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ABSTRACT

During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable
the integral torque whenever system stability was in question. Three different schemes were developed to
determine when to disable or enable the integral torque, and a trade study was performed to determine which
scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the
integral gain in time to reject steady-state error, and the amount of integral torque space used. The first
scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second
scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation.
If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares
the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than
the limit. Based on the trade study results, the third scheme was selected.

Once it was decided when to disable the integral torque, analysis was performed to determine how to
disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled.
Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes
the integral part of the PID control torque to be held constant; zero the integral torque directly but allow
the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral
torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time
between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the
analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the
analysis, a high fidelity simulation was used to test the various implementation methods.

INTRODUCTION

The Solar Dynamics Observatory (SDO), scheduled to launch in early 2009, will carry a suite of three
instruments — the Atmospheric Imaging Assembly (AIA), the Helioseismic & Magnetic Imager (HMI), and
the Extreme Ultraviolet (EUV) Variability Experiment (EVE) — designed to provide observations leading
to a more complete understanding of the solar dynamics that drive variability in the Earth’s environment.
The spacecraft’s geosynchronous orbit allows for uninterrupted, high-rate downlink of the science data. The
spacecraft maintains a fixed attitude relative to the Sun, allowing the instruments to collect a steady stream
of solar images.

AIA, built by Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), seeks to investigate the
evolution of the Sun’s magnetic field through the use of coronal images. AIA also includes four guide
telescopes (GT) that are used to drive the instrument’s Image Stabilization System (ISS), which prevents
high frequency jitter (greater than 10 Hz) from blurring the image data. The GTs are high precision Sun
sensors with a fine pointing range of approximately ± 95 arcsec. The data from one of the guide telescopes,
called the controlling guide telescope (CGT), is used by the on-board attitude control system (ACS) during
Science mode to measure attitude errors relative to the Sun center. HMI, built jointly by LMSAL and
Stanford University, is designed to use observations of polarized light to measure the magnetic field and
velocity of the solar photosphere. EVE, built by the Laboratory for Atmospherics and Space Physics (LASP)
at the University of Colorado, seeks to understand the highly variable solar EUV electromagnetic radiation
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and its impacts on the geospace environment. More information about the SDO science instruments can be
found through the SDO website.1

SDO’s science mission, in particular HMI’s helioseismology, requires twenty-two individual 72-day periods
over five years to meet the full science data capture objectives. SDO meets this requirement by providing
near-continuous Sun-pointing observations with a few interruptions for necessary maneuvers such as orbit
maintenance, momentum management and science instrument calibration. However, the length of these
interruptions must be minimized in order to successfully meet the data capture budget.

To ensure the continuing validity of the science data collected by the three instruments, once every three
months or so the mission team will command a series of instrument calibration maneuvers sweeping the
instrument boresights across the Sun in small steps. For a description of these maneuvers, see Reference 2.
Some of these maneuvers are very small, and thus can be performed in Science mode, which uses the GT
as the attitude error source.3 The GT has a small fine-pointing field-of-view of approximately ±95 arcsec.
Some of the calibration maneuvers pull the Sun out of the fine-pointing range of the GT, and therefore
attitude control during these maneuvers must be performed in Inertial mode, which does not use the GT
data.3 Both the Science and Inertial mode controllers, therefore, must provide the required fine pointing and
accurate knowledge of the vehicle’s attitude relative to the Sun center. These considerations resulted in the
decision to adapt a linear proportional-integral-derivative (PID) controller by adjusting gains and adding an
attitude limiter to use during Science and Inertial modes †. These adjustments ensure that the spacecraft
can slew quickly and still achieve steady pointing once on target.

BACKGROUND: SUMMARY OF CONTROLLER STABILITY ANALYSIS

During the analysis of the Science and Inertial mode controller, questions arose about the stability of
the controller during slewing maneuvers due to the combination of the integral torque, attitude limit, and
actuator saturation. A complete discussion of the subsequent stability analysis performed can be found in
Reference 2. The following is not intended as a proof of stability, but is offered as a summary of previous
work.

