the satisfaction of the
constraints. The expected values of the goals are
optimised while maximising at the same time the
associated confidence. The value of the belief in the
expected results is computed from the basic belief
assigned to the intervals containing the expected value
of the uncertain parameters The branching technique is
then used to partition the domain of each design
parameter into subdomains and on each subdomain a
co-evolutionary algorithm is executed in order to find a
set of Pareto optimal solutions. By iterating alternatively
branching and co-evolution the algorithm eventually
converges to a subset of the Pareto front. In order to
automatically select a limited set of robust solutions
among all Pareto optimal ones, only optimal
compromise among goals and associated confidence are
kept.

The use of a global search approach with no
requirements on the continuity and differentiability of
the functions overcome the problems encountered by
MDO approaches, based on gradient methods, that
make use of evidence theory[2]. Furthermore the hybrid
branching/co-evolution will provide a characterisation
of the reliability of the solutions bounding the expected
values within a confidence interval.

The proposed multiobjective optimisation is then
applied to the design of aerocapture trajectories
characterised by uncertainties on atmospheric density,
shape, L/D coefficient and thermal properties of the
spacecraft. The aim is to maximise the mass of the
payload, minimising peak heat flow and maximising the
entry corridor width.

2. REPRESENTATION OF UNCERTAINTY

It is a common habit in reliable design to classify
uncertainty, whether it occurs in input parameters or in
system model, into aleatory uncertainty and epistemic
uncertainty. The former is also referred to as variability,
irreducible uncertainty or stochastic uncertainty, while
the latter is also referred to as reducible uncertainty or
uncertainty due to a lack of knowledge. In order to
correctly treat both kinds of uncertainty in a consistent
computational framework for system engineering
several authors have recently proposed the use of
evidence theory[1,2,3]. Evidence theory, born with
Dampster and Shafer in the ’70, can be seen as a
generalisation of probability and possibility theory. In
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the following we will use the notation presented in the
work of Oberkampf and Helton[1].

Similar to probability theory, the evidence theory
representation for the uncertainty in the design vector x
is built up from the representation for the uncertainty in
the components of x. Typically, in the early phase of the
design process, specialists have a poor knowledge of
some design parameters, therefore they express a guess.
This guess is here represented by sets cof values a
parameter can assume and a basic probability (BPA)
m(e) is assigned to each set such that (i) m(0)=0 and
(ii)zm—) m(g) =1, where © is the set collecting all

possible € and unions of & The BPA for x is computed
with the simplifying assumption that there are no
correlations or restrictions involving the components of
x. Unlike probability theory that uses a single value as
the only representation for uncertainty, evidence theory
uses two values: the belief Bel and the plausibility P/
defined as follows:

Bel (Y,)=Bel,(f"' (Y )= > m,U;) (1)

Jely

PL(Y)=PL(f'¥)=>m,U,) @

Jelp

where the two index sets [z and /p are defined as:

I={j:U,c /)

(3
I,={j:U,nf(x,) =0}

the set Y, is defined as:
Y,={y:y=f(x)>vxeD} @

and UcD. Each possible value for y is then given by all
possible values assumed by the components of x within
the subsets €. The resulting BPAs for the product space
D of the subsets €, is given by the Cartesian product
€1X &X... &, of the subset of the components of x:

V2
(&) = gmi(g,)ifgl. c 4 ande=¢x¢,%x.., )

0 otherwise

3. DYNAMIC MODEL

The aerocapture manoeuvre is generally composed of
two phases: an atmospheric phase and an orbital phase.
The orbital phase before the atmospheric phase is
propagated analytically from the arrival point on the
sphere of influence to the entry point in the atmosphere.
The atmospheric phase is then propagated numerically

using the following two dimensional set of differential
equations (see Fig.1):

2
. . v .
F=v,; v,,:—ﬁz+—9+fdcosﬁ+f,smﬂ
roor (6)
SV, . Vv .
O=-"L;v,=—"L+ f, sin B+ f,cos B
r r

Aerodynamic forces f; and f; are modelled as follows:

1 S
Ji= EP(H’h)*Cd (O”Caio)v2
m (7
1 S

Ji :Ep(Hah)*C/(Cd)Vz
m

where « is the angle of attack at the entrance of the
atmosphere and is considered constant during the entire
atmospheric phase, Cy is the drag at zero angle of
attack, S the reference surface of the spacecraft and m
its mass. Here the atmospheric density p follows an
exponential profile function of the altitude #
parametrised in the density scale height A. A simplified
model is used for the drag and lift coefficients:

s
C, =C,y+kya* with | :[Cf‘cdo] ()

