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ABSTRACT- The long-baseline space interferometer concept involving formation flying of multiple 
spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of 
obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to 
accurately control these spacecraft and their optics payloads in the specified configuration. Our research 
focuses on the determination of the optical errors to achieve fine control of long-baseline space 
interferometers without resorting to additional sensing equipment. We present a suite of estimation tools 
that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt 
deviations at the exit pupil aperture.  The use of these error estimates in achieving control of the 
interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric 
stellar images. 

1. INTRODUCTION 
The Hubble Space Telescope has been providing spectacular images of the cosmos for 15 years, and future 
space telescope concepts are being formulated to provide even more capable systems. To provide a larger 
effective aperture for producing higher-resolution imagery, many of these space telescope concepts are 
designed as space interferometers involving multiple optical elements flying far apart on separate 
spacecraft platforms in formation [1]–[3]. The designs allow the use of optical elements small enough for 
practical space launch to produce an effective aperture that is otherwise too large to be launched or even 
built as a single monolithic optical element. 
 
A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space 
interferometers is to accurately control these spacecraft and their optics payloads in the specified 
configuration so that the optics would produce wavefront errors no more than λ/14 rms, i.e., diffraction 
limited. 
 
Control of the optics traditionally depends on metrology sensors [4], [5] to provide the error signals 
required to enable the control required.  For space interferometers that involve sub-wavelength accuracy of 
optics mounted on distributed platforms flying far apart in formation, the dependency on metrology sensors 
to provide error signals to the necessary level of accuracy would impose prohibitive cost and complexity 
requirements on their designs. Our research has focused on determining the optical errors needed to achieve 
fine control without resorting to additional sensing equipment. As a result, the concept reduces the 
complexity and cost of the control system by reducing or eliminating the requirements of other sensors and 
support infrastructure. 
 
To ensure that the study will be realistic in addressing the underlying issues, the Stellar Imager (SI) mission 
[6] has been selected to provide the backdrop for defining the problem. The SI is a space interferometer 
concept that employs a large number of satellites as collectors for celestial imaging.  As illustrated in 
Figure 1, it is a 0.5km-diameter UV-optical Fizeau interferometer made up of a configurable array of 10 to 
30 1m-class spherical mirrors flying as “mirrorsats” and a central hub with focal-plane instrumentation.  It 
is capable of providing an angular resolution of 60 μarcsec at 1550 Å, and 120 μarcsec at 2800 Å.  Its goal 
is to image a substantial sample of nearby stars, with a resolution in the order of 1000 total pixels (~32 x 
32) on a star’s surface.  NASA Goddard Space Flight Center (GSFC) has also developed the Fizeau 
Interferometer Testbed (FIT) [7], [8] for experimentations required to assess the SI concept. 
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Figure 1. The Stellar Imager Mission Concept (Source [6]) 
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Figure 2. Control Concept Block Diagram 

In order to achieve high-quality images under the SI mission, the position and orientation of the articulated 
mirrors need to be aligned precisely on the larger (0.5 km) virtual mirror surface to keep optical beams in 
phase. Each mirrorsat comes with 5 degrees of freedom of movement (tip, tilt, piston, as well as 2-D 
translations). The objective of our study is to control these mirrorsats using direct interferometer outputs. 
Figure 2  shows the overall control concept.  Deviations of the mirrorsats, χ , from the desired mirror 
surface are estimated from direct interferometer outputs including the raw image collected at the central 
hub and other measurements from metrology sensors.  The Optical System Master Control driven by 
estimated deviations and measurements from the metrology instrumentation issues commands to the optical 
system components on the separate spacecraft, as well as feeds back data to the Spacecraft Formation 
Flying Control. The Spacecraft Formation Flying Control in turn issues commands to control the collection 
of spacecraft.  Furthermore, data from the optical system on each spacecraft is also fed back to the Optical 
System Master Control to modify the control decision in situations where the feedback of the estimated 
deviations is not adequate, e.g., when the actuators are hitting their limits. 
 