During the analysis, the Routh stability criterion was initially used to assess the possibility of the system
going unstable. It showed that because of the attitude and torque saturation, there is a theoretical possibility
that the system could go unstable. Further analysis was done to break down the non-linear system into a
piece-wise linear system. First, root locus analysis was used to show that with the selected controller gains
and in the absence of actuator saturation and an integral torque, attitude limiting alone could not cause an
instability in the system. To ensure stability of the described simplified system, the decision was then made
to disable the integral torque whenever the attitude error was greater than the attitude limit. However, due
to the hardware and software limits on the reaction wheel torques, actuator saturation actually occurs at
attitude errors more than an order of magnitude smaller than the attitude limit. Therefore, disabling the
integral torque at attitude saturation cannot guarantee total system stability.

On the other hand, torque saturation coupled with an integral torque does not inherently cause system
instability; it simply implies that instability is theoretically possible. Further analysis, again using root
locus techniques, showed that without attitude saturation, as long as the system output torque is at least
17% of the desired control torque, even in the presence of an integral torque, the system would remain
stable. However, at 17% of the desired control torque, there is no stability margin on the system. Project
requirements state that there must be at least 6 dB of gain margin on the system.

In summary, based on this analysis, the authors realized there needed to be a scheme for determining
exactly when and how to disable the integral torque in order to not just ensure system stability, but also
ensure sufficient gain margin on the system. The scheme had to ensure that the integral torque is disabled
not only when the attitude error is saturated but also when the attitude error is not saturated but the
applied control torque is saturated too much.

†The authors wish to acknowledge Dr. Kuo-Chia (Alice) Liu of Goddard Space Flight Center for her help and advice with
this analysis effort.
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TRADE STUDY ON DISABLING THE INTEGRAL TORQUE

Determining exactly when to disable the integral torque presented an interesting design challenge. The
scheme used had to be conservative enough to ensure stability with margin, but not so conservative that the
integral torque was not enabled in time to reject steady-state error. Three potential solutions were proposed
and a trade study performed to select the best solution based on the following three factors: complexity of
the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount
of integral torque space utilized. When considering the complexity of the control logic, it is important
to note that the SDO controllers are created in wire diagram form using Mathwork’s Simulink software
and converted to flight software C-code using Mathwork’s Real-Time Workshop automated code generation
software. Occasionally, implementing a certain design in wire diagram form is more complicated than coding
it directly.

Torque Space Description

Although perhaps not directly apparent, the third consideration of the trade study is directly related to
the stability margin of the system. Recall that the root locus analysis showed that with an integral torque
and in the absence of attitude saturation, the system output torque only had to be 17% of the desired control
torque in order for the system to remain stable, but that utilizing that entire torque space would result in
no stability margin on the system. The only time the output torque will be less than the desired control
torque is if the desired control torque is greater than the actuator saturation limit, τsat, which for SDO is
0.25 Nm. So for stability with an integral torque, the desired control torque, τd, must be less than 1.47 Nm.
Figure 1 shows a representation of this stability torque space plotted in the phase plane.

θ

ω

τd < τstab

Stable with
0 dB Margin

τd > – τstab

Torque Stability lines:

τd = Kp θ + Kd ω
τstab= τsat/0.17=5.88τsat

Figure 1: Phase plane plot of maximum integral torque space (no stability margin). Desired torque, τd,
inside shaded area will result in system stability with the inclusion of the integral torque.

The torque limit lines represent the edges of the allowable desired PD control torque that will ensure
system stability. If the desired proportional-derivative (PD) control torque falls inside the shaded area, then
the system is stable with the inclusion of the integral torque. If, however, the desired PD control torque falls
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outside the shaded area, then the system could potentially be unstable if an integral torque were included.
Again, this plot represents the integral torque space assuming no stability margin on the system. In practice,
however, the requirement is to have 6 dB of gain margin on the system. Based on the root locus analysis done
previously, 6 dB of gain margin means that the output control torque has to be at least 34% of the desired
control torque. So, for SDO, τd must be less than 0.74 Nm. Figure 2 shows a phase plan representation of
this margin torque space.

