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ABSTRACT

A near-miss avoidance and fuel-minimization con-
trol is constructed for clustered multiple artificial
satellites with continuous thrust. A penalty func-
tion with respect to the distances between satel-
lites is imposed on the fuel-consumption index. The
function is formulated as positive if any distance is
less than a defined near-miss distance and as zero
otherwise. Therefore, the Euler-Lagrange equations
do not require a distinction between unconstrained
and constrained modes. It is enough to solve just
the two-point boundary-value problem even if un-
specified multiple near misses occur between satel-
lites. The simulation procedure is to repeat shooting
searches, while increasing the height of the penalty
function. The initial costate values are chosen under
the assumption that there is no penalty function.

1. INTRODUCTION

Advanced operations have a crucial role on vari-
ous flexible missions by distributed systems with a
cluster of multiple artificial satellites [1]. Cluster-
ing of two satellites has already been studied by
analyzing just one relative orbit of the Clohessy-
Wiltshire (hereafter called CW [2]) rotating coordi-
nate frame [3]. However, near-miss avoidance im-
poses more complex constraints as a cluster is com-
posed of more satellites. For n ≥ 3, assume n satel-
lites, Si, i = 1, 2, . . . , n, to be flying close to each
other. If near-miss avoidance strategy between all
of the satellites is not fully considered, a near miss
between S1 and S2 is probable after the near-miss
avoidance between S1 and S3.

Potential-function guidance is considered as one so-
lution. The respective satellites are manoeuvred as
if they have virtual repulsion. Such potential fields
have been formulated and imposed on the state-
variable space to form an equidistant constellation
around the earth [4] and a cluster center [5], respec-
tively. The advantage is that fast computation is
possible even in the case with unspecified multiple
near misses by many satellites. However, finding a
potential function to decrease fuel consumption is
difficult, which motivates us to introduce a near-miss
avoidance potential in the costate-variable space.
This paper solves the fuel-optimization problem with
state constraints by a penalty-function method [6].

Up to Section 3.2, this paper describes the detailed
derivation and result of [8]. In Section 3.3, the prob-
lems to be solved in future work are shown.

2. FORMULATION

Consider guidance of eccentricity-inclination sepa-
ration (e-i separation), a popular method of clus-
ter formation [7]. Orbits of all satellites approach-
ing e-i separation are restricted approximately on
a fixed plane passing through the origin in the
CW coordinate frame. Some near misses can be
avoided orthogonally, while the in-plane positions
coincide with each other if a satellite configuration
is far from e-i separation. However, almost all the
in-plane near misses in a process for eccentricity
separation (e-separation) are projected onto three-
dimensional near misses near an e-i-separation con-
figuration. Therefore, the guidance of the planar n-
satellite system to e-separation is considered around
an orbiting point on a circular reference orbit.

2.1 Terminal Constraints for Cluster

Each satellite Si, i = 1, . . . , n is assumed to have con-
tinuous longitudinal thrust. Linearizing the Keple-
rian orbital dynamics near the reference orbit yields
the CW equation [2],

X ′′
i − 2Y ′

i − 3Xi = 0, Y ′′
i + 2X ′

i = Ui(t) (1)

where Xi and Yi are the radial and the longitudinal
coordinates of the i-th satellite from the orbiting co-
ordinate frame on the reference orbit, respectively,
and Ui(t) is the thrust acceleration. For simplifica-
tion, xi denotes and defines
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Then, the equations of motion are given by

x′
i = f i(xi, ui),
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where ui = Ui/2. The unit time is adopted so that
the orbital frequency is equal to 1.



The final state is e-separation without thruster ac-
celeration. If ui vanishes, then

xi(t) = Ai(t)εi,

Ai(t) =




0 − 4
3 cos t sin t

1 t − sin t cos t
0 0 − sin t cos t
0 1 − cos t − sin t


 (4)

with in-plane orbital elements εi = [ε(1)i , . . . , ε
(4)
i ]T.