Highly sophisticated wavefront estimation techniques—including those based on phase retrieval and phase 
diversity—already exist for determining the wavefront error [9], [10], [11], which when available can help 
to back out the errors of the optical elements.  These techniques are essential for final processing of the data 
to convert the interferometer images to the desired stellar images, but they are very challenging 
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computationally and they require extensive computational power and time.  The objective behind our 
control concept is to investigate techniques that are useful for estimating the errors of the optical elements, 
with no requirement for complete online wavefront reconstruction.  The rationale is, by relaxing the online 
wavefront-reconstruction requirement, more efficient techniques can be developed that impose lower 
computational requirements for deployment on spaceborne systems. 
 
To this end, separate estimation techniques have been developed and verified for estimating the three 
classes of errors: x/y translational, piston, and tip/tilt. An integrated estimation/control procedure is also 
introduced to bring down the mirrorsat’s deviations. The assessment of the algorithms developed has been 
based on simulated data as well as images collected by the FIT.  The results establish the efficacy of the 
estimation algorithms in providing useful estimated data for the five degrees of freedom of mirror 
deviations for controlling the errors. In this paper, we will describe our estimation approaches, control 
strategy and evaluation results. 

2. BACKGROUND MATERIAL ON OPTICAL SIGNAL PROCESSING 

2.1. “Mirrorsat” Deviation and Interferometric Image 
To infer deviations of the mirrorsats based on the collected raw images, the relationship between the 
geometric configuration of the mirrors and the observed image is considered in Figure 3.  It is assumed that 
these spherical mirrorsats are configured and controlled under a predefined control coordinate system.  
Each mirror has 5 degrees of freedom: x, y, z (or piston) translation, and tip, tilt rotation.  Geometric 
deviations of the mirrors are mapped into aperture deviations at the entrance pupil through a coordinate 
transformation.  Under the assumption that there is perfect beam combination of the collected light beams 
from all the mirrors, the aperture configuration at the exit pupil would be a scaled version of the one at the 
entrance pupil [12].  This implies that geometric deviations of these spherical mirrorsats can also be 
obtained from the deviations of apertures at the exit pupil via a coordinate transformation.  Deviations of 
the apertures include x, y, piston translational, and tip, tilt rotational errors.  They are expressed by the 
wavefront error coordinate system [13], in which the piston variable points towards the nominal focal point 
of the optical system.  These wavefront errors, at the exit pupil, are actual deviations from the ideal 
converging wavefront, i.e., the reference sphere, where the ideal wavefront would converge to an ideal 
focus at the detector plane.  Thus, wavefront errors are the difference between the actual wavefront and the 
ideal wavefront at the system’s exit pupil. 
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Figure 3. Optical System Modeling Showing Relationship between “Mirrorsat” Deviation and 

Interferometric Output Image 

In the image domain, the properties of the optical system can be described by a point spread function 
(PSF), i.e., the image of an unresolved point source. The PSF is related to the wavefront errors (a.k.a. 
phase) at these exit pupil apertures through a Fourier transform [13].  More precisely, a PSF can be derived 
as the magnitude-squared of the Fourier transform of a complex pupil function .  Deviations of exit φAe
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pupil apertures are then shown as distortions from the ideal PSF.  For a point source, an estimate of the PSF 
is readily obtained from the measured raw image on a sampled grid.  In addition to the PSF, the modulation 
transfer function (MTF) defined as the magnitude of the Fourier Transform of the PSF, strehl ratio, and 
encircled energy are often used to evaluate properties of the optical system. 