2

where k; , k; and k; have been taken equal to 0.00047,
3.2 and 0.4 respectively, in order to fit tabulated data
[6,7] for a conic shape re-entry vehicle (see Fig.2).
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Fig. 1. Cartoon of the trajectory model
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Fig. 2. Cartoon of the Spacecraft model

4. PROBLEM FORMULATION

Due to the high sensitivity related to aerocapture
manoeuvres an optimal design of the associated
trajectory would require a high accuracy in initial



conditions and spacecraft aecrodynamic properties. It is
common use to analyse the problem looking at the
width of the entry corridor, i.e. the interval of entry
angles for which the exit orbital parameters are as
desired, while maintaining the maximum g-load and
heat flux under a given threshold[4]. This implies some
control capabilities of the spacecraft during the
atmospheric phase. In this paper we tackle the problem
from a different prospective. In case the control is
limited or unknown, the spacecraft design should be as
such to allow aerocapture even for uncertain parameters
and initial conditions. Post atmospheric conditions are
then corrected with two Av manoeuvres, at the
apocentre and at the pericentre of the orbit resulting
from the aeromanouvre. The problem can be generally
formulated as follows:

mi[r)l F(x)
G(X) < s ©)

n(x) S nmax

where F is an objective function vector dependent on
the design vector x. The design vector x is made of the
spacecraft design parameters, the initial conditions at
the sphere of influence and on the angle of attack:

x=[v,5,a,5,Cy,R,T (10)

and is defined on a domain D. All feasible solutions
must guarantee that the heat flux and the load factors
remain for the entire atmospheric phase below ¢,,,, and
Nax TESpectively.

Here uncertainties in the value of atmospheric density
are considered epistemic due to a lack of information
about the system. On the other hand uncertainties on the
state vector at the sphere of influence can be regarded
either as aleatory, if an accurate orbit determination is
performed, or as epistemic during the preliminary
design phase. Other sources of uncertainties related to
spacecraft system parameters, as shape, geometry, mass
and heat flux resistance, are considered to be epistemic.
Here it is assumed that the uncertainty in the geometric
and aerodynamic parameters are not directly correlated.

Problem 1:

In the first problem incoming conditions are affected by
a certain level of uncertainty. A tracking station gives
two intervals of values for the incoming velocity with
probabilities reported in Tab.1. In the same way, for the
atmospheric density two different models prescribe
different set of values within a given range.

The aim is to optimise design parameters S,Cy, R, and
the control parameter £, in order to maximise the belief
of being in the aerocapture corridor Bel, (7 upramin ramax})s
i.e. the apocentre radius r, at the exit point from the

atmosphere must be within a given range of values in
order to avoid either re-entry or escape. In addition the
manoeuvre must minimise the total Av=Av,+Av,
required to correct the final orbit. Problem (9) then
becomes:

Av, +Av,
F(x)=41-Bel. (Y
10-0

subjectto ¢, \/R7V3 <G NN (12)

) an

i »inax ]

where 7 is the g-load during the atmospheric leg and ¢,
has the typical value 1.89e¢-8 if the heat flux is
expressed in W per cm’[5]. The design state vector is
made up of a subset of the general design vector (10)
plus what could be considered the design margin o:

X:[ﬂasscdoﬂRb?G]T (13)

The parameter R, is the ratio between the nose tip radius
R, and the radius of the reference frontal surface Rg. The
design margin is then multiplied times the interval of
uncertainty on the entry conditions and is included in
the objective vector.

Table 1. Ranges of uncertain quantities for problem 1

Parameter BPA; BPA,
oH/H 0.1 [-0.02 0.05] 0.9100.05]
v(km/s) 0.1[2.752.77] 0.91[2.76 2.77]
op 1 [-1e-4 le-4] -
0 0.1[-0.10.1] 0.9[00.2]

For each design vector x an angle of attack « is
computed in order to allow aerocapture. The angle of
attack depends on the aerodynamics of the spacecraft
and here it has been constrained to assume values in the
interval [-30°, 30°]. For too shallow entry conditions the
spacecraft must fly at maximum lift down while for too
deep entry conditions the spacecraft must fly at
maximum lift-to-drag ratio. Notice that the bpa
associated to the control variable g, for this test case,
has been set to 1 although in practise a probability of
0.99 would better represent an aleatory error.

