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Bandit is a 3-kg automated spacecraft in development at Washington 
University in St. Louis.  Bandit's primary mission is to demonstrate 
proximity navigation, including docking, around a 25-kg student-built 
host spacecraft.  However, because of extreme constraints in mass, 
power and volume, traditional sensing and actuation methods are not 
available.  In particular, Bandit carries only 8 fixed-magnitude 
cold-gas thrusters to control its 6 DOF motion.  Bandit lacks true 
inertial sensing, and the ability to sense position relative to the 
host has error bounds that approach the size of the Bandit itself. 
 
Some of the navigation problems are addressed through an extremely 
robust, error-tolerant soft dock.  In addition, we have identified a control 
methodology that performs well in this constrained environment:  behavior-
based velocity potential functions, which use a minimum-seeking method 
similar to Lyapunov functions.  We have also adapted the discrete Kalman filter 
for use on Bandit for position estimation and have developed a similar 
measurement vs. propagation weighting algorithm for attitude estimation. 
 
This paper provides an overview of Bandit and describes the control and 
estimation approach.  Results using our 6DOF flight simulator are provided, 
demonstrating that these methods show promise for flight use. 
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INTRODUCTION 
 Close proximity operations between spacecraft is an area of growing interest within the space 
community.  This technology, defined for this paper as the navigation of one spacecraft within 100 meters 
of another, including docking, allows for several useful activities, including inspection or surveillance of a 
target vehicle, on-orbit assembly or repair of the target vehicle, protection of a target from space debris or 
other vehicles, or even transfer of fuel, power, data, or other resources.  Very small spacecraft – under 20 
kg – are well-suited for these types of proximity activities.  They are easy to maneuver, inexpensive to 
build and operate, and have a minimal mass cost for launch.  However, their advantages are offset 
somewhat by the constraints of their small size: they are limited in the amount of power they can generate 
and store, they cannot carry traditional precision navigations systems, and they do not have sufficient 
power or antenna gain to establish high-data-rate ground communication.  These constraints pose a 
significant navigation challenge. 

 Recent and current proximity operations programs include Surrey Satellite’s SNAP-1, MIT’s 
SPHERES [1,2], AFRL’s ANGELS project, and several others.  While these projects cover an impressive 
breadth, there is still significant room for research in the aspects of very close proximity operations (under 
10 m, including docking), multi-vehicle operations, extremely small vehicles (under 10 kg), and 
responsiveness.  Especially interesting is the combination of several (or all) of these elements.  The intent 
of Washington University’s Bandit-C project is to increase the body of research in this area.  The Bandit 
mission concept addresses the constraints of small spacecraft operation by decoupling orbital functions 
between the 3 kg Bandit drone and larger (25 kg) dedicated host vehicle.  The host vehicle, Akoya, will be 
responsible for all ground communication and power generation, enabling Bandit to be stripped to its 
essentials:  imaging, short-term power, short-range communications and navigation.  In addition, behavior-
based potential functions have shown themselves to be promising control methods for Bandit due to their 
insensitivity to uncertainties, disturbances, and errors in the system model. 

 In this paper, we will provide an overview of the Bandit mission concept and design.  We will also 
describe the behavior-based potential function controller and outline the reinforcement learning method.  
Results from our 6DOF simulation testbed for the potential function approach will be provided, showing 
the good performance of this method despite external disturbances and unmodeled variances in the 
actuators.  Finally, we will conclude by outlining a plan for future development work. 