2.2. Mathematical Imaging Model 
To support our data processing effort, we have adopted a mathematical imaging model [14] commonly 
used for describing optical systems.  An observed noisy image, , can be represented as ),( yxd
 ),(),(),;,(),( yxyxoAyxPSFyxd ηφ +∗=  (1) 
where the symbol ∗  represents the convolution operator,  is the optical point spread function, 

 is the object, and 
),( yxPSF

),( yxo ),( yxη is the noise, assumed additive but can actually consists of read noise, 
photon noise, flat-fielding errors, etc.  All functions are described in the  image plane coordinate. ),( yx
 
From the principle of Fourier optics [14],  can be calculated from the two dimensional Fourier 
transform of complex pupil function: 
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The complex pupil function  is defined as .   is the aperture mask function, 
which has value 1 where light passes through, and 0 otherwise.  

),( vuP ),(),( vujevuA φ ),( vuA
),( vuφ  is the phase delay at each point in 

the system exit pupil.1   are the spatial coordinates in the system exit pupil, ),( vu λ  is the wavelength of 
the monochromatic source, and F  is the system focal length. 
 
The optical transfer function (OTF) is the Fourier transform of the point spread function. If we define 

xFfu λ=  and yFfv λ= , OTF becomes 

 
( ) )0,0(PP

PPOTF
⊗
⊗

=  (3) 

 
where the symbol ⊗  represents the correlation operator. 

3. ESTIMATION TECHNIQUES 

3.1. Estimation Techniques for x/y Translational Errors 
Here we present an estimation procedure that effectively extracts relative x/y translational exit pupil 
aperture deviations from the raw interferometric image with small estimation errors.  The motivation of the 
proposed estimation technique is introduced, followed by the estimation procedure. 

3.1.1. Problem Formulation 

3.1.1.1. MTF and Baselines 
To position the mirrorsats correctly, the baseline of each mirrorsat pair, defined as the separation of the 
pair’s center locations at the exit pupil plane, needs to be maintained.  It turns out that one can extract the 
baseline information from the MTF provided that the phase delay between the 2 apertures comprising the 
baseline pairs are within the coherence length of the passband, i.e., that they interfere. 
 
A simple 2-element interferometer model can help explain the relationship between the MTF and the 
baseline.  Figure 4 illustrates the PSF and MTF of a 2-element interferometer [15].  The 2-mirror PSF is a 

                                                 
1 The system exit pupil limits the cone of rays from the image.  It is defined as the image of the physical 
aperture looking from the image space through any optical elements between the aperture and the image 
plane. 
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1-mirror PSF modulated with fringes.  The 1-mirror PSF is essentially the diffraction pattern of a single 
mirror.  Assume that the size of the mirror is much smaller than the baseline of the interferometer, so that 
there are multiple fringe cycles within the 1-mirror PSF envelope.  In the frequency domain, the MTF will 
consist of three distinct modes, which are observed as three dots in a pseudo-color depiction of the 
function.  The base-band dot corresponds to the 1-mirror MTF and the other two are just translated versions 
of the 1-mirror MTF due to fringe modulation. 

PSF

θB

MTF
FFT

)]/2cos(1[)(2)( θλπθθ ⋅⋅+⋅= BPSFPSF onetwo

One MirrorTwo Mirrors  
Figure 4. PSF and MTF of a 2-Element Interferometer 

The Golay-7 configuration, which was utilized in the Phase I FIT, is an aperture configuration for sparse 
interferometric arrays optimized to minimize redundant baselines.  Figure 5 shows the MTF of a Golay-7 
configuration [16].  The simulated configuration consists of 7 circular apertures with diameter equal to 
0.0125 m.  The shortest baseline is 0.0254 m, which is about twice the diameter of each aperture.  These 
baselines are large enough that the MTF dots are visibly separable.  Since the spatial frequency of the 
fringes is related to the size and the direction of the baseline, the positions of these MTF dots contain 
information on the size and orientation of the baselines.  Moreover, it is observed that the piston errors and 
the tip, tilt errors alter the shapes of the MTF dots, but they have little effect on the locations of their 
“centroids.” Hence, under the assumption that baselines are larger than the diameter of individual mirrors 
and that the wavefront errors over an individual aperture are much less than the wavelength, baseline 
deviations can be estimated from the centroid deviations of the MTF dots.  For a non-redundant 
constellation such as the Golay configuration, the estimated baseline information can be used to estimate 
aperture deviations. 