In this case, the torque limit lines represent the edges of the allowable desired PD control torque that
will ensure system stability with adequate margin. So, any scheme used to enable and disable the integral
torque can use, at most, the torque space described in Figure 2. Furthermore, the more integral torque space
used, the more we take advantage of the available torque capability. However, as will be discussed in the
trade study results, that usage has to be traded against the complexity of the control logic.

θ

ω

τd < τstab

Stable with
6 dB Margin

τd > –τmarg

τd = Kp θ + Kd ω

τstab= τsat/0.17=5.88τsat
τmarg= τsat/0.34=2.94τsat

τd > –τstab

τd < τmarg

Torque Stability lines:

Torque Margin lines: 

Figure 2: Phase plane plot of integral torque space with 6 dB of stability margin. Desired torque, τd, inside
shaded area will result in system stability with 6 dB margin with the inclusion of the integral torque.

4



Trade Study Options and Results

As was mentioned previously, there were three proposed methods of enabling and disabling the integral
torque. The first method proposed using the Routh criterion directly to determine when to disable the
integral torque. The second method proposed looking at the desired PD torque and attitude error to
determine when to disable the integral torque. And finally, the third method compared the attitude and rate
errors to limits to determine when to disable the integral torque, ensuring that the output control torque
over the desired control torque falls within the margin torque space.

Option One: Using the Routh Criterion

In Reference 2, for the Science and Inertial mode controllers, the simplified Routh criterion is:

ki < kp ∗ kd ∗ kt (1)

where the structural filter, one-cycle delay, gyro and wheel dynamics, and the plant flexible modes have been
neglected and ki, kp, kd, and kt are the integral, proportional, derivative, and torque gains, respectively. For
Science mode X-axis and Inertial mode ki = 0.005129 Nm/kg · m2 · s · rad, kp = 0.07192 Nm/kg · m2 · s, and
kd = 0.467055 Nms/kg ·m2 · rad. The torque gain, kt is the ratio of the output torque over the desired torque
and represents the amount of torque scaling present.

This first method of enabling and disabling the integral torque proposes calculating kp ∗kd ∗kt each cycle
and comparing it to ki. If ki is greater than kp ∗ kd ∗ kt, the integral torque will be disabled. Otherwise, the
integral torque will be enabled. The main advantage of this method is that it theoretically takes advantage
of all of the integral torque stability space. In fact, implementing the enabling/disabling using Equation
1 directly does not ensure sufficient gain margin, and further analysis would be needed to ensure the gain
margin meets the 6 dB requirement.

There are three main disadvantages to using the Routh criterion. The first is that, as was mentioned
above, further analysis would have to be done to modify Equation 1 to ensure the 6 dB of gain margin. The
second is that this method relies on using the equation for the simplified Routh criterion, which neglects
the structural filter, one-cycle delay, gyro and wheel dynamics, and the plant flexible modes. Because these
dynamics exist in the real spacecraft, passing a test based on Equation 1 cannot guarantee stability of the
complete system.

The final drawback to this method is that it would be complicated to implement. In order to calculate
kt, both the PD and PID torque commands would have to be calculated to get the ratio of the two. In
addition, because of the attitude limiter, kp is not effectively constant. Similarly to kt, the effective kp

would have to be calculated as the ratio of the limited attitude over the input attitude times the attitude
gain. This multitude of calculations would make coding and testing the software complicated, expensive,
and susceptible to error.

Option Two: Combining PD Torque and Attitude Saturation

The second proposed method of disabling the integral torque involves calculating the PD torque and
checking to see if the attitude is saturated. If the PD torque is less than the wheel saturation limit and if the
attitude error is not saturated, then calculate the integral torque and add it to the PD torque. Otherwise,
if the PD torque is greater than the wheel saturation limit or if the attitude error is saturated, then use just
the PD torque. This method ensures that neither the attitude saturation nor the actuator saturation can
induce instability in the system. The main advantage of this method is that it utilizes a lot of the available
integral torque margin space, but still ensures sufficient stability margin. Figure 3 shows a sketch of the
integral torque space utilized by Option Two.
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Torque Saturation lines:

τd < τsat
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Figure 3: Phase plane plot of integral torque space utilized by Option Two.

