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ABSTRACT

The design of interplanetary trajectories requires the
solution of an optimization problem typically requiring
a first guess solution. In addition the most recent
development in low-thrust propulsion open the doors to
new perspectives for the exploration of the solar system,
while at the same time increasing the difficulties related
to the trajectory design process. In this paper an
automatic method for the preliminary definition of
complex interplanetary transfer characterized by
multiple swing by, either low-thrust or impulsive
maneuvers is presented. The goal is achieved
combining a novel methodology for the description of
low-thrust arcs, based on an inverse method, with a
global optimization algorithm based on an hybridization
of an evolutionary search with a deterministic branching
step. This approach allows a broad investigation of the
solution domain as it is required in a preliminary design
phases, where the availability a large number of first
guess solutions is important.

1. INTRODUCTION

The design of an interplanetary mission is aimed at
obtaining the maximum scientific benefit at the lowest
cost; this deeply influences the definition of the
trajectory. So far the concept of multiple gravity assist
transfers has proven to be the best solution to this
problem. Yet recently NASA Deep Space 1 and ESA
Smart 1 showed the effectiveness of low-thrust systems
as a primary propulsion, thus opening the doors to new
missions in the solar system exploiting the beneficial
effects of the combination of gravity assist manoeuvres
and low thrust systems. Such a new scenario,
characterized by new propulsion systems and driven by
growing and challenging demands of exploration,
makes the task of mission analysts even more difficult.
Traditionally trajectory design has been accomplished
mainly resorting to optimisation methods, based on
gradient techniques or optimal control theory. These
methods require a first guess solution, which deeply
affect convergence, typically defined by the experience
of mission analysts. Additionally the development of
new design processes, mainly based on concurrent
design engineering principles, as in the Concurrent

Design Facility (CDF) in ESTEC, requires a quick
assessment of a large number of solutions, possibly
finding the best one. So far just a limited number of
effective  automatic  preliminary  design  tools
[11,[2],[3],[4] have been developed such as STOUR-
LTGA by people from JPL and Purdue University,
proving the importance of having an effective,
sufficiently accurate and very rapid automatic tool
capable of defining a large number of feasible
preliminary solutions.

2. TRAJECTORY MODELLING

One of the major difficulty related to the preliminary
design of low-thrust trajectories, is the unavailability of
both sufficiently general analytical solution[1] and/or
Lambert’s like algorithms for a thrusting spacecraft.
Consequently for most cases numerical propagation of
the trajectory subject to a given thrust is necessary, with
the solution of a NLP problem requiring a considerable
computational effort. An interesting alternative, known
as shape based approach, was proposed by Petropoulos
and Longusky, consist of representing a trajectory
linking two points in space with a particular
parameterised analytical curve and then computing the
required acceleration to follow the given trajectory. In
this paper a novel approach based on the shape idea
(here named inverse method), allowing a full consistent
3D description of low-thrust trajectories, is presented.

2.1 Low-Thrust arcs

Considering a given proper set of solutions T, it is
always possible to easily obtain, through algebraic
computation, the necessary acceleration a, of the

propulsive system by:

~ A r
a,=r+l—
r

M

however Cartesian coordinates, due to the large
variations experienced even for Keplerian orbits, turn
out to be unsuitable for the construction of simple
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shapes for a perturbed trajectory. A more accurate
description of the evolution of a low-thrust trajectory
can be done by the orbital elements; it is well known
that the solution of the perturbed problems, in terms of
these elements can be generally represented as:

Pi(t) = po; + P, (1) )

where p = is the initial condition of the i-th parameter,

which remains constant if the motion is undisturbed,
while P, () is a time dependant function due to the

effect of any perturbative action and which is typically
small in magnitude for low thrust. Among all possible
sets of elements, equinoctial modified parameters
[p.f,gh,k L] have been chosen for their non-singularity
and applicability to general orbits. Since low-thrust
trajectories, likely with multi-spiral arcs, are going to be
investigated, a better approach consists of representing
the evolution of the equinoctial parameters in terms of
the angular variable L=Q+w+v[9]. Where v is the true
anomaly, ® is the anomaly of the pericentre and Q is the
argument of the ascending node.

Then supposing to have the shape of the trajectory,
described by means of the chosen elements, it is
possible to solve the inverse problem Eqn.1, in order to
obtain the acceleration profile necessary to follow the
imposed trajectory. The set of elements used to describe
the evolution of the trajectory are here called pseudo-
equinoctial elements @ because they do not satisfy
exactly Gauss’ planetary equations for all times in the
time domain, unless thrust is identically zero. Once the
evolution of the position vector r is known in terms of
pseudo-equinoctial elements, the velocity v and
acceleration a can be computed by analytical
differentiation:

yodr _dndl v _dv,d
dt dLdi  di dL dt 3)

J —

dL S0a oL JL dL Soa, oL

dr, 3 arj 9, +ar,. dv, 8\/_,. o, +8v_,.