 
Figure 5. MTF of Golay-7 Configuration 

3.1.1.2. Baselines and Translational Deviations 
In fact, the baseline error is a linear transformation of the x/y translational deviation.  Let us define the 
baseline pattern ib  for the mirror #i as the collection of the MTF dots corresponding to all the baselines 
connected to the mirror #i.  For example, Figure 6 shows the baseline patterns of the Golay-7 configuration 
as red dots for individual mirrors. 
 
If one numbers all positive MTF dots in sequence, the baseline pattern i  can be denoted as a column 
vector, such as [ , where 1’s indicate all MTF dots corresponding to baselines 

b
]T10101 K
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connected to the mirror #i.  Assuming that there are N mirrors and therefore 2/)1( −⋅= NNM  baselines, 
the relationship between the baseline error and the x/y translational deviation can be written as 
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where X represents the translational error in the exit pupil plane along the x axis, and  represents the 
corresponding baseline error.  (A similar formulation holds true for the y axis.)  Since the MTF only retains 
the baseline information, matrix A has at most rank 

X ′

1−N ; i.e., only 1−N  independent variables can be 
recovered.  One can reduce the number of independent variables by selecting a mirror as the reference 
mirror and estimating the relative deviations of other apertures with respect to the reference mirror.  This 
process corresponds to 

  (5) 
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where  is a well-conditioned matrix of full rank TVUA 1211Σ=′ 1−N , and the relative aperture deviations can 
be obtained in the following equation by introduction of the pseudo-inverse. 
  (6) [ ] XAAAXX TTT

N ′′⋅′′= −1
2 )(L

 

 
Figure 6. Baseline Patterns of Individual Mirrors 

In summary, the centroid of an MTF dot is a prominent feature that has the potential to be used for 
determining the relative deviation of the center of the aperture on the exit pupil plane.  However, with the 
only available raw image whose Fourier Transform is a noisy version of the true MTF, a robust centroid 
estimation algorithm is needed.  The following section describes the overall estimation procedure that we 
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have developed for extracting relative x/y translational aperture deviations from the raw interferometric 
image. 

3.1.2. Estimation Procedure 
An effective estimation procedure using a combination of a k-means clustering [17] technique and least-
squares ellipse fitting [18], [19] is developed. The objective of the estimation is to calculate x/y 
translational deviations of exit pupil apertures so that every baseline is precisely maintained.  Once every 
baseline is controlled at the predefined location, the PSF is known and the target image can be inverse-
filtered from the measured raw image if there are no other deviations. 
 
Figure 7 contains the flowchart of the estimation procedure [20].  In real measurements, the intensity 
observed at the focal plane contains photon noise, read-noise, dark current noise, flat fielding errors and 
stray light.  The measurement model [8] can be expressed as 
 ),();,(),,,,;,( yxCyBxAyxPRFfluxCBAfluxyxM ηαα ++⋅+⋅+⋅=  (7) 
where PRF  is the point response function, which is the intensity integrated across the spectral response 
and convolved with the detector spatial response function.  In other words, 
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where )(λS  is the source spectral radiance multiplied by the spectral transmission of the pass-band, and 
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xrect  is the wavelength-independent detector spatial response function.   