In the plot, θa represents the attitude saturation limit. Notice that the plot only shows the torque
saturation lines, τsat. Recall from Figure 2 that the outer bounds of the margin space fall at 2.94τsat, so
Option Two’s integral torque space utilized falls within the margin space. Theoretically, Option Two could
be adjusted to utilize even more of the margin space by comparing the PD torque to 2.94τsat, in which case
the switching lines of Option Two would be identical to those in Figure 2.

The only major drawback to this method is that it would be complicated to implement. While easier
than Option One, Option Two still requires several calculations and complicates the controller wire diagram.
First, just the PD torque has to be calculated. Then the attitude error has to be compared against the
attitude saturation limit. Then there has to be logic to determine if those two elements pass or fail. Then,
if both of those elements pass, the integral torque has to be calculated and added to the PD torque. Again,
this number of calculations would make coding and testing the software complicated and expensive, and
potentially error prone.

Option Three: Using Attitude and Rate Limits

The third and final proposed method of integral torque disabling involves comparing the attitude and
rate errors against limits and disabling the integral torque if either the attitude error or the rate error falls
outside the limits. The limits are determined such that the PD torque calculated using the attitude and rate
limits falls inside the torque margin space. Figure 4 shows a sketch of the integral torque space utilized by
Option Three.

As with Figure 3, this sketch shows only the torque saturation lines, which, as was stated above, fall
inside the torque margin space. In the plot, θlim and ωlim represent the attitude and rate limits, respectively,
used to disable the integral torque. Notice that these limits form a box in the phase plane, which will be
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τ < τsat
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Figure 4: Phase plane plot of integral torque space utilized by Option Three.

called the “integral torque box”. As in Figure 3, θa represents the attitude saturation limit. The θa lines
are shown to emphasize that θlim will be smaller than the attitude saturation limit.

The major advantage to this method is its ease of implementation. The only additional calculations
that have to be done are comparing the attitude and rate errors to θlim and ωlim, respectively. If both the
attitude and rate errors fall within the integral torque box, then the PID torque is calculated, otherwise the
PD torque is calculated. The major disadvantage to this method is that it is very conservative in its use of
the integral torque margin space. Of the three proposed methods, it uses the least amount of that space. In
addition, finding appropriate values for θlim and ωlim can be somewhat tricky. The limits have to be wide
enough to ensure that the system can get back within the integral torque box so that steady-state error can
be rejected. At the same time, the limits cannot be too wide or the 6 dB gain margin requirement will not
be met.

Despite its conservatism and somewhat complex limit selection, Option Three was selected as the method
of enabling and disabling the integral torque. Initially, θlim and ωlim were selected such that:

θlimKp,max + ωlimKd,max < τsat (2)

where Kp,max and Kd,max are the maximum attitude and rate gains, respectively. The SDO controller
gains were designed independent of the spacecraft moments of inertia, therefore the total gains are pro-
portional to the moments of inertia. At the time of analysis, Kp =

[
126, 213, 166

]
Nm/rad and

Kd =
[

780, 1317, 1023
]

Nm/rad/sec. For SDO, the axis of maximum moment of inertia is the Y-axis,
therefore Kp,max and Kd,max were equal to 213 Nm/rad and 1317 Nm/rad/sec, respectively. The saturation
torque, τsat at the time of the analysis was 0.2 Nm. The main consideration in setting ωlim was that the
least significant bit of the IRU results in a rate resolution of about 1.2 rad/sec. At steady-state, when the
spacecraft has no rate, noise in the system will cause the IRU measured spacecraft rate to fluctuate between
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±1.2e−5 rad/sec. ωlim should therefore be set to at least 1.2e-5 rad/sec. Initially, a value of 2.62e-5 rad/sec
was chosen for ωlim, which is slightly more than twice the IRU resolution. Once ωlim was set, a value for
θlim could be backed out using Equation 2. The θlim chosen was 6.98e-4 rad, which is equivalent to 144 asec.
The selected values for θlim and ωlim resulted in a maximum torque of 0.18 Nm, which is less than τsat and
therefore stability is ensured.