Here, 2ε
(1)
i /a, 2ε

(2)
i /a, and (ε(3)i /a, ε

(4)
i /a) define a

nominal longitude, a drift rate, and an eccentricity
vector, respectively, where a is the semimajor axis of
the reference orbit.

According to traditional formulation, the system is
said to in e-separation if the following all conditions
are satisfied [7].
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is suffi-

ciently small.

A loose cluster is defined as the state which satisfies
just (A) and (B). Considering the condition (C) is
out of the scope of this paper. The condition (B)
corresponds to avoidance of near-miss. In this pa-
per, any near miss is avoided by a penalty function
defined later. Hence, (B) can be excluded from the
terminal constraint. Eqn. (4) with (A) yields

ψi(xi(tf), tf) = 0, ψi = [x(1)
i + x

(4)
i , x

(2)
i − x

(3)
i ]T (5)

which is the final constraint.

2.2 Penalty Function for Near-Miss Avoidance

In order to avoid any near miss and reduce thruster
fuel consumption, the minimization of the following
index is considered,

J(u) =
∫ tf

0

L(x,u, t)dt (6)

where

L = W (x) +
1
2
|u|2, W =

n∑
j=1

n∑
j>i

w(rij) (7)

and x = [x1, . . . ,xn]T ∈ R4n, u = [u1, . . . , un]T ∈
Rn. A penalty function for near-miss avoidance is
denoted by W , where rij denotes the distance be-
tween Si and Sj . A function w will be defined later.

Constraint of x′
i = f i and ψi(x(tf), tf) = 0 are in-

cluded by considering the extremization of the fol-
lowing function:

J∗(x,u,λ, tf ,x(tf),ν) =
[
νTψ

]t=tf

+
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0
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L(x,u, t) + λT(t){f(x,u, t)− x′}

}
dt

(8)

by using the costate variables λ(t) ∈ R4n and the La-
grange multipliers ν ∈ R2n, where f = [f i, . . . ,fn]T

and ψ = [ψi, . . . ,ψn]T. The first variation is com-
puted as
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where the Hamiltonian function is introduced as

H = L + λTf (10)

The extremization δJ∗ = 0 leads to the Eular-
Lagrange equations of L and the boundary condition,
which gives

λ̇T = −∂H
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, ẋT =
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,
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In this paper, tf is to be fixed. Note that the follow-
ing condition is added if tf is not constrained.

[
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= 0 (12)

In this paper, the Hamiltonian function is given by
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Then, the Euler-Lagrange equations yields
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Figure 1: The penalty function for near-miss avoid-
ance

and
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The near-miss-avoidance penalty function w(r) is se-
lected with the property that w(r) decreases with
increasing |r| for |r| ≤ β and w(r) = 0 for |r| ≥ β.
If limr→0 w(r) = ∞ is adopted for full safety from
collision, the repulsive effect is too strong to search
for an optimum initial λi by the shooting method.
Thereby, a bounded positive w(0) is chosen. No-
tice that the integrand of J∗ has to be of class C2

or greater. Therefore, w needs to satisfy w(β) =
w′(β) = w′′(β) = 0. Moreover, it is convenient
if w(r) is an even function. The above conditions
give the following polynomial function with the low-
est power of r:

w(r) =
{ −α(r2 − β2)3 for |r| < β

0 for |r| ≥ β
(16)

which is shown in Fig. 1. The repulsive region corre-
sponds to the ellipse of which the major axis along
the longitude has double the length of the minor axis
in the CW space. This is suitable for real situations
since both longitudinal errors of thruster accelera-
tion and position measurement are larger than the
radial errors.

The minimization of Eqn. 6 does not exactly give
the fuel-minimized solution. The optimal orbits ob-
tained by minimizing J∗ is not necessarily restricted
in a domain satisfying w(rij) = 0 even if the range
of w includes zero. In this case, the solution is
not optimized exactly. Even if the solution satisfies
w(rij) = 0 for any (i, j) and t ∈ [0, tf ], the control
function solved by the minimization of J∗ with n > 2
does not necessarily minimize the total fuel consump-
tion for all the satellites which is proportional to the
total velocity change defined by

tot|∆v| =
n∑

i=1

∫ tf

0

|ui(t)|dt (17)

The consumption difference from the truly minimum
fuel will be discussed in Section 3.1 and 3.2.