Raw Image

FFT

DC Blocking

Thresholding

Boundary ExtractionK-means Clustering

Least Square Ellipse Fitting

Binary Image

Estimated 
MTF

Centroids

Segmented Boundary Points

Refined MTF Centroids

Linear Transformation

Estimated Relative x/y Translational Aperture Deviations

O
ptional

Pre-processing

Logarithm

Raw Image

FFT

DC Blocking

Thresholding

Boundary ExtractionK-means Clustering

Least Square Ellipse Fitting

Binary Image

Estimated 
MTF

Centroids

Segmented Boundary Points

Refined MTF Centroids

Linear Transformation

Estimated Relative x/y Translational Aperture Deviations

O
ptional

Thresholding

Boundary ExtractionK-means Clustering

Least Square Ellipse Fitting

Binary Image

Estimated 
MTF

Centroids

Segmented Boundary Points

Refined MTF Centroids

Linear Transformation

Estimated Relative x/y Translational Aperture Deviations

O
ptional

Pre-processing

Logarithm

 
Figure 7. Estimation Procedure of the x/y Translational Deviations 

With reference to Figure 7, the Pre-processing step removes the background terms in the measurement 
model.  This is followed by the FFT where the Fourier Transform of the raw image is taken to approximate 
the MTF of the interferometric system.  The DC Blocking removes the DC portion of the approximated 
MTF to amplify the MTF dots containing the baseline information.  Since piston/tip/tilt deviations change 
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the location of the intensity peak of some MTF dots, the Logarithm step in the estimation procedure is to 
reduce the dynamic range of the estimated MTF function so that reasonable thresholding results can be 
obtained.  Afterwards, Thresholding is performed to convert the resulting image into a binary image.  The 
thresholding value is selected by the criterion that 90% of the total energy is preserved.  The next step of 
the estimation is to calculate the x/y translational deviations of the baselines from the thresholded binary 
image.  Locations of the baselines are estimated as the center locations of the MTF dots.  Three different 
methods have been tried to estimate the MTF centers: k-means clustering, direct least-squares ellipse 
fitting, and weighted least-squares ellipse fitting.  Initialized with the desired baseline locations, k-means 
clustering estimates the centers of the MTF dots from binary image data points.  One can further refine the 
center estimation of each MTF dot by the direct least-squares ellipse fitting or the weighted least-squares 
ellipse fitting method.  Segmented boundary points belonging to different MTF dots are obtained via the 
boundary extraction and k-means clustering.  Using these segmented data points, the ellipse fitting methods 
calculate the center of each MTF dot.  The weighted least-squares ellipse fitting is a variation of the least-
squares ellipse fitting, where each data point is weighted according to its MTF magnitude.  Finally, with 
one aperture selected as the reference, deviations of the other apertures can be obtained from deviations of 
baselines through a linear transformation as shown in Eq. (6). 

3.2. Estimation Techniques for Tip/Tilt Errors 

3.2.1. Gradient Search Parametric Optimization 
In this work, we have developed an effective estimation procedure for extracting small tip/tilt exit pupil 
deviations from interferometric images without estimating the wavefront error.  The estimation is based on 
gradient search parametric optimization.  The performance of the proposed estimation procedure achieves 
the angular peak wavefront error precision requirement D4/λ  (or equivalently 4/π  in radian) almost all 
the time within a moderate number of iterations when the tip/tilt deviations are small.   
 
Existing computational phase-diversity algorithms decompose the phase estimation problem into two sub-
problems: object image reconstruction (equivalently, point-spread function estimation) and phase retrieval 
from the point-spread function.  Due to the computational complexity of the phase-diversity methods, our 
research has focused on alternatives to estimate piston/tip/tilt exit-pupil deviations without estimating the 
image object explicitly, which is not required for the purpose of estimating the optical error for controlling 
the interferometer’s operations.  Since our objective is to obtain estimates of piston/tip/tilt exit-pupil 
deviations, the phase of the complex pupil function is parameterized by the Zernike polynomials for each 
exit pupil and the coefficients of the first three Zernike modes represent the piston, tip and tilt, respectively.  
Towards this end, we have developed a tip/tilt parametric estimation method based on gradient search 
which minimizes an objective function that does not require the information of the imaging object source.  
 