 

BANDIT SYSTEM 

Design Concept 
 The impetus for the overall Bandit design concept comes from the distinction of orbital functions as 
either “short-period” or “long-period.”  Short-period functions last only minutes to hours and include most 
servicing functions.  These functions require short-range maneuverability, the ability to avoid collisions, 
and effective sensing and actuation.  Long-period functions sustain a spacecraft for months or even years 
(justifying the cost of manufacture and launch): power generation and storage, ground communications, 
momentum management, orbit maintenance (and possibly transfer), and so on.  Often, these two types of 
functions undermine each other – for example, the size needed to perform long-period functions reduces 
the maneuverability of the vehicle.  Bandit seeks to eliminate this conflict by decoupling these functions; 
short-period functions are performed by the 3 kg reusable service drones, while the mass- and power-
intensive long-period functions are assigned to the larger host vehicle.  The host releases the drone or 
drones for brief servicing excursions, and the drones then re-dock with the host to recharge their batteries 
or refuel.  This design philosophy allows for a minimalist service drone that carries nothing more than is 
absolutely essential for its survival.  Bandit requires only 6DOF propulsion, short-term power, and a short-
range communication system for communicating with the host vehicle.  Thus, the drone can be kept small, 
agile, and inexpensive [3].  This approach enables the deployment of many drones (even dozens) from the 
same host. 

 The enabling technology for this decoupling of functions is Bandit’s ability to re-dock with its host 
vehicle.  Because the two vehicles are only separated for a few hours at most, orbital instabilities such as 
atmospheric drag, relative orbital mechanics, and sensor drift do not have the chance to build up.  Bandit 
begins and ends every sortie attached to the host, and so does not face the problems of target acquisition 
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and rendezvous.  Using low-thrust actuators and a highly error-tolerant dock, described below, diminishes 
the effects of docking errors, further simplifying the navigation problem. 

System Design 

Flight operations for Bandit-C are constrained to take place only when the host vehicle is in line-of-
sight contact of Washington University’s ground station in St. Louis, meaning that initial drone sorties must 
take less than four minutes from release to re-dock.  Minimum mission success requires that a single Bandit 
drone be activated, released from dock, and successfully re-docked.  If this is achieved, the subsequent 
sorties will be incrementally more complex, backing the drone further from the dock over sorties lasting 
longer than four minutes and eventually performing a full inspection orbit of the host using only Bandit’s 
on-board navigation.  

 

      
Figure 1: Exploded Schematic of Bandit and Engineering Demonstration Unit 

 
The Bandit drone consists of an integrated propellant tank and electronics box; an exploded view is shown 
in Figure 1. The cold-gas propulsion system consists of eight thrusters arranged to provide decoupled 
translation or rotation about any single axis; the number of thrusters was limited by the size of the valves 
(which were themselves limited by program budget). 

 Bandit is navigated through a combination of inertial and vision sensors. MEMS accelerometers and 
rate gyros provide high-bandwidth information about Bandit's motion, although sensitivity limitations in 
the accelerometers may render Bandit’s small translational accelerations indistinguishable from sensor 
noise. An on-board vision system converts images of the host to relative position and attitude information 
at a slower frame rate, providing a way to calibrate the inertial sensors. The exterior of the host vehicle is 
instrumented with color-coded LEDs to aid the image-based navigation solution, and each Bandit vehicle is 
also outfitted with LEDs for the host-mounted vision system. We expect to process images at speeds up to 
30 frames per second, but at present the processing speed is only 1 frame approximately every 2-4 seconds. 

 It is worth repeating that the Bandit mission concept itself is a significant aid to navigation; service 
vehicles start and end each sortie atop their docks, service vehicles are designed to stay within 5 meters of 
the host vehicle, and the typical sortie lasts less than 15 minutes. Over those relative distances and time 
scales, the primary error sources (sensor noise, thruster calibration errors and relative orbital dynamics) 
build up to only a few centimeters, and the docking system is tolerant to a few centimeters' position error. 

 Bandit’s docking mechanism is a hook-and-loop-fastener pushrod.  The pushrod tip is a 2 cm diameter 
hemisphere with the hooks; the entire surface of Bandit is arrayed with squares of the loops. This 
arrangement gives Bandit tremendous margin in docking angle and offset; in air-bearing tabletop test, we 
have shown consistent, successful docking for approach angles of up to 75° and offsets of up to 3 cm. The 
hook-and-loop fastener acts as both an impact damper and a low-speed snag; again demonstrated for 
relative closing velocities as high as 100 cm/s and as low as 0.5 cm/s.  
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 We have ground-tested Bandit flight systems in three ways, including a NASA C-9 microgravity 
experiment.  Testbeds on the Washington University campus include a 3DOF air-bearing sled atop a 
precision granite surface and a Java-based 6DOF dynamic simulator that models orbital mechanics, vehicle 
translation and rotation, propulsion, and local disturbances. 