Due to the uncertainties in the design parameters and
initial states constraint equations (12) are substituted
with a condition on the belief that constraints are always
satisfied for any aerocapture manoeuvre:

Bel(¢<gq,,.)>0.99;, Bel(n<n_ )>0.99, (14)

max




the ¢, is taken equal to 100 W/cm?® and the maximum
load factor n,,, is fixed at 5g

Problem 2:

Test problem 2 is similar to test problem 1 but this time
also the drag coefficient and the maximum bearable heat
flux are affected by a level of uncertainty. The flight
path angle is no more a control variable and the density
at zero altitude is considered sufficiently known. The
design state vector in this case is given by:

x=[S,C,.R,, 01" (15)
while uncertain parameters are given in Table 2. Notice
how the designer puts more confidence in a Cyy higher
than the nominal value while for the heat flux

confidence is toward a less performing heat shield.

Table 2. Ranges of uncertain quantities for problem 2

Parameter BPA, BPA,
OH/H 0.1 [-0.02 0.05] 0.9 [0 0.05]
VNV 1[2.76 2.77] -

op | 1[7.0597e-003-n/2 -
7.1418e-003-1/2]

Cuo 0.2[-0.1 0] 0.8[00.1]

Gonax 0.3 [150 300]
(W/en?)

0.7 [80 150]

As in the previous case the objective functions are
defined by equation (11) and constraints by equation

(14).

5. OPTIMISATION APPROACH

The proposed optimisation approach is composed of a
stochastic and a systematic step. The stochastic step is
performed using an evolution strategy and is meant to
obtain information on the possible presence of optima in
a subdomain D,c D. The systematic step is performed
through a branching approach and is used to partition
the domain D into subdomains D,. where the presence of
an optimum is expected. This particular hybridization
can be seen as a form of niching that forces different
populations to co-evolve in subregions and to form
different species. This is the first difference with respect
to usual global techniques. Other peculiarities of this
approach relies on the way each individual explores the
solution space throughout an environment-perception
mechanism. The search is performed by a number of
agents (explorers): each solution x is associated to an
agent. and is represented by a string, of length n,
containing in the first m components integer values and

in the remaining s components real values. This
particular encoding allows the treatment of problems
with a mixed integer-real data structure. A hypercube S
enclosing a region of the solution space surrounding
each agent, is then associated to x. The solution space is
then explored locally by acquiring information about the
landscape within each region S and globally by a
portion of the population, which is continuously
regenerated forming a pool of potential explorers. Each
agent can communicate its findings to the others in
order to evolve the entire population towards a better
status. During the evolutionary step a discoveries-
resources balance is maintained: a level of resources is
associated to each agent and is reduced or increased
depending of the number of good findings of the agent.
If many agents are intersecting their migration regions
and their reciprocal distance falls down below a given
threshold, a repelling mechanism is activated. The
threshold is a function of the number of crowding
agents and a best-in-worst-out rule is used to select the
repelled agent (for a comparison with known methods
the interested reader can refer to [8] and [9]).

5.1  Constraint Handling Technique

The algorithm described solves bound-constrained
problems but since in most of the cases, constraints are
nonlinear, an extension of the algorithm has been
developed in order to take into account nonlinear
inequality constraints.

At each evolution step the population of solutions is
divided into two subpopulations and a different
objective function is assigned to each one, namely one
subpopulation aims at minimising the original objective
function while the other aims at minimising the residual
on the constraints defined as:

min /(v) = >e" (16)

where ¢ is the number of violated constraints and R; is
the residual of the j-th violated constraints. The two
subpopulations are evolved in parallel and individuals
are allowed to jump from one population to the other,
i.e. if a feasible individual becomes infeasible it is
inserted in the subpopulation of infeasible individuals
and assigned to the solution of problem (16), on the
other hand if an infeasible individual becomes feasible it
is inserted in the population of feasible individuals and
allocated to the minimisation of the original bound
constrained objective function f. As a result the final
optimal solution either is feasible or minimises
infeasibilities. This procedure does not maintain
feasibility for any individual, therefore once a feasible
set has been found the perception mechanism is used to
ensure that every move maintains the feasible
population inside the feasible set. If /* is the value of the