In order to obtain a set of pseudo-equinoctial elements
that satisfies exactly the boundary conditions, the
following nonlinear equations should be solved:

V(L) Ly) = v, V(L)L) =V,

r(o(Ly),L,) = l'O;l'((X(Lf), Lf) =r, ®)
anyway for low values of the propulsive acceleration,
like for low thrust engines, it is often sufficient to solve

the easier linear problem for the boundary conditions of
the pseudo-elements:

L) =a, al,)=a, (6)

For more accurate trajectories the solution of Eqn.6 is
used as first guess for the solution of Eqn.5. Then, the
control necessary to follow the imposed shape is
algebraically obtained by Eqn.1, while the propellant
mass ratio can be easily computed, as a fraction of the
initial spacecraft mass. Due to change to the
independent variable L a constraint relating the time of
flight is added:

This approach is extremely fast and its computational
cost low since no propagation is required and the
differential problem is reduced to an algebraic one.
Furthermore the use of orbital elements, easily allows a
full 3D description, which turns out to be more suitable
in order to evaluate the opportunity offered by low-
thrust propulsion.

2.2 The Shape of the Trajectory

The inverse method requires the definition of the shape
of a low thrust trajectory connecting two points in
space. It is fundamental to define the proper family of
parameterised shapes, which allows a suitable
representation of a low thrust orbit. It has already been
reminded that the general evolution of an orbital
element is described by Eqn.2 with & (r) being the

disturbing effect, which remains typically small in the
presence of a low thrust perturbation. This may suggest
that the effect of a low thrust can be treated, as a general
perturbation, in terms of a secular and a periodical
component, the latter having typically a net null effect
averaged over the mean orbital period. This
circumstance has driven to consider different possible
shape for the evolution of the pseudo-equinoctial
elements such as:

o, +0,(L—Ly)+psin(L—-L, +¢) )

where p=[p,, p,,ps. ps.ps,p] 1S @ set of parameters
shaping each pseudo-element, while ogoandogl are

related to the initial and final condition for each pseudo-
element. Now the solution of Gauss planetary equations
with an imposed thrust law dependent on the inverse of
the square of the radius suggests an exponential
trigonometric shape as:

, + o’ sin[e(L - L) + 9] ®)

In this last case the frequency ® and the phase @are zero
for the orbital parameter p, ®is common to all other
orbital elements and the control parameters are
=M A5, 0.0.,9,]". However if just the mean
evolution of the elements 1is considered, the
trigonometric term can be dropped and the shape
parameters reduced to p=[A;,AAs]". It can also be



noticed that, apart from the particular shape chosen, two
free constants for each element « allow to satisfy the
boundary conditions in terms of pseudo-elements, while
the remaining free constants allow to meet additional
constraints defined in the design process.

The inverse method does not provide necessary an
optimal solution therefore any result should be
considered as a feasibility assessment of a trajectory
within a given level of thrust or other orbit’s
characteristics such as launch and arrival velocity, time
of flight or a particular sequence of planets. It is anyway
expected that as the shape of the pseudo-elements
approaches the solution of the corresponding optimal
control problem, the inverse method will yield the
associated optimal control for the thrust.

2.3  Coast Arcs and Gravity Assist Manoeuvres

In order to have a preliminary design tool, capable of
assessing different type of trajectories a model for coast
arcs and for gravity assist manoeuvres, have been
introduced. This allows to treat full ballistic or
impulsive transfers or to consider coast arcs in LTGA
transfer. If a pure coast arc between two planets is
considered the initial condition is analytically
propagated up to the time of a deep space manoeuvre is
expected, and then a Lambert’s algorithm is used to
solve the problem between the deep space manoeuvre
and the following planet. Swingby manoeuvres have
been implemented with a 3D linked-conic model. The
plane of the hyperbola, defined by the vector n_, can

rotate around the incoming vector ¥, of an angle 7. The

outgoing relative velocity is then computed rotating the
incoming vector in the plane defined by n_, of an angle

0=0(r,) where r, is the pericentre radius.