 

POTENTIAL FUNCTION CONTROL 
The use of a finite number of fixed-impulse actuators limits the applicability of published potential 

function control methods, which assume actuators with infinitely-variable magnitude and/or direction.  
Therefore, a specialized approach has been developed [4] in which the potential function, Φ, is weighted 
sum of generalized velocity errors, rather than position error (Eq. 1); firing thruster set j causes 
instantaneous changes in the generalized velocities and thus an instantaneous change in the potential, ∆Φj 
(Eq. 2).   
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Defining the weighted impulse vector created from firing thruster set j (Eq. 3) results in a simplified form 
of Eq. 2: 
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Control actions are selected by evaluating a triggering function (Eq. 5), which weighs the benefit of 
each impulse set against a cost function σj , which takes into account factors such as the propellant and 
power cost of firing the thruster as well as plume impingement from thrusters facing the target vehicle.  We 
consider σj to be a positive constant, indicative of the relative cost of firing thruster set j.  The thruster 
option which satisfies and minimizes Eq. 5 is selected; if no thruster set can satisfy this relation, no control 
action is taken. 

 ( ) jjj
T

e TN σ−−≤ 22 Tw  (5) 

Scenarios for Firing Thrusters 
Recognizing that the right-hand side of Eq. 5 is always negative, there are two cases for which a 

thruster will not be fired.  The first case is when the residual error is smaller than the control authority of 
the impulsive thrusters and/or the cost of firing a thruster (the “deadband threshold,” described in 
References 4 and 5).  The second case is when the available impulses do not span the control space, and 
thus there exist a range of weighted velocity errors for which the left-hand side is always positive. 

This scenario is avoided by the proper thruster configuration.  The controllability of a set of thruster 
configurations can be measured by comparing the scaled dot product of each configuration with an 
arbitrary unit error vector.  For the thruster option that gives the best result, we then find the worst value 
across all unit error vectors.  The result is a degree of controllability metric, α, with a range of -1 to 1:   
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A positive value of α indicates that there exists at least one thruster configuration to reduce the 
magnitude of an arbitrary generalized velocity error; if α is negative, then the thruster configurations do not 
span the error space, and the system is not controllable.  Furthermore, the magnitude of α indicates how 
well the worst-case error configuration can be managed; a value of 1 indicates that the thruster 
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configurations have uniform effect on the weighted generalized errors, whereas a value near 0 indicates that 
there are one or more directions over which the thrusters have only marginal impact. 

Potential Function Primitives  
 For translational control, we create a desired velocity opposite to the error vector:   

 ( ) edd f rrrv ˆ,−=  (7) 

Where  is always non-negative.  Similarly, for rotational control, we define a desired look 

vector, , and regulate angular velocity to align some body axis, , with that chosen direction. 
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We can now define primitives in the forms of Eqs. 7 and 8 which can be combined to create complex 
behaviors.  We first examine a basic attitude-control potential that aligns a spacecraft camera with a desired 
vector; because the image would be useful regardless of roll about the desired direction, this angle is not 
constrained, but the roll rate is controlled.  The desired angular velocity will align the body axis  with the 
desired axis , with a magnitude that is proportional to error when errors are small, but has a maximum 
allowed angular velocity µ

n̂
dn̂

ωto reduce propellant consumption for large errors:  
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Our first translational primitive maintains a set separation distance between the vehicle and a target, 
regardless of the relative position vectors.  In this primitive, the unit position error  is the relative 

position vector .  As with the rotational primitive, the desired velocity is proportional to error magnitude 
for small errors, and µ