INTEGRAL TORQUE RESET ANALYSIS

Once the method of determining when to disable and enable the integral torque was selected, the next
step was to determine how to disable and enable the integral torque. Like determining when to disable,
determining how to disable the integral torque also posed an interesting design problem. The problem could
be broken down into two parts; how exactly to go about disabling the integral torque and whether or not
the integrator should be reset upon exiting or entering the integral torque box.

Early in the redesign process, the decision was made that the easiest way, in terms of implementation,
to disable the integral torque would be to zero the input into the integrator whenever the attitude or rate
errors fell outside the integral torque box limits. Zeroing the input into the integrator holds the integral
torque constant while outside the integral torque box, thereby acting as a constant disturbance torque on
the system. Other options considered, but rejected, were zeroing the integral torque directly but allowing
the integrator to continue integrating while outside of the integral torque box and zeroing the integral torque
directly and resetting the integrator upon reentry to the integral torque box. The first reason these methods
were rejected was because zeroing the integral torque directly is more complicated to implement in the
controller wire diagram than zeroing the input into the integrator. In addition, during spacecraft slews
the first method can result in saturation of the integrator due to large attitude errors. The purpose of
the integral torque term is to compensate for external disturbance and wheel drag torques during steady-
state pointing, which in turn improves controller performance by improving steady-state pointing accuracy.
Allowing the integrator to continue integrating and potentially saturate during slews adds no benefit to
steady-state controller performance.

When the selected method of disabling the integral torque was presented at a peer review, the concern
was voiced that by not resetting the integrator upon leaving the integral torque box, the held integrator
torque, which acts as a disturbance torque, could be large enough that the controller would not be able to
get back inside the integral torque box and a steady-state attitude error would result. The authors then
decided to do further analysis on the proposed method, to determine the possibility of not being able to
reenter the integral torque box and also to look into the possibility of resetting the integrator any time the
integral torque box is exited. In addition to the ability to reject steady-state error by reentering the integral
torque box, the analysis also had to consider complexity of the control logic and slew time plus settling time
between steps of the instrument calibration maneuvers.

The control torque, τc is calculated as follows:

τc,ss = Kpθ + Kdθ̇ + Ki

∫
θdt (3)

where θ is the attitude error and Kp, Kd, and Ki are the proportional, derivative, and integral gains,
respectively, and include multiplication by the spacecraft inertia, e. g. Kp = kp ∗ I. When the system is at
steady-state, the attitude and rate errors are zero, and, as stated above, the integral term acts to compensate
for the external disturbance and wheel drag torques, τext and τdrag, respectively.

τc,ss = − (τext + τdrag) = Ki

(∫
θdt

)
ss

(4)

When the attitude and/or rate errors exceed the integral torque box limits, for example when an attitude
slew is commanded, the input into the integrator is zeroed and the value of the integral torque at that instant
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is maintained. Let that torque be called τi. Then, during the slew, the control torque can be calculated as
follows:

τc = Kpθ + Kdθ̇ + τi (5)

At the end of the slew, the rate error will go to zero, and the above equation can be rewritten as follows:

τc = Kpθss + τi (6)

where θss is the steady-state attitude error. As before, when the system is at steady-state, the controller
acts to compensate for the external disturbance and wheel drag torques:

− (τext + τdrag) = Kpθss + τi (7)