Recall from Section 2.2, that the measured raw image  in the spatial domain can be modeled as the 
convolution result of the imaging source  and the point-spread function (PSF) of the optical system, 
i.e., 

),( yxd
),( yxo

 ),(),(),;,(),( yxyxoAyxPSFyxd ηφ +∗= , (9) 
where PSF is the magnitude square of the Fourier transform of the complex pupil function , and φjAe

),( yxη  is the noise often modeled as Gaussian white noise.  In the frequency domain, we can represent the 
imaging model as )()()()( ,,,, yxyxyxyx ffHffOffOTFffD +⋅= .  In this work, we assume that one pair of 
images with known phase diversity are available.  For example, let 11  denote the original 
image and  denote the phase-diversed image with known phase aberration 

)( ηφ +∗= oPSFd

22 )( ηθφ +∗+= oPSFd θ  
added. There are two practical ways to introduce the phase diversity: changing the detector focal position or 
changing the imaging wavelength.  Here, the phase-diversed image is introduced by defocusing.  In the 
frequency domain and under the no-noise condition, we can write )()()( ,,1,1 yxyxyx ffOffOTFffD ⋅=  and 

. )()()( ,,2,2 yxyxyx ffOffOTFffD ⋅=
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It can be observed that 0)()()()( ,1,2,2,1 =⋅−⋅ yxyxyxyx ffOTFffDffOTFffD .  Hence, we can choose the 
objective function to be 
 ∑∑ ⋅−⋅=

x yf f
yxyxyxyx ffFTOffDffFTOffDcbaf

2

,1,2,2,1 )(ˆ)()(ˆ)(),,( rrr  (10) 
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used in Harikumar’s [
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21] work on blind restoration of images blurred by multiple filters.  In summary, the 

piston/tip/tilt estimation can be formulated as an unconstrained nonlinear optimization problem: 
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Nonlinear optimization problems can be solved by local gradient search type method or global search 
method such as genetic algorithm.  Since global search methods are in general computationally expensive, 
the local gradient search method is preferred when the error surface of the optimization problem is convex-
like. 
 
In order to understand the convergence property of the gradient approach for our application, error surfaces 
were examined. We observed that all error surfaces near the solution (approximately within π±  range of 
the solution) are convex-like, which ensures a fast convergence and unique solution when the initial guess 
is approximately within the π±  range of the solution.   
 
By comparing the value of the objective functions for the case of the presence or absence of the piston 
deviations using the monochromatic simulation program, we also found that the piston deviations have 
little impact on the value of the objective function based on defocusing phase diversity. Therefore, we can 
neglect the biases resulting from the piston deviations when estimating the tip/tilt deviations.  This fact 
ensures that we can estimate the tip/tilt deviations without the knowledge of piston deviations with 
sufficient defocusing diversity present.  

3.2.2. Estimation Using Unconstrained Gradient-Search Optimization 

With a maximum of 30 mirrorsats present in the SI mission, the total number of optimization variables are 
no larger than 60 for tip/tilt estimation.  This can be considered a medium-scale optimization problem.  The 
BFGS Quasi-Newton method with a mixed quadratic and cubic line search procedure can be used to find 
optimal solutions of tip/tilt deviations.  Since the computational complexity is high to perform the analytic 
gradient calculation.  Gradients are approximated via finite differencing.  The BFGS formula is used to 
update the approximation of the Hessian matrix.  Due to the well-behaved error surface, the tip/tilt 
estimates can converge to the correct solutions within a few iterations when the deviations are within the 
convex range. In general, the performance of the tip/tilt estimation decreases when the tip/tilt deviations are 
increased. The performance of the tip/tilt deviations can be inferred from the 2-norm of the estimated 
results. An empirical threshold has been derived to determine whether control should be applied according 
to the estimated results. 