2.3 Iterative Procedure for Optimization

The task is now to solve the two-point boundary
problem, Eqn. 3 and Eqn. 14, with terminal con-
straints Eqn. 15 for given initial values x(0). Since
the nonlinearity w(rij) is included in Eqn. 14, the
shooting method is applied to this problem. Hence,
an initial guess of costate values are assumed as
µ ∈ R4n = [λ1(0), . . . ,λn(0)]T. Before performing a
shooting search, µ is found with w(rij) = 0. In this
linear case, Eqn. 14 is solved analytically as
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Constraint of λi(tf) by Eqn. 11d gives

λ
(1)
i (tf) = λ

(4)
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Eqn. 18 with Eqn. 19 gives
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Simultaneous equality restricts the initial values to
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Substituting Eqn. 21 for Eqn. 18 yields
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The optimum control function is given by Eqn. 11c,

ui(t) = −λ
(4)
i (t) = −µ

(1)
i − 3µ

(2)
i t (23)

Then, µi will be formulated by the initial orbital
element set εi(0) instead of xi(0). From Eqn. 3 and
Eqn. 23, xi(t) is computed explicitly as

xi(t) = Ai(t)ε(0)i + Bi(t)
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µ
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i
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(24)

Substitute Eqn. 24 for [ψi]t=tf = 0. Then, the initial
values of control acceleration are given by

µ
(1)
i = −2(3ε

(1)
i + 2ε

(2)
i tf)/(3t2f )

µ
(2)
i = 2(2ε

(1)
i + ε
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i tf)/(3t3f )
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which are independent of (ε(3)i , ε
(4)
i ). The optimum

thrust is hence given by Eqn. 22 and Eqn. 25 if no
near miss happens for t ∈ [0, tf ], which is propor-
tional to t for any initial value x(0).

Here, the optimization of tf is considered. Compute
the cost function J(u) directly.

J =
4

9t3f

{(
ε
(2)
i

)2

t2f + 3ε
(1)
i ε

(2)
i tf + 3

(
ε
(1)
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Then,

dJ

dtf
= − 4

9t4f
(ε(2)i tf + 3ε

(1)
i )2 ≤ 0 (27)

The result is that J does not increase with the in-
creasing tf . Therefore, tf is fixed in this paper.

If any near miss happens at the initial step, the fol-
lowing is a procedure for a sequential shooting search
for an optimum µ. Let δα and δβκ for κ = 0, 1, . . .
be small positive constants, and βc be a critical dis-
tance considered as a near miss. A sequence of shots
µ denotes µm, where m means a time of shooting
iteration. Let C(α, β) denote that µm converges by
a shooting search with given α and β. The negation
of the expression is denoted by ¬. The expression
x←y is defined as “substitute y for x.”

The iteration procedure
α←0, κ←0, β←βc + δβ0, and γ←β.
Iterate to perform the following five conditional com-
mands after the shooting search;

(P1) if C(α, γ), then α←α + δα;

(P2) if ¬C(α, γ), then κ←κ + 1 and γ←γ + δβκ;

(P3) if γ �= β and C(α, β), then γ←β;

(P4) if C(α, β) and min r ≥ βc, then the search for
optimum µ is terminated successfully;

(P5) if ¬C(α, εβ) for arbitrary ε > 0, then the
search for optimum µ ends in failure.

Here, min r denotes a minimum instantaneous dis-
tance given by

min r = min
{
min{rij(t); ∀(i, j)}; t ∈ [0, tf ]

}
(28)

Therefore, min r > βc in the terminating condition
(P4) shows that any near miss is avoided. When
each shooting search ends in (P1) or (P3), the last
µ is regarded as an initial guess µ0 for the next
shooting search. When each shooting search ends
in (P2), µ that satisfies the convergence condition
latest is regarded as µ0 for the next search.
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Figure 2: Distances between the respective satellites
with β = 1.04.