In order for θss to go to zero, we must get back inside the integral torque box. In order for that to
happen, the following inequality must be true:

| τext + τdrag + τi |<| Kpθlim | (8)

where θlim is the attitude limit of the integral torque box, which was originally set to 6.98e-4 rad. Consider
the case when the integrator is saturated just prior to leaving the integral torque box. The integrator
saturation limit is 0.01 rad-sec. Because of changes in the spacecraft inertias, the gains used in this analysis
are different from those used in earlier analysis. The integral gain, including spacecraft inertia, used in the
analysis is

[
11.3, 20.3, 16.8

]
Nm/rad-sec. The proportional gain, including spacecraft inertia used in

the analysis, is
[

159, 285, 235
]

Nm/rad. The spacecraft inertia used for the analysis assumes that the
spacecraft has full fuel tanks, i. e. the inertias are at their greatest values. Using the Y-axis gains as the
worst case and plugging into the above equation yields:

τext + τdrag + 0.203 6< 0.199 (9)

which implies that if the integrator is at its saturation limit, the controller may, in the worst case, be unable
to get the spacecraft back inside the integrator torque box. The question then is what is the likelihood of
reaching the integrator saturation limit. As shown in Equation 2, the integrator torque when the spacecraft
is at steady-state is equal in magnitude to the sum of the external disturbance and wheel drag torques.
For the SDO orbit, the wheel drag torque actually dominates the external disturbance torques. The high
fidelity simulation (HiFi), which includes a wheel drag model, shows that it takes approximately 130 Nms of
momentum in the Y-axis before the integration saturation limit is met. This amount of momentum translates
into almost 78 Nms of momentum in each of two wheels. The estimated worst-case momentum build-up
between momentum unloadings is a total of approximately 15 Nms, which puts about 8.66 Nms in each of
two wheels. So, failing to get back inside the integral torque box due to integrator saturation cannot happen
during expected nominal operations.

Another case to consider when determining the possibility of not reentering the integral torque box is
when the wheel momentum is distributed such that all the system momentum is oriented in the Y-axis (axis
of largest moment of inertia) and the spacecraft does a 180-degree roll about the X-axis. Such a maneuver is
possible during a contingency high gain antenna handover maneuver. At the beginning of the maneuver, τi

is approximately equal in magnitude to, and acts to counteract, the external and wheel drag torques. Let the
sum of those terms at the beginning of the slew be τb. At the end of the maneuver, the system momentum
vector has rotated 180 degrees and is now pointed along the -Y-axis. The wheel momentum has likewise
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switched directions, and thus the sum of the external and wheel drag torques at the end of the maneuver,
τe, is equal in magnitude and opposite in direction to τb. Going back to Equation 8,

| τext + τdrag + τi |<| Kpθlim |
| τe + τi |=| τe − τb |<| Kpθlim |
| −2τb |<| Kpθlim |

(10)

Depending on the amount of momentum in the wheels, it is possible that the inequality in Equation
10 will not be met. Using the HiFi, if the system momentum in the body frame is equal to

[
0, 64, 0

]
Nms (

[
−36.95, 0, 36.95, 0

]
Nms in the wheels3), and the spacecraft performs a 180 degree roll about

the X-axis, then the controller can barely get the spacecraft back inside the integral torque box. Any more
momentum in the Y-axis, and the controller cannot get the spacecraft back inside the integral torque box.
If the integrator is reset, then τi is zero, and the controller has no problems getting back inside the integral
torque box. While that amount of momentum in the wheels is still outside the predicted nominal operations,
it is possible that for long slews the integrator will need to be reset. While the likelihood is that resetting the
integrator would not be necessary for the short instrument calibration slews, from an operational simplicity
stand point, the question becomes whether the integrator be reset anytime the integral torque box is exited.

To answer this question, we considered the instrument calibration maneuvers, which consist of a series
of small slews (on the order of 5 arcsec – 9000 arcsec) with fast slew time requirements (2 – 5 minutes).
Using the HiFi, the spacecraft was started with approximately

[
1, 34, 5

]
Nms of momentum in the

spacecraft body frame and performed the EVE Cruciform calibration maneuver.2 If the integrator was not
reset each time the integral torque box was exited, the spacecraft had no problems performing the slews in
their allotted time and reentering the integral torque box. If, however, the integrator was reset each time
the integral torque box was exited, the spacecraft could not perform the slews within the allotted time.