er̂
r̂

SEP for large errors.   
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Eq. 10 is not concerned with the specific directions of the actual and desired position vectors.  For other 
situations, we may want to adjust velocity and position, rd.  We first define φ as the angle between the 
actual and desired radius vectors. 
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For close-up inspection or docking, the vehicle must maintain a safe distance from the target except for 
the region near the dock/imaging target.  For that situation, we define rd in the direction of the region of 
interest with magnitude at the desired separation distance.   
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where the maximum translation speed during collision avoidance is µSEP2 and the decay constant λSEP2 
determines the width of the safe zone for proximity operations.  Similarly, to approach a target along a 
specific direction (such as docking), we want a complementary function to drive the vehicle to the dock 
while in the zone of interest, but have no effect outside the zone:  

   (13) eAPPAPPd
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Note that on perfect approach, the closing velocity between vehicle and dock is µAPP , the velocity does 
not diminish with reduced error because of the need for finite relative velocity in docking. 

In addition to these radial controls, a circumferential primitive with maximum velocity µCIRC is shown in 
Eq. 14.  This primitive has the effect of directing the vehicle around the target onto to a specified line 
emanating from the target; separation distance is not regulated. 
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Building Behaviors from Primitives: Docking 
A docking potential is achieved by combining the docking approach function (Eq. 13) with 

circumferential control (Eq. 14) and the separation potential with zone-of-interest (Eq. 12).   

 APPdCIRCdSEPdDOCKd ,,2,, vvvv ++=  (15) 

As shown in Figure 2, each of these primitives has a region of space for which they dominate the 
potential function; the net effect is to cause the drone to retreat to a safe distance, circulate around the host 
and follow a predefined approach to dock with a finite closing speed.  This simple example creates a 
potential function with a spherical keep-out zone, but it would be straightforward to add potentials to define 
more complex shapes (e.g., to avoid a boom). 

 

Figure 2: Desired Velocity Field for Docking Along Z-axis 

 

POSITION AND ATTITUDE ESTIMATION 

Translation 
 Bandit’s translational dynamics are written in the Clohessy-Wiltshire coordinate frame, shown in 
Figure 3.  This yields the following relative equations of motion with respect to the host vehicle: 

                                                          (16) xrefref axxx +Ω+Ω= &&& 23 2

                                                        yref ayy +Ω−= &&& 2     (17) 

zref azz +Ω−= 2&&               (18) 
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where  is the angular velocity of the reference orbit.  Defining the state vector refΩ rv  as  

[ ]Tzyxzyxr &&&
v =                     (19) 

these equations of motion can be written in the linear state space form 

twBurAr ++= v&&v                    (20) 

where u is the total control input from the eight-thruster 
propulsion system  and  is the process noise associated 
with the state propagation.  For this paper, we assume 
variance in the thrusters to be the primary source of process 
noise.  Because the visual navigation system can only 
measure position, and not velocity, the measured state is 
written as 

tw

e
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and vv  is the measurement noise.  Since the noise in the visu
and the distance represented by each pixel varies with distan
noise term will be a function of the total distance between th
term as a quadratic function of total distance r (Eq. 23), base
by Tsai [7] for camera pose estimation. 

2
1max ηη += rv

Assuming a normal noise distribution, the variance of the m
determined from this equation:  
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The linearity of the relative translation dynamics allows
estimating Bandit’s position.  We use the discrete Kalman fi
Bandit’s position.  The state is first propagated with the assu
variance), so that the estimated state at time step k is written

kk rAr vv += −
−

1
ˆˆ

For all time steps in which Bandit does not receive an updat
estimated state.  Next, the covariance matrix P is propagated

AAPP kk = −
−

1

where Q is the diagonal matrix representing the uncertainty 
matrix is then used to calculate the Kalman gain K: 
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Figure 3: Clohessy-Wiltshire Relative Coordinate Fram
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For this case, R is a time-varying diagonal matrix that depends on the measurement variance : 2σ
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The Kalman gain is used to optimally weight the contributions of the propagated state and the measured 
position (when a position measurement exists) to the final estimated state, and also to update the covariance 
matrix P: 