objective function of an individual y inside the feasible
set, the objective function of a new individual generated
from y is then augmented in the following way:

min f =
yeD f

- S ifeveryR <0 17)
/" +maxR ifany R, >0

The described strategy co-evolving two populations
with two different goals, allows a flexible search for
feasible optimal solutions: in fact through the described
use of the perception mechanism feasibility can be
enforced on all feasible solutions. In this case the
exploration of the solution space may be over penalised
reducing the convergence rate. Therefore in order to
search more extensive along the boundary of the
feasible region a subset of the feasible solutions is
allowed to temporary violate the constraint while
preserving the feasibility of at least the best solution.

5.2  Nondominated Sorting

The multiobjective optimisation algorithm is based on
the Pareto dominance of the individuals. Each feasible
solution is compared with the entire population and a
dominance index [I; is associated to the solution
according to:

ifall F'(k)> F/(k) = I, =1, +1
fork=1,..mand j=1,..,.N

P

(18)

where m is the dimension of F, and N, is the number of
individuals. For a reduced set of individuals using the
perception mechanism to explore the solution space a
strict dominance is used:

if any F'(k)> F/(k) = T =T/ +1 (19)

fork=1,..mand j = 1,..,np

where n, is the number of evaluations performed by an
individual i in the neighbourhood space contained in S'
plus the individual itself. Anyway this generates a set of
nondominated individuals. A further selection is then
performed by giving to each individual a reward
dependent on how far has travelled in the solution space
from the parent individual. Then all individuals are
ranked according to their dominance index.. Unlike
usual population-based mechanisms that drive the entire
population to cover the Pareto front, this mechanism
induces the agents to craw/ along the Pareto front.

6. RESULTS

The multiobjective optimisation process yields a front
of solutions. Due to the discontinuities introduced by
evidence theory and by the optimisation of the angle of

attack the distribution of solutions with a given belief is
not continuous.

Notice how, for problem 1, a consistent set of solutions
have a Bel almost equal to 1 with a corresponding low
Av cost and a large o (see Fig.3). In this case a subset of
superoptimal solutions with maximum Bel can be
clearly identified. On the other hand, for problem 2, the
number of superoptimal solutions is limited and for a
reduced o (see Fig.4). This is indeed reasonable since in
the former case £ could be chosen optimally. In the two
figures we reported also all the solutions with Bel equal
to zero. Notice that these solutions have anyway a non-
zero Pl.

2

1.5 Super Optimal solutions
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Fig 3 Solution Distribution for problem 1
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Fig. 4 Solution Distribution for problem 2

In Fig.5 and 6 some design parameters and the entry
corridor for problem 1 are represented respectively.
Notice how the optimal Cy4, seems to be between 0.2 and
0.4 for all possible . The entry flight path angle,
defining the entry corridor, is measured at 125km of
altitude. The maximisation of o allows to have almost 7

degrees of entry corridor with a minimum cost of about
0.2 kmy/s.
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Fig. 5 Design parameters vs. uncertainty margin
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Fig. 6 Predicted corridor for problem 1

6.1 Monte Carlo verification of the results

In order to asses the robustness of the solution found in
the test case, a Monte Carlo simulation has been
performed taking a sample design vector and perturbing
the uncertain quantities within the given ranges. A total
of 300 samples have been taken and the results

x10°

y [km]
o

-45 -4 35 -3 -25 -2 -15 -1 -05 0
x [km] 5

Fig. 7 Apocentre distribution for an optimised solution
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As can be seen in figures from 7 to 9, the test confirms
that the selected solution is robust against perturbation
of the uncertain quantities. In particular both the
prediction of the total Av and of the entry corridor are
correct and the constraints are always satisfied.

7. FINAL REMARKS

In this paper a method for robust preliminary design of
aerocapture  trajectory. The proposed approach
combines the effectiveness of evidence theory at
modelling both epistemic and aleatory uncertainty on
design parameters and initial conditions, with a novel
co-evolutionary strategy.

Two simple examples have demonstrated how to design
an aerocapture trajectory defining some system
parameters, shape, aerodynamics characteristics, etc...
even when uncertain information are available. The
obtained solution is both Av efficient and robust against
variations of the design parameters and model data,
assuring capture within the ranges of the uncertain
quantities.
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