3.2.3. Estimation Using Sequential Unconstrained Minimization Technique 

In addition to the unconstrained optimization method with performance indexing, alternatively, we have 
also developed an estimation procedure based on the sequential unconstrained minimization technique 
(SUMT) [22].  The motivation is that we would like to constrain the estimates to be bounded within the 
convex range of the error surface by assuming that the tip/tilt deviations are small and are within the 
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convex range also.  We have assumed that the convex range for tip/tilt deviations is π±  through empirical 
study of the error surfaces.  By introducing the bounds on the optimization variables, our optimization 
problem can be formulated as follows: 
 
 Minimize ),,0( cbf vv

 (12) 

 Subject to 0<−πb
v

, 0<−− πb
v

, 0<−πcv , and 0<−− πcv . 
 
where  is defined in Eq (f 11), b

v
 denotes the tip deviations and cv  denotes the tilt deviations.  SUMT is 

applied to solving the above equation.  The basic concept behind SUMT is to solve a sequence of smooth 
unconstrained problems by transforming the constraints into a smooth barrier function. 

3.3. Estimation Techniques for Piston Error 
Although we have used the technique of phase diversity via defocusing for tip/tilt estimation, it turns out 
not to be a suitable technique for the piston estimation.  The error surfaces with respect to piston deviations 
are highly nonlinear with multiple minima which contain 2π ambiguities relative to the desired pistons.  
Instead, wavelength diversity method is introduced to directly eliminate the 2π-ambiguity problem in 
piston estimation. 
 
Phase ambiguity in monochromatic piston estimation is a well-known problem.  Motivated by the concept 
that the effective wavelength can be extended by two wavelengths (i.e., ( )12

21
λλ

λλλ −=e ), our technique 

extends the previously developed parametric optimization scheme to incorporate wavelength diversity with 
the intent to directly estimate piston deviations without resolving the phase ambiguity separately.  In short, 
the estimation problem of piston deviation is formulated as a nonlinear parametric estimation problem 
which minimizes an objective function of the form 

∑∑ ⋅−⋅
x yf f

yxyxyxyx ffFTOffDffFTOffD
2

,1,2,2,1 )(ˆ)()(ˆ)(  over the parameter spaces of piston positions.  

Here,  is the frequency response of the raw interferometric image measurement with wavelength )( ,1 yx ffD

1λ ,  is the frequency response of the raw interferometric image measurement with wavelength )( ,2 yx ffD

2λ ,  is the estimated optical transfer function with wavelength )(ˆ
,1 yx ffFTO 1λ  and  is the 

estimated optical transfer function with wavelength 
)(ˆ

,2 yx ffFTO

2λ .  
 
Another advantage of constructing the objective function using wavelength diversity is that the piston 
estimates are not sensitive to the masking function estimation errors at all. 
 
We again use SUMT to solve the piston optimization problem.  The surface of the objective function is 
lifted up through SUMT [22] where we deliberately constrain the optimization searching space to be within 
the valid piston range, assuming that the piston deviations are within the extended non-ambiguous region.  
In this case, local minima can be eliminated.  For estimation of the piston deviations, only relative piston 
errors are observable at the interferometric raw images.  Therefore, the resulting piston estimates for all 
apertures are offset to get rid of the global piston error across all apertures.  

3.4. Integrated Estimation/Control Procedure 
As a result of the lessons learnt as documented in the previous sections, we propose an integrated 
estimation/control procedure that would (i) estimate the tip/tilt deviations using two images with phase 
diversity via defocusing, and (ii) to estimate the piston deviations using two images with wavelength 
diversity.  The piston deviations have very little impact on the estimation of tip/tilt deviations, whereas the 
tip/tilt deviations would introduce biases on the piston estimations.  These facts lead us to the integrated 
procedure to achieve the control accuracy requirements of the piston/tip/tilt deviations. 
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Figure 8. Integrated Estimation/Control Procedure 

Figure 8 shows the integrated estimation/control procedure.  First, the tip/tilt deviations are estimated and 
controlled iteratively until the tip/tilt deviations are below some pre-specified threshold at which the piston 
estimation biases is tolerable, and the tip/tilt deviations are below the control accuracy requirement.  
Subsequently, the piston deviations are estimated and controlled iteratively until the piston deviations 
satisfy the piston accuracy requirement.  This estimation/control procedure works well and efficiently when 
the piston/tip/tilt deviations are small enough to be within the convex region.  When the deviations are 
large, the objective function is no longer convex and multiple minima exist for the tip/tilt estimation.  
Global optimization methods are needed to extend the estimation range. 