( )−− −+= kkkkk rHrKrr ˆ~ˆˆ vvvv
    (29) 

( ) −−= kkk PHKIP              (30) 

Because of Bandit’s limited computational ability, these equations must be taken out of matrix form for the 
final estimation algorithm.  Because of the structure of the A, Q, R, and P matrices, we know that several of 
the elements of P and K will always be zero.  Thus, we need only concern ourselves with the nonzero 
elements of these matrices.  We find that the final estimate of each element of the state vector rv  can be 
expressed as a function of certain elements of P and R and of the propagated and measured values of that 
element.  For example, the equation for  is found to be: x̂
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The other elements can be similarly expressed.  The necessary elements of P are written as functions of the 
elements of the A, R, Q, and previous P matrices. 

Rotation 
The equations of motion for Bandit’s rotation come from rigid body dynamics (Eq. 32) and quaternion 
kinematics (Eq. 33): 
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where  is the process noise, again assumed to come primarily from thruster variance.  Because the 
equations are nonlinear, we cannot use the discrete Kalman filter equations as we did for the translational 
motion.  The current attitude estimation algorithm for Bandit uses the same concept as the Kalman filter, in 
that the final estimate is a weighted average of the ideally propagated attitude and the measured attitude 
(Eqs. 34 and 35), but the gains are chosen arbitrarily rather than calculated for optimality. 
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Although the quaternion measurement will come from both the visual navigation system and integration of 
the rate gyro measurements, it is currently assumed to come only from the visual navigation.  Thus, the 
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weightings  and  for the quaternion estimation algorithm are functions of the relative distance r.  The 
angular velocity measurement, however, comes from the rate gyros, and so the weightings are constants 
whose values are determined by the noise properties of the sensors. 

pk vk

 

SIMULATION AND RESULTS 
The estimation and control algorithms were tested using our 6DOF Java simulation.  Simulation 

parameters are shown in Table 1.  For the first five simulations, Bandit was commanded to release from 
dock to a specified waypoint coordinate relative to the host vehicle, then return to dock.  For the final two 
simulations, Bandit was to hold its position at the given waypoint.  Figures 4-10 show the distances of the 
actual and estimated Bandits from the host vehicle and the error between the estimated and actual position 
for each simulation. 

Table 1: Simulation Parameters 

Orbit 
Radius Pinitial Q kp kv kωp kωv Waypoint 1 (m) Waypoint 2 (m) 

6778 km 5e-4*I6x6 1.5e-5*I6x6 r2 0.015/r2 0.001 1.0 (2.0, 0.0, 0.0) (1.25, 1.25, 1.25) 
 

 

 

 
Figure 4: Distance from Host and Separation Distance, Waypoint 1, 10% Variance 
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Figure 5: Distance from Host and Separation Distance, Waypoint 2, 10% Variance 

 

 
Figure 6: Distance from Host and Separation Distance, Waypoint 1, 15% Variance 

 
Figure 7: Distance from Host and Separation Distance, Waypoint 2, 15% Variance 
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Figure 8: Distance from Host and Separation Distance, Waypoint 1, 20% Variance 

 
As can be seen from Figures 4-8, the performance of the estimator declined noticeably the farther 

Bandit was from the host vehicle.  However, as Bandit approached to redock, the estimator was able to 
correct its errors in time to ensure a safe docking.  Also noticeable in these Figures is the effect of the 
increase of thruster variance on the estimator’s performance.  While the algorithm worked well at 10% and 
15% variance, at 20% variance, Bandit was barely able to redock successfully from Waypoint 1.  Based on 
these results, it was deemed more useful to move on to the Waypoint-Holding scenario rather than simulate 
the more difficult redocking from Waypoint 2.  The results of these holding scenarios can be seen in 
Figures 9 and 10.  The estimator and potential function controller are easily able to guide Bandit to the 
desired waypoint, but at that distance the estimator cannot maintain the correct position indefinitely.  With 
no reliable measurement data to calibrate its propagation, the estimated position drifts irrecoverably away 
from the actual position within a few minutes.  Again, the performance declines as the thruster variance 
increases. 