Recall from Equation 4 that the integral torque acts to compensate for the external and drag torques.
Because the momentum in the wheels is relatively constant over short time frames, the integral torque is
also roughly constant. The value of the integrator, therefore, is proportional to the amount of momentum in
the wheels– the higher the momentum, the larger the integrator values. Every time the integrator is reset,
it takes time for the integrator to re-converge to its steady-state value. The time constant for the integrator
is equal to Kp/Ki, which is approximately 14 sec. The controller is simultaneously trying to re-converge
the integrator and zero the attitude and rate errors. The result is that it takes longer to perform each slew.
Given the time constant of the integrator and the short slew times, there is not enough time between each
slew to reset the integrator.

Based on the above analysis, the decision was made not to reset the integrator automatically upon exiting
the integral torque box, but to have a flight software command available to reset the integrator should the
need arise.

SELECTION OF INTEGRATOR TORQUE BOX LIMITS

Once the decision was made not to reset the integrator automatically upon exiting the integral torque
box during nominal mission operations, the authors decided to revisit the selected torque box limits, θlim

and ωlim to see if it was possible to increase those limits to further reduce the possibility of needing to reset
the integrator manually. Using Equation 7, if the spacecraft does not get back inside the integral torque
box, the worst expected steady-state pointing error is:

θss =
τext + τdrag + τi

Kp
(11)

However, as was seen in Equation 10, the worst case torque magnitude is equal to two times τb, which
is the sum of τest and τdrag, so:
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θss =
2τb

Kp
(12)

To be able to get back inside the integral torque box, θlim must be greater than θss. At this point,
assume a θlim larger than θss and assume a rate limit, ωlim small enough to indicate slewing has stopped.
Calculate the maximum PD torque seen when both θlim and ωlim are reached:

τlim = Kpθlim + Kdωlim (13)

where τlim is the maximum the PD torque command can be while still including the integral term. Recall
from Figure 2 that to ensure sufficient margin, τlim has to be less than τsat/0.34, or 0.74 Nm. Plug-
ging into the above equation and using the original integral torque box limits, τlim is calculated to be[

0.138, 0.247, 0.204
]

Nm. As was done before, the spacecraft inertia was assumed to include full fuel
tanks. So, as can be seen from the above calculation, it is possible to increase θlim and ωlim. The authors
decided on a value of 250 arcsec or 1.212e-3 rad for θlim and 4.0e-5 rad/sec for ωlim. These limit values
result in a τlim equal to

[
0.234, 0.419, 0.346

]
Nm. Even for the maximum axis (Y), τlim is still less

than the margin stability value of 0.74 Nm. Theoretically, θlim and ωlim could be increased further, but the
authors would like to retain the additional margin. If issues with returning to the integral torque box arise
on orbit, then the limits can be increased.

CONCLUSION

Through analysis and simulation, the authors instituted a method of enabling and disabling the integral
torque portion of the Science and Inertial mode PID controllers to ensure system stability. The method
compares the absolute value of each component of the attitude and rate errors to a predetermined limit.
If the attitude and rate errors are below the limit, the integral torque is added to the proportional and
derivative torques, otherwise the input into the integrator is zeroed such that the integral torque remains
constant and acts as a disturbance torque on the system. The attitude and rate limits were chosen such that
at the limits of the integral torque box, the controller is still guaranteed stable with sufficient gain margin.
The authors decided against resetting the integrator upon exit from the integral torque box because analysis
showed that it would take too long for the integrator to reconverge between instrument calibration slews.
Given the current reaction wheel torque limits and expected momentum build-up, even with the worst case
expected integral value acting as a disturbance torque, the system still has sufficient torque authority to
return to the integral torque box and reject steady-state errors. Should issues arise on orbit, a flight software
command does exist to reset the integrator, or the integral torque box limits can be extended.
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