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ABSTRACT 

The consideration of transfers to the Fuzzy Boundary 
region represents one of the more advanced concepts 
when trying to reduce the propellant requirements to 
obtain an interplanetary goal. DEIMOS Space, under 
ESA contract, has developed a tool to generate such 
transfers to inner planets, giant planets and natural 
moons of giant planets. The method is based on the 
Systematic Scan Search of Bifurcations, with a three-
step approach consisting on: selection of strategy, 
generation of initial solutions and numerical 
optimisation. 

The generation of the initial solution by systematic 
search of bifurcations is accomplished by splitting the 
trajectory into smaller arcs. The initial guess of the 
trajectories must be obtained always by backwards 
propagation from the final targeting conditions. Forward 
propagation is used from the initial conditions to match 
the backwards propagation previously derived.  

Different values of the orbit eccentricity are used when 
propagating (typically ranging between 0.9 and 1.1, 
close to the parabolic orbit). This leads to three different 
types of trajectory: close orbits below the Fuzzy region, 
escape trajectories and trajectories reaching maximum 
and minimum distances within the Fuzzy region. The 
actual change of nature in the resulting orbit 
corresponds to a bifurcation. 

Matching of forwards and backwards propagation will 
take place within the Fuzzy region, using in general a 
manoeuvre or a low-thrust arc. Finally, an optimisation 
process is started to obtain a full continuous numerically 
integrated trajectory, with minimum required propellant 
consumption. 

One of the key advantages of this new method is the 
large number of solutions found, thanks to its systematic 
scan approach. 

In particular, it has been applied to systematically 
explore trajectories between the different moons of a 
giant planet by using the Fuzzy Regions of those moons. 
A Tour of the Jupiter Galilean Moons has been created, 
allowing a spacecraft to visit a sequence of moons with 
a reduced fuel consumption when compared to classical 
solutions. 

A direct application of the method is the USA JIMO 
mission or ESA’s proposed Europa mission. 

1. DESCRIPTION OF THE METHOD 

The numerical algorithm proposed to solve the problem 
is based on a three-step strategy. 

1.1 Selection of WSB transfer strategy 

For each particular problem, a sequence of events is 
defined according to previous theoretical analyses of the 
problem. This sequence of events completely defines 
the selected WSB strategy, including the potential use 
of gravity assists or low thrust arcs. 

1.2 Generation of initial solutions 

Once the WSB transfer strategy is selected, simplified 
methods are used to generate a database of, in general, 
non-optimal transfer trajectories. The whole trajectory is 
divided in various arcs, and initial solutions are 
piecewise computed. This is the most critical phase of 
the method. 

For classical interplanetary trajectories, patched conics 
are used to generate the initial guess of the final 
solution. However, the very complex dynamics of the 
weak stability boundaries makes impossible the use of 
simple analytical calculations. 
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This is a very critical phase, as the final refinement of 
the trajectory must converge to the local minimum 
closest to the provided initial guess of the trajectory. A 
Systematic Scan Search of Bifurcations provides a very 
robust way to generate optimum transfers. This method 
is based on the division of the whole trajectory into 
smaller arcs and the individual generation of initial 
solutions for all of them. Normal arcs out the WSB 
regions are generated by Keplerian approximation or 
Lambert solver modules. Trajectories within the WSB 
regions are generated using a numerical integrator and 
single or multiple shooting methods. 

The key factors of the method are: 

- The initial guess of the WSB trajectories must be 
obtained always by backwards propagation from 
the final targeting conditions. 

- The trajectory must be propagated forwards from 
the initial conditions (i.e. interplanetary trajectory) 
to match the backwards propagation previously 
derived. 

- Matching of forwards and backwards propagation 
will take place within the WSB region, in general. 

- If a manoeuvre or a low-thrust arc is allowed at the 
WSB region, a high flexibility in finding the final 
solution is obtained. However, the final 
optimisation process tends to remove this 
manoeuvre whenever possible. 

In order to illustrate how the bifurcations are practically 
obtained, let assume a transfer from an interplanetary 
trajectory to a final orbit around a given planet via WSB 
of the planet-Sun system. 

The generation of the initial solution by systematic 
search of bifurcations is accomplished by splitting the 
trajectory up into two arcs; one arc from the WSB 
region to the final injection conditions, which is 
obtained by backwards propagation since a large 
information on the final state is given and another arc 
from the arrival hyperbola up to the WSB region, which 
is obtained by forwards propagation. 