2.4  Composition of the Trajectory

The trajectory is divided into a number of phases equal
to the arcs connecting the planets. The relative launch
velocity is a free parameter and, in case of thrust arcs,
the relative incoming velocity at the target planet is an
additional free parameter. The relative outgoing velocity
from each swingby is computed as explained in the
previous section. Initial and final position are derived
from the 3D analytical Ephemeris for each phase k, and
the procedure is then iterated in the same way to all the
phases. For multi-spiralling thrust arcs around the Sun,
an integer auxiliary variable n is introduced. Therefore
the final anomaly [ ;€ [0,27], which defines the final

position, is modified through: Zf =L, +2m

Either fixed or free swingby sequence problems can be
implemented. In the former case, given a sequence of
gravity-assist bodies a search is started over a range of
launch dates, encounter times and gravity assist

parameters 77 and O, in order to locate the best low-
thrust gravity assist trajectory reaching a target planet.
The solution is defined in terms of the most relevant
design parameters such as: launch date, launch velocity
(vector), transfer time to each planet of the sequence,
arrival velocity at each planet of the sequence, altitude
of the swing-by manoeuvre and thrust level required.
Alternatively if the sequence is free a string of integer
variables n,’ is added to the list of the parameters
defining the trajectory, each integer variable n,
representing the identifying number of a i-th celestial
body.

The model presented above, in its general form allows
the quite accurate description of impulsive multiple
gravity assist interplanetary transfers and a preliminary
definition of low-thrust trajectories. The complexity of
the model increases the number of degrees of freedom
and potentially optimal solutions. Moreover if the
sequence is free the search for an optimal trajectory can
be formulated as a general mixed integer nonlinar
programming problem, which has been solved as
explained in the following chapter. The complexity of
the model can be easily reduced by a 2D representation
of the trajectory or by removing deep space manoeuvres
(only Lambert’s arcs are allowed between two planets)
and the parameters 77 and J. In the latter case swingbys
need to be propelled (Av-GA) and the total cost of the
Av-GA has to be minimised. Notice that this reduced
model decreases the degrees of freedom and simplifies
the search but rules out a number of potentially
interesting options such as resonant trajectories [7].

3. THE OPTIMISATION APPROACH

The proposed optimisation approach, implemented
in software code called EPIC, is based on Evolutionary-
Branching (EB)[5,6]. Evolutionary-Branching is a
hybrid deterministic-stochastic approach to the solution
and characterisation of constrained and unconstrained
multimodal, multivariate nonlinear programming
problems with mixed integer-real variables and
discontinuous quantities. The EB approach is based on
the following principal ideas:

. An evolutionary strategy is used to explore
globally and locally the solution space D. Then a
branching scheme, dependent on the findings of the
evolutionary step, is used to partition the solution
domain in subdomains. On each subdomain a new
evolutionary search is performed. The process continues
until a number of good minima and eventually the
global one are found.

. The search is performed by a number of agents
(explorers): each solution y is associated to an agent.
and is represented by a string, of length #, containing in
the first m components integer values and in the
remaining s components real values. This particular
encoding allows the treatment of problems with a mixed



integer-real data structure. A hypercube S enclosing a
region of the solution space surrounding each agent, is
then associated to y. The solution space is then explored
locally by acquiring information about the landscape
within each region S and globally by a portion of the
population, which is continuously regenerated forming a
pool of potential explorers.
. Each agent can communicate its findings to the
others in order to evolve the entire population towards a
better status.
. During the evolutionary step a discoveries-
resources balance is maintained: a level of resources is
associated to each agent and is reduced or increased
depending of the number of good findings of the agent.
Evolution is governed by four fundamental
operators: mutation, migration, mating and filtering.
The mutation operator generates a new individual
perturbing an old one. The mating procedure takes two
individuals and generates two children mixing the
genotypes of the two parents. Four schemes are used to
mate individuals: single point crossover, arithmetic
crossover, extrapolation, by which a new individual is
generated on the side of the best individual between the
two parents, and a novel operator called second order
extrapolation. This mating operator uses two parents
and the child generated with an extrapolation mating to
build a local quadratic model of the fitness function and
then takes the minimum of the quadratic form.

3.1 Environment Perception and Migrations

Each region S is evaluated using a mechanism called
perception. This operator samples the environment in
order to improve the status of the agent. A new region S
is then associated to the best discovery resulting in a
migration of the explorer towards a place where better
resources are expected. For this reason each hypercube
S is here called migration region. The subpopulation is
generated with the following procedure: a first child is
generated, within S, mutating the parent, then an
extrapolation mating is performed. The two resulting
children and the parent are then used to generate a third
child using second order extrapolation mating. The
procedure is repeated until either an improvement of the
agent is found or a number of samples equal to the
number of coordinates have been generated. The
contraction or expansion of each region S is regulated
through a parameter p which depends on the findings of
the perception mechanism: if none of the samples is
improving the agent’s status, the radius is contracted
taking the distance of the best sampled point from the
agent.