A shooting search corresponds to the
Newton-Raphson method. Consider Λ =
[ψ1(tf), . . . ,ψn(tf),ϕ1(tf), . . . ,ϕn(tf)]T ∈ R4n

as a function of µ ∈ R4n. The 4n-dimensional
tangential plane of Λ at µm intersects the 4n-
dimensional µ plane in the 8n-dimensional space.
This intersection point is regarded as µm+1.

In principle, a shooting method of the boundary-
value problem is repeated with fixing β and
increasing α, following the conditional command
(P1). There is another way to expand w such that
α is fixed and β is increased from zero. Changing
β, however, means varying repulsive-interaction re-
gions in the phase space, which is different from an
increase of α corresponding to just strengthening the
interaction. If α is not small, even a small change of
β results in divergence of µm because of the radical
change of interaction dynamics. However, changing
β can be the second best way while α is close to
zero. In particular, this is considered to be effective
if µm neither converge nor diverge. The conditional
commands (P2) and (P3) are hence included.

3. NUMERICAL EXPERIMENT

3.1 Initial Value

The fuel-optimum injection into clustering satellites
is now evaluated. Let the near-miss distance βc be



the unit distance, 1, and the initial values be

εi(0) =

{
[0, 0, sinφi, cosφi]

T
, i = 1, . . . , 6

[−tfπ/4, π/4, 0, 0]T , i = 7
(29)

where φi = πi/3. It corresponds to e-separation for
six satellites and eastward drift of the seventh satel-
lite. Let tf be 2π, i.e., one period of the reference
orbit. If no thrust is performed, the satellites move
along

[
x

(1)
i (t)

x
(2)
i (t)

]
=




[
sin(φi − t)
cos(φi − t)

]
, i ∈ [1, 6][ −π/3

π(t− 2π)/4

]
, i = 7

(30)

which puts all the satellites in the following danger-
ous situations. The minimum distance of an initial
cluster is equal to the near-miss distance βc. More-
over, S7 approaches S4 and S5. This is unrealistic
since a cluster should be operated to leave a safety
margin. These are, however, considered adequate
for testing the procedure. The first step, i.e., the
fuel-optimum guidance without a penalty function,
causes a collision between S6 and S7 since the satel-
lites follow[

x
(1)
i (tf)

x
(2)
i (tf)

]
=

{
[sin(φi), cos(φi)]T, i ∈ [1, 6]
[0, 1]T, i = 7 (31)

The penalty-function guidance is then necessary.

The sequence µm is considered convergent if every
component difference between the sequence is less
than 10−5. If µm does not converge during 100 it-
erations, it is considered non-convergent. The in-
crements of β at the conditional command (P2) are
fixed as δβ1 = 0.1β, δβ2 = 0.02β, and δβκ = 0
for κ = 3, 4, . . ., respectively. Let δβ0 be given
later. Each search is computed by a fourth-order
Runge-Kutta integration with a 0.002π time step
(one thousandth of a period), providing δα = 10−4

for α ≤ 0.01, and 10−3 otherwise.

3.2 Optimized Orbit

Fig. 2 shows the result with δβ0 = 0.04βc. All the
time-varying distances between satellites are graphed
at α = 0.002 and the final command (P4), re-
spectively. The parameter α is increased to 0.571.
Two bold curves show r56 and r67 in each figure.
The horizontal broken line represents βc. Although
r12, r45, r56, r67, and r17 are judged near misses at
α = 0.002, all the satellites avoid any near miss in
the final stage. The complete near-miss avoidance
orbits of (x(1)

i , x
(2)
i ), i = 1, . . . , 7 with the same δβ0

are drawn in Fig. 3. The open and the filled circles
represent the initial and the final points, respectively.
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Figure 3: Orbits of the satellites obtained by the
penalty function with β = 1.04 and δβ1 = +0.1β.