 
 

 
Figure 9: Distance from Host and Separation Distance, Waypoint 1, 10% Variance 
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Figure 10: Distance from Host and Separation Distance, Waypoint 1, 15% Variance 

 

 

CONCLUSIONS AND FUTURE WORK 
 Very small service vehicles can play a role in future proximity operations missions.  However, to do 
so, the navigation challenges of these tiny spacecraft must be addressed.  The Bandit mission to proposes to 
do in three ways:  decoupled design, a robust “soft dock” and potential function control methods coupled 
with a computationally inexpensive estimation algorithm.  

 The decoupled design of the Bandit service vehicle provides a simple and efficient solution to many of 
the navigation problems inherent in proximity operations.  By relegating all “long-period” orbital functions 
to a larger host vehicle, Bandit can be kept small and easily maneuverable.  Furthermore, the use of a dock 
allowing Bandit to begin and end each of its sorties attached to the host vehicle.  The extremely error-
tolerant “soft dock” used in the Bandit mission further simplifies the navigation problem by enabling 
positive docking under a wide range of approach angles and relative speeds. 

 Because Bandit’s thrusters are highly constrained (fixed magnitude and direction), a method of 
potential function control has been developed to control the Bandit system.  Based on velocity error, rather 
than position error, this method creates a desired velocity field over the state space and defines a potential 
function by the error between the actual and desired velocities.  The instantaneous change in potential due 
to firing a thruster is weighed against the cost of firing the thruster.  For position and attitude estimation, a 
simplified version of the linear discrete Kalman filter has been applied to the translational motion and a 
similar, though non-optimal, process has been applied to the rotational motion.  The simplified Kalman 
filter calculates each matrix element used in its computation separately and ignores those elements which 
are always zero, and the attitude estimator simply uses arbitrary weightings on the measured and 
propagated state vectors to obtain a final estimate.  The potential function controller and estimation 
algorithms have been shown to work well in simulation for thruster variances of up to 15% of the nominal 
value, though performance of the estimator begins to drop off at 20% variance.  The estimator also has 
difficulty holding a position far from the host vehicle for more than a few minutes, but has demonstrated 
the ability to recover from position errors larger than Bandit itself in order to enable successful docking. 

 Future work includes examining nonlinear versions of the Kalman filter (such as the Extended 
Kalman Filter and Unscented Kalman Filter) for use in attitude estimation.  We would also like to address 
the drift problem for holding scenarios and attempt to extend the duration for which the estimated position 
remains within an acceptable distance of the actual position.  Because there will likely be a great deal of 
uncertainty in our knowledge of Bandit’s inertia parameter, we would also like to add an adaptive process 
to the current potential function controller. 
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NOTATION 

f = desired translational velocity function 

g = desired rotational velocity function 

j = thruster number index 

N = total number of thrusters 

n̂  = vector opposite camera look vector 

r = position vector 

r̂  = normalized position vector 

rd = desired target to inspector distance 

rd = desired position vector 

re = position error vector 

re,ss = maximum steady state translational error 

T = thrust matrix 

v = velocity vector 

vd = desired velocity vector 

α = total thruster configuration factor 

∆v = instantaneous change in translational velocity 

∆ω = instantaneous change in rotational velocity 

∆Φ = instantaneous change in potential function 

θe,ss = maximum steady state rotational error 

µT = translational velocity factor 

µω = rotational velocity factor 

σ = thruster cost factor 

Φ = potential function 

ω = rotational velocity vector 

ωd = desired rotational velocity vector 

ωo = initial rotational velocity vector 

Ωref = angular velocity of reference orbit 
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