3.2  Filtering & Ranking

A permanent population of npop agents is
maintained from one generation to another. Each
individual has a chance to survive and to become an

explorer provided that it remains inside the filter. The
filter ranks all the individuals on the basis of their
fitness from best to worst. All the individuals within the
filter are explorers the others belong to the above
mentioned pool and are either hibernated (i.e. no
operator is applied) or mutated while migration is
applied to all individuals within the filter. The
probability of being mutated or hibernated depends on
their ranking. Mating is operated between all the
individuals that present an improvement during one
generation (exchange of information).

3.3  Regeneration

The mating operator is used also to prevent crowding of
too many agents in the basin of attraction of the same
solution: if many agents are intersecting their migration
regions and their reciprocal distance falls down below a
given threshold, a repelling mechanism is activated
which mates the worse individual with the boundaries of
the subdomain D,. The threshold is a function of the
number of crowding agents and a best-in-worst-out rule
is used to select the repelled agent.

3.4  Branching Step

Branching is based on the output of the evolutionary
step in two ways: the cutting points for the partition of
the domain D are either selected according to an
inference model (predictive branching) or taking the
worst and the best individuals out of the evolutionary
step; for each subdomain the density of agents @, and

the average value of the findings ¢, are computed. The

subdomains are then ranked according to the quantity:

Wy, =00, +(1-0)p, ©)

where o is the weighting factor used to favour either
exploration or convergence and the best, according to
(9), among the subdomains for which something better
has been discovered, is subdivided further.

3.5 Constraint Handling Technique

At each evolution step the population of solutions is
divided into two subpopulations and a different
objective function is assigned to each one, namely one
subpopulation aims at minimising the original objective
function while the other aims at minimising the residual
on the constraints defined as:

q9
inF(y)=> e" (10)
min F(y) ;e

where ¢ is the number of violated constraints and R; is
the residual of the j-th violated constraints. The two
subpopulations are coevolved in parallel and individuals
are allowed to move from one population to the other.



Moreover, if F' " is the value of the fitness function of an
agent y inside the feasible set, the fitness function of a
new individual, or a sample, generated from y is
augmented in the following way:

min F =
yeD

F’ ifevery R, <0 (11)
F"+maxR if any R, >0

The described strategy co-evolving two populations
with two different goals, allows a flexible search for
feasible optimal solutions: in fact through the described
use of the perception mechanism feasibility can be
enforced on all feasible solutions or just on a subset
among the feasible ones. In the latter case a more
extensive search along the boundary of the feasible
region is allowed, while preserving the feasibility of at
least the best solution,.

3.6  Mixed Integer nonlinear programming
approach

IMAGO allows to leave the sequence of planetary
encounters completely free. This leads to the solution of
an integer nonlinear programming problem. The
sequence of encounters is implemented as a string of
integer numbers s;=/ny’,ny’,... n,"] where n; is the
identifying code of a planet and m is maximum number
of planetary encounters. The branching scheme is then
applied also to the integer part of the vector partitioning
the set of possible integer values assumed by the
parameters n; . At the evolution level the mixed integer-
real vector is processed evolving the integer part at a
different rate with respect to the real part, i.e. for each
generated sequence of planets the a number of sampling
steps of the real subdomain are taken. This allows to
partially avoid a typical barrier effect occurring in the
automated design of multiple gravity assist manoeuvre
with free sequence: when a good solution is found for a
given set of launch date, time of flights and date of
planetary encounters, any variation of the sequence that
preserves the set causes a drastic increase in the fitness
function.

4. TEST CASES

The methodology presented in the previous chapter is
the core of an integrated automatic design tool called
IMAGO (Interplanetary Mission Analysis Global
Optimization), capable of either quickly or deeply
investigating large domains searching for the most
promising trajectories.

4.1 Direct Transfer To Mercury

A direct transfer to Mercury, due to its eccentricity high
inclination and high Av requirements, represents the
best example to test the capability of IMAGO in terms
of shapes, multiple revolution and 3D description.

Launch and arrival relative velocity are set equal to zero
and the maximum acceleration is constrained to S5e-4
m/sz, while the I,=3200s and the maximum time of
flight is 1400 days. Then EPIC has been applied to this
case bounding the departure date within the interval
[3285 5475] and the number of revolutions within the
interval [1 6].