The bifurcations are linked to the final target orbit 
(pericentre and apocentre radii, inclination, right 
ascension of the ascending node and argument of 
pericentre) and the orbit injection date.  

They are found by performing backwards propagation 
from the final orbit injection point (pericentre) for 
different values of the arrival orbit eccentricity 
(typically ranging between 0.9 and 1.1, close to the 
parabolic orbit). For increasing values of the arrival 
orbit eccentricity, the backwards propagation leads to 
three different types of trajectory (Fig. 1): 

- Type 1: the trajectory remains below the WSB 
region. 

- Type 2: the trajectory reaches maximum and 
minimum distances within the WSB region. 

Although this region is somehow not very well 
defined “a priori”, typical values lie between 0.75 
and 1.5 times the distance of the lagrangian L1 (or 
L2) point. 

- Type 3: the trajectory escapes from the planet 
influence  

WSB 
REGION

max

3 

MAX. DIST 

MIN. DIST

1 1

1

min 2 

1 

2 

2

3

2 

Fig. 1. Search of bifurcations 

The actual change of nature in the resulting orbit 
(‘jump’ from one type to another) corresponds to a 
bifurcation. Fig. 2 illustrates this behaviour. 
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Fig. 2. Behaviour of bifurcations w.r.t. eccentricity 

The forward bifurcations are computed from the 
hyperbolic arrival velocity vector and the minimum 
allowed pericentre altitude. At first pericentre passage, a 
manoeuvre is allowed to achieve the required 
eccentricity range. This approach provides an additional 
degree of freedom since the phase angle θ of the impact 
geometry in the target B-plane is not fixed. For each 
value of θ, bifurcations are calculated in an identical 
way to that presented for the backwards propagation. 

 



The last step prior to the optimisation process is to 
match the forward and backwards trajectories. If the 
separation in time, the distance in position and the 
difference in velocity are smaller than a given set of 
thresholds, the trajectories are considered as matched 
and the optimisation process is started to obtain a full 
continuous numerically integrated trajectory, with 
minimum required propellant consumption. 

In order to validate the described method to obtain 
initial solutions, an alternative approach has been 
followed, which consists on the use of a Genetic 
Algorithm Optimiser. Genetic algorithms are very well 
suited for problems with several local minima and a 
very complex structure. The main problem of this 
method is the large number of evaluations of the cost 
function and the slow convergence close to the final 
solution. However, those problems are avoided as the 
genetic algorithms are used only to obtain initial 
solutions, avoiding the need for the final step of 
convergence. 

1.3 Numerical optimisation of trajectories 

The fine optimisation of the complete trajectory by 
numerical integration is formulated as a constrained 
parameter optimisation problem. The most promising 
WSB transfer trajectories in terms of required propellant 
and mission duration taken from the database of initial 
solutions are selected for fine optimisation where 
numerically integrated trajectories satisfying all mission 
constraints are obtained. The constrained parameter 
optimisation is formulated as follows: 

- Selection of a set of physical parameters to be 
optimised which completely describe the WSB 
trajectory. 

- From above parameters, the trajectory is numerically 
integrated forwards or backwards depending on the 
trajectory leg. 

- At intermediate points, matching conditions are 
imposed as equality constraints; forwards and 
backwards integrated position vectors must be 
identical, velocity vectors must be also identical if 
no manoeuvre is applied at this point of the 
trajectory. 

- Minimum pericentre altitude inequality constraints 
must be considered for all gravity assists and 
pericentre passages. 

- The cost function to be minimised is the total 
required ∆V if impulsive manoeuvres are 
considered. In case a low-thrust propulsion system 
is utilised, the final mass is to be maximised. 

Following with the practical case of a transfer from an 
interplanetary trajectory to a final orbit around a given 
planet via WSB region of the planet-Sun system, Fig. 3 
presents a scheme of the optimisation variables. 
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Fig. 3. Description of an optimisation case 

2. APPLICATIONS 

2.1 WSB Inner Planet Capture 

The proposed method has been first applied to the 
capture by inner planets. 

One of the most important features of the problem is the 
lack of natural moons, which translates into two major 
topics: 

- Impossibility of performing gravity assists 
manoeuvres, apart from the initial pericentre 
passage. 