The final state that S7 is injected between S6 and S1

is obtained. For t ≥ tf , every satellite revolves once
per orbital period around the origin with each final
radius.

The shooting searches are simulated for various δβ0.
The consumed fuel and the α at the terminating con-
dition (P4) or (P5) are evaluated in Table 1, where

max |u| = max
{

max
{|ui(t)|; ∀i

}
; t ∈ [0, tf ]

}
(32)

For δβ0 ≤ 0.02, µm diverges before min r ≥ βc. Al-
though the interruption condition (P5) suggests try-
ing searches for any ε, the simulation is abandoned
without changing ε since α is already large. For
δβ0 ≥ 0.04, near-miss avoidance succeeds. A final α
decreases and tot|∆v| increases with increasing δβ0.
Assuming that each shooting search requires a con-
stant duration, a final α is nearly proportional to the
computation time. Thereby, a quick search is possi-
ble if additional fuel is used. Accordingly, δβ0 ∼ 0.1
and δβ0 ∼ 0.2 lead to tot|∆v| ∼ 1.1 with α ∼ 0.1
and tot|∆v| ∼ 1.2 with α ∼ 0.01, respectively. Table
1 implies that tot|∆v| by the exact optimum solution
is expected as about 0.9. According to our defined α
increment step, a 10% increase in β causes a 20% in-
crease in fuel with about 200 time shooting searches,
and a 20% increase in β brings a 30% increase in fuel
with about 100 searches. Therefore, guidance with
moderate increases in fuel and reasonable shooting
duration searches are constructed.

Feasibility of the maximum instantaneous thrust



Table 1: Fuel consumed for various β (δβ1 = +0.1β)
δβ0 min r tot|∆v| max |u| final α J(�)

0.01 0.99719 0.947 0.1381 8.600 —
0.02 0.99924 0.966 0.1382 2.700 —

0.04 1 0.998 0.1376 0.571 0.0343
0.08 1 1.05 0.1353 0.111 0.0378
0.16 1 1.15 0.1305 0.021 0.0452
0.32 1 1.21 0.1389 0.0033 0.0589

Table 2: Fuel consumed for various β (δβ1 = −0.1β)
δβ0 min r tot|∆v| max |u| final α J(�)

0.04 1 0.970 0.1827 0.7539 0.0365
0.08 1 1.01 0.1863 0.134 0.0406
0.16 1 1.08 0.1889 0.025 0.0493
0.32 1 1.32 0.1955 0.0066 0.0066

(2 max |u|) ∼ 0.28 shown in Table 1 is confirmed by
fixing scales. Consider cluster formation in geosyn-
chronous orbit. A unit time is a period divided
by 2π and then given by 13713.4[s]. A unit dis-
tance, i.e., the near-miss distance, is assumed as
1000[m]. A unit acceleration is then interpreted as
5.31753× 10−6[m/s2]. The maximum instantaneous
thrust approximates 1.5[mN] for 1000[kg] mass.

3.3 Problem for Future Work

The primary problem of the proposed optimization
procedure is that a search for global minimum is im-
possible if any local minimum exists and initial-guess
values are iterated towards the local minimum. Fig. 4
shows the orbit with the same δβ0 as the one in Fig. 3
but with δβ1 = −0.1β instead of +0.1β. The final
configuration by δβ1 = −0.1β is that S7 is injected
between S5 and S6, which is different from the re-
sult by δβ1 = +0.1β. Simulated annealing or genetic
algorithm is indeed a solution to be applied to the
iterative search instead of the shooting method. Be-
fore that, however, the relation between the penalty-
function formula and the existence of local minimum
should be investigated in detail.

The secondary problem is that tot|∆v| by δβ1 =
+0.1 is slightly larger than the one by δβ1 = −0.1
(see Table 2) although the former case is optimized,
concerning minimization of J(u). It is necessary to
consider more realistic formulation of costs.
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