The optimiser found a number of optimal solutions,
among them the equinoctial parameters of one of the
best have been plot in Fig.1 and compared to the shaped
parameters. As can be seen the shaped parameters
follow the mean value of the osculating parameters.
Fig.2 demonstrates how the thrust remains always
below the imposed constraint while the inplane
(elevation) and out-of-plane components of the thrust
are reported in Fig. 3. Notice how the out-of-plane
component oscillates with once per orbit with maximum
amplitude when the spacecraft is far from the Sun. As a
further validation of the result the solution obtained with
IMAGO has been used as first guess for a refined
optimisation with the software DITAN[8]. As can be
seen in Tab./ the two results are in good agreement.
Notice that the first guess produced by IMAGO is in
general an overestimation of the actual cost of the
transfer.
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Fig. 2. Control Acceleration Profile
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Table 1. Summarising transfer information

have several alternative realistic solutions including
resonant orbits as for the EMMIJ case reported in Tab. 2.

Table 2. Examples of MGA transfers to Jupiter

Sequence |EVEEJ |EVEEJ |EVEEJ |EMMIJ |EVVE]
LaunchDate | 17/08/10 | 29/07/10 | 27/10/13 | 20/03/14 | 28/10/13
Cykm/s?) | 8.41 1.6 [13.659 [1095 |15.01
AV g (kmjs) | 2.1 1.6 0.1347 [3.10  [0.618
TOF (days) |1895.5 |2685 20820 |2243  |2404.3
V. (km/s) [5.64 |55 5798 |464  [6.305

Software Launch Date TOF (day) | Prop. mass ratio
IMAGO 25/02/2014 1109.95 0.534
DITAN 18/04/2014 1084.44 0.515

4.2  Ballistic Free Sequence Transfer to Jupiter

In the same table other alternative transfers are
presented, some with a low C3 and a high total cost of
the deep space manoeuvres AV, others almost
ballistic.

4.3  Low-thrust transfer to Jupiter.

For the last test case a comparison approach with the
tool STOUR-LTGA has been followed [4], thus
showing the capability of IMAGO in treating a complex
LTGA transfer with two flybys. The sequence EVEJ has
been investigated in the year 2015 and a thrust-coast arc
has been set after the Earth flyby .

An interesting advantage offered by the proposed
optimisation approach to find efficient transfer using
multiple swing-bys (MGA) and deep space manoeuvres,
without prescribing a sequence a priori. This is a
relevant application of IMAGO since these kinds of
solutions typically turn out to be extremely interesting
even for a possible low-thrust option.

A number of preliminary solutions for the optimal
transfer to Jupiter have been designed performing the
search over the interval [3650 10950] MJD and
considering the possibility of a maximum of 3
encounters with Venus, Earth and Mars before the
arrival at Jupiter. The departure velocity have been
constrained to stay below 5 km/s.

EMMI Transfer

3 -4 -2 0 2 4 6
x [AU]

Fig. 4. Earth-Jupiter transfer via Mars
Notice that, although the number of degrees of freedom

introduced by that the model implemented in IMAGO
makes the search extremely challenging, it allows to

Table 3. Comparison of IMAGO and STOUR-LTGA

IMAGO STOUR-LTGA
Launch Date 14/04/2015 09/05/2015
Launch V,, 1.8 km/s 2 km/s
Earth-Venus TOF | 184 days 119 days
Venus flyby alt. 8816 km 4481 km
Venus-Earth TOF | 386 days 345 days
Earth flyby alt. 5964 km 4219 km
Earth-Jupiter TOF | 901 days 1027 days
Arrival V, 4.53 km/s 5.97 km/s
Prop. Fraction 0.48 0.485

IMAGO located an interesting solution for this transfer
with a smaller arrival velocity, but with comparable
propellant consumption, thus showing the capability of
treating complex low-thrust gravity assist trajectories.

EVEJ

Venus Flyby :
Earth flyby
—

" Earth launch

Switching point

Jupiter

6 1 1 1 1 1 1 1
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Fig. 5. Earth-Venus-Earth-Jupiter LTGA transfer




5. CONCLUSIONS AND RECCOMENDATIONS

In this paper a preliminary design tool for interplanetary
trajectories has been presented and its capability of
dealing with low-thrust direct transfer, LTGA and
multiple swing-by ballistic trajectories has been proved.
The various test cases show how this tool can either
quickly assess sub-optimal solutions or widely and
exhaustively investigate large domains thus providing
an effective tool for preliminary mission analysis of
interplanetary missions. Such goal has been mainly
achieved thanks to the combination of thorough
simplified model of the physics of the problem, with a
particular global optimisation technique which exploits
the suitability of evolutionary methods and the strength
of the branching step, which permits the an exhaustive
investigation of large and multi-modal domains. As a
result there is a strong suggestion that evolutionary
algorithms are suitable for preliminary trajectory design
and strongly competitive with respect to systematic
search.
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