- Very difficult to obtain full flexibility from the 
WSB trajectory since there is not any possibility to 
fly over a four-body dynamics region, which gives 
potential for big propellant saves as the case of the 
Earth-Moon-Sun system 

The strategy for a spacecraft to be captured by an inner 
planet is described in Fig. 4 below.  
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Fig. 4. WSB inner planet capture strategy 

 



The hyperbolic arrival velocity vector provides the 
initial conditions for the problem. Since the pericentre 
altitude must fulfil certain constraints, the B-plane target 
conditions are selected such that this constraint is not 
violated. At planet pericentre, a tangential braking 
manoeuvre ∆V1 injects the spacecraft into a large 
eccentricity trajectory leading to the planet-Sun WSB 
region. At the planet-Sun WSB a second manoeuvre 
∆V2 is allowed to fine-tune the arrival conditions. At 
the subsequent pericentre, an insertion manoeuvre ∆V3 
injects the spacecraft into the final target orbit. 

The method has been applied to: 

- Bepi Colombo 

- Venus Express 

- Mars Express 

Resulting in the following general conclusions for the 
inner planet capture problem: 

- It is feasible to build trajectories to Venus, Mars 
and Mercury making use of the WSB regions. 

- The improvement in ∆V is not significant, although 
gravity losses are reduced. 

- The greatest advantage results from the increased 
flexibility in the selection of the parameters 
characterising the final orbit (essentially Ω and ω) 
with no ∆V penalty in most cases (but with 
increased transfer time). 

2.2 WSB Giant Planet Capture 
The WSB capture method described for inner planets 
can also be applied to the problem of the capture in a 
giant planet. However, the presence of several natural 
moons provides the possibility of combining the general 
strategy with a sequence of gravity-assisted 
manoeuvres. It is important to note that the geometry of 
the arrival hyperbolic velocity vector imposes a strong 
constraint over the problem with flybys, since the 
optimum results are obtained when the arrival velocity 
is in the plane of the moon w.r.t. the planet. 

The proposed strategy for a Jupiter insertion trajectory 
is a three-manoeuvre scheme presented in Fig. 5. 

 

 

 

V∞  (3) 

G IANT  
PLANET  

∆V2 

W SB  
REG ION  

1st GAM  ∆V1 
T 1 

∆V3 

2nd G AM  

 

FINAL 
 TARG ET 

ORBIT

Fig. 5. Three-manoeuvre scheme with a double flyby 

The constrained parameter optimisation problem is 
based on the following parameters: 

- Impact vector at first Moon encounter. 

- Pericentre radius at planet without considering the 
flyby, linked to the moon position in its plane 
around the planet. 

- At planet pericentre and after the first flyby, a 
manoeuvre is performed to achieve a particular 
eccentricity. 

- A second manoeuvre is performed at a certain 
distance to match the forwards and backwards 
orbits. The distance is constrained to limit the total 
time. In the analysed cases, the distance is such that 
it is not really within the WSB region. 

- At second flyby, impact vector at the moon plus the 
arrival velocity vector. 

- At planet pericentre and after the second flyby, a 
third manoeuvre is performed to insert the probe 
into the final orbit, specified by its orbital period. 
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Table 1. ∆V (m/s) / insertion time (days) for a WSB 
Jupiter capture into a 30-day orbit using two gravity 

assist manoeuvres. Transfer distances range from 15 to 
25 million kilometres. 

From the analysis of Table 1, the best combination of 
moons to perform the insertion is the one formed by Io 
and Io, with a minimum ∆V of 934 m/s and a total 
transfer time of around 370 days. These figures might 
be expected from the fact that it combines a low height 
w.r.t. the planet, thus obtaining the maximum braking, 
with a good flyby effect, just slightly worse than that in 
Ganymede. However, radiation in the vicinity of Jupiter 
might advise to replace the Io-Io solution by the 
Ganymede-Ganymede solution with higher flybys. The 
case of Ganymede amounts to 1114 m/s and 336 days. 

On the other hand, it seems that there is no possibility to 
perform a direct insertion without any manoeuvre (only 
with flybys), unless a low-thrust trajectory is used 
before the Jupiter encounter to reduce the incoming V∞ 
to practical levels. 

A similar analysis has been performed for Saturn, 
Uranus and Neptune. 

 



3. MOON TOUR USING WSB  

Following a similar approach as the one used to create 
previous planet capture trajectories, an additional 
feature has been incorporated to the software tool to 
systematically explore trajectories between the different 
moons of a giant planet by using the WSB regions of 
those moons. An application for the Jupiter system is 
presented. 

It has been checked that the WSB of the different moons 
overlap between them, thus making possible the passage 
from one region to the other. 

WSB RegionsWSB Regions

Fig. 6. WSB regions of the Jovian System 

Table 2 shows the WSB boundaries for the moons of 
Jupiter. 

Natural Moon SMMA 
(km) 

WSB min 
(km) 

WSB max 
(km) 

Io 421600 314899 578619 
Europa 670900 527741 866993 
Ganymede 1070000 756974 1561307 
Callisto 1810000 1380032 2633379 

Table 2. WSB regions of Jupiter moons. 

3.1 Moon Tour Strategy 

The strategy is similar to the inner or outer planet 
capture, searching for forward or backwards 
bifurcations from a given moon.  

From an orbit around the moon, the algorithm proposed 
makes a loop in eccentricities detecting when the 
trajectory escapes the moon and calculating the 
apocentre or pericentre of the orbiter around the planet.  

Once forward and backwards bifurcations are 
calculated, the optimisation process tries to match both 
legs, as Fig. 7 shows. Normally, a ∆V is required to 
actually connect them. 
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Fig. 7. Matching of fwd and bwd trajectory legs 

The nominal procedure for solving the problem 
comprise the following tasks: 

- Computation of forward bifurcations starting from 
the initial moon (+1). I.e. Arcs departing from an 
orbit around a moon and reaching the close-to-
WSB region, calculated by forward propagation 

- Computation of backwards bifurcations reaching 
the final moon (–1). I.e. Arcs departing from the 
close-to-WSB region and reaching an orbit around 
a moon, calculated by backwards propagation 

- Matching and optimisation of forward and 
backwards trajectories. 

In the final step, a continuous transfer trajectory is 
derived, matching the forward and backward arcs in a 
optimum way.  Candidate arcs are further optimised to 
get a continuous trajectory solving the capture problem. 
Once the constrained parameter optimisation problem 
(NLP) is formulated, the selected numerical method to 
solve it is a Recursive Quadratic Programming 
algorithm developed at the Numerical Optimisation 
Centre of Hatfield (UK) by Bartholomew-Biggs, Dixon, 
Hersom et al.  

3.2 Moon Tour Results 
Transfers from different moon within the Jovian System 
have been analysed, namely those between consecutive 
moons. The results are similar to those obtained by 
Koon et al [6], but this study follows a systematic 
approach for all the possible combinations and finds a 
bigger number of solutions. Table 3 shows a 
comparison of the values obtained in the frame of the 
study and different strategies; Hohmann transfer, best 
case (moon aligned) and Koon’s results. 

Hohmann 
transfer 

Best 
comb. 

Koon’s 
results 

Current 
study Transfer 

∆V (km/s) 
Amalthea-

Io 9.739 6.860   

Io-Europa 3.546 1.211  1.521 
Europa-

Ganymede 2.823 0.794 1.214 1.117 

Ganymede-
Callisto 2.473 0.560  1.099 

Table 3. ∆V cost of a Jovian moon tour 

Table 4 shows some of obtained results for the 
Ganymede-Europa transfer, filtered to reject ∆V bigger 
than 1180 m/s. 

 



 
  NMIS    ECC1    DV1    DTM    DV2   DTF   BOM   SOM    ECC2    DV3  TTOT  DVT 
 ================================================================================
     1 0.696504    0.   7.1 1167.3   2.9 170.7   0.0 0.664199   5.4  10.0  1173. 
     5 0.696383    0.   7.0 1160.7   3.8 129.9   0.0 0.655153  -0.2  10.8  1161. 
     7 0.696768    0.   7.0 1168.1   3.9 140.1   0.0 0.655682   0.0  10.9  1168. 
     8 0.696823    0.   7.0 1164.4   4.1 150.1   0.0 0.655377  -0.1  11.0  1165. 
     9 0.697223    0.   6.9 1161.3   4.2 140.3   0.0 0.750216  -0.3  11.1  1162. 
    90 0.692388    0.   6.7 1155.6   4.0 106.1   0.0 0.864135  -0.3  10.7  1156. 
   148 0.911409    6.   7.1 1155.4   3.0 170.2   0.0 0.652041   0.5  10.1  1162. 
   149 0.907857    8.   7.1 1112.3   3.1 178.3   0.0 0.653511   1.1  10.2  1122. 
   150 0.907390    9.   7.1 1108.3   3.2 190.6   0.0 0.652305   0.6  10.3  1117. 
   157 0.925539   -2.   6.7 1167.1   4.2 136.3   0.0 0.794112  -5.2  10.9  1174. 
   178 0.838681    0.   6.6 1169.2   3.3 208.3   0.0 0.675893  10.1   9.8  1179. 
   183 0.868982  -17.   6.9 1110.1   2.9  76.0   0.0 0.784913  -7.8   9.8  1135. 
   239 0.881432   12.   6.9 1132.4   3.1 175.7   0.0 0.652535   0.7  10.0  1145. 
   291 0.694471    0.   6.1 1173.7   2.9 172.5   0.0 0.650804   0.0   9.1  1174. 
   295 0.694978   -1.   6.2 1171.4   2.9 169.9   0.0 0.652883   0.9   9.1  1173. 
   298 0.694255    0.   6.1 1163.0   3.2 199.0   0.0 0.677597  10.8   9.3  1174. 
   300 0.695296   -1.   6.1 1153.3   3.3 205.1   0.0 0.682277  12.7   9.4  1167. 
   303 0.693867    0.   6.1 1175.6   3.9 139.9   0.0 0.655562   0.0  10.0  1176. 
   304 0.693412    0.   6.0 1167.2   3.9 133.0   0.0 0.693611  -2.8  10.0  1170. 
   308 0.693985    0.   6.0 1157.6   4.2 150.6   0.0 0.700560   0.0  10.2  1158. 
   310 0.693932    0.   6.1 1177.5   4.2 139.6   0.0 0.804656  -0.1  10.3  1178. 
   325 0.699203    0.   6.1 1161.3   2.8 162.3   0.0 0.651070   0.1   9.0  1162. 
   328 0.698322    0.   6.1 1165.4   2.8 160.3   0.0 0.646234  -1.8   8.9  1167. 
   330 0.698146    0.   6.1 1163.2   2.8 162.1   0.0 0.650893   0.1   9.0  1164. 
   339 0.697954    0.   6.1 1163.0   4.0 109.5   0.0 0.864848   0.0  10.1  1163. 
   341 0.698786    0.   6.2 1155.9   3.9 138.0   0.0 0.698671  -0.7  10.1  1157. 
   390 0.750232    0.   6.0 1162.7   4.2 163.4   0.0 0.655613   0.0  10.2  1163. 
   393 0.749944    0.   6.0 1160.1   4.3 150.5   0.0 0.751261   0.1  10.3  1160. 
   457 0.818379    3.   6.5 1158.7   3.1 183.8   0.0 0.652054   0.5   9.5  1162. 
   506 0.842159    6.   6.6 1162.9   3.0 177.8   0.0 0.656587   2.4   9.6  1171. 
   507 0.838705    8.   6.6 1149.1   3.1 190.4   0.0 0.649955  -0.3   9.7  1157. 

 
Table 4. Ganymede-Europa transfer (equatorial orbits) 

Fig. 8 and Fig. 9 shows an example of the trajectory, 
labelled as mission number 1 in the previous table, in 
the MEE2000 reference frame. 
  

Fig. 8. Ganymede-Europa transfer (XY) 

Fig. 9. Ganymede-Europa transfer (XZ) 

 

4. CONCLUSIONS 

It has been proven that trajectories making use of the 
Weak Stability Boundary region can be built 
systematically, offering the mission analyst an increased 
range of possibilities when designing missions to the 
solar system planets and moons. 

The use of WSB for planets without natural moons does 
not decrease the total ∆V required for the capture, but 
provides greater flexibility when selecting the geometry 
of the target orbit. The method has been applied 
successfully for Bepi Colombo, Mars Express and 
Venus Express. 

It has also been shown that when natural moons are 
available, gravity assists combined with WSB can be 
used to create giant planet / moon capture trajectories.  

In addition to this, a method to build inter-moon 
trajectories using their WSB has been presented. One of 
the key advantages of this new method is the large 
number of solutions found; thanks to its systematic scan 
approach  

The combination of these methods provides an 
alternative way for exploring giant planets and their 
moons. 
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