4. RESULTS AND DISCUSSION 
Two data sources have been used to evaluate the estimation and control schemes: data generated by 
computer simulations of the optics, and data collected from the FIT. The computer simulated raw image 
was calculated by convolving a model image of the Sun in the light of CIV atoms (1550 Å transitions) with 
the point spread function generated using the Golay-7 configuration.  The Fizeau Interferometer Testbed 
(FIT) [7], [8] is a ground-based experimental system developed at NASA GAFC to support the 
development and validation of technologies relevant to SI and other space-based interferometry missions. 
The FIT data set was collected with the aperture configuration of Golay-7.  All the data had been collected 
using point-source filtering with two different 80-nm narrow-band filters centered at wavelengths of 600 
nm and 700 nm.  The CCD detector of the FIT has resolution of 16 bits and the physical dimension of each 
pixel is 9 μm.  

4.1. Evaluation of Estimation and Control Functions for exit-pupil  x/y translational Errors 
Here we present the statistical evaluation results based on the dataset collected from the FIT. The 
evaluation results for computer simulated images have been presented elsewhere [20]. For this assessment, 
the bias and variance of the estimation procedure are calculated.  Our evaluation also includes investigation 
of the impact of other actuator deviations, such as tip/tilt and piston deviations, on the performance of the 
x/y translational estimation algorithm. 
 
Here, Table 1–Table 2 tabulate the average estimation errors and the standard deviations of the estimation 
procedure using k-means clustering, least-square ellipse fitting or the least-square weighted ellipse fitting 
methods.  The input images are collected with source wavelengths of 700 nm ( 20 nm) and 600 nm 
( 20 nm).  The two numbers in each cell of the tables correspond to quantities in the x and y directions. 

±
±
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Table 1. Average Estimation Error of x/y Translational Deviations (in cm) 

Wavelength\Method k-Means Clustering Ellipse Fitting Weighted Ellipse Fitting 
700 nm 0.0157/0.0224 0.0168/0.0229 0.0161/0.0229 
600 nm 0.0188/0.0530 0.0189/0.0531 0.0187/0.0533 
 

Table 2. Standard Deviation of x/y Translational Deviations Estimation (in cm) 

Wavelength\Method k-Means Clustering Ellipse Fitting Weighted Ellipse Fitting 
700 nm 0.0073/0.0092 0.0129/0.0110 0.0084/0.0095 
600 nm 0.0097/0.0093 0.0097/0.0104 0.0098/0.0109 
 
To study the impact of mirror piston/tip/tilt deviations on the proposed estimation procedure, Table 3 
summarizes the average estimation errors of the x/y translational deviation estimation for dataset without 
perturbation, with tip/tilt perturbations2, and with piston perturbations.  In these two tables, data from both 
wavelengths have been combined.  In general, small piston/tip/tilt perturbations of mirrors do not impact 
the average estimation error.  It indicates that our estimation method is robust to mirror deviations as long 
as interference fringes are observable.  Comparing the estimation results using k-Means clustering with the 
further refinement results using ellipse fitting methods, we do not observe the further improvements. All in 
all, k-means clustering method provides efficient yet effective estimation results. 

Table 3. Average Estimation Error of x/y Translational Deviations (in cm) 
for Perturbation Comparisons 

Method► 
▼Perturbation 
Source 

k-Means Clustering Ellipse Fitting Weighted Ellipse Fitting 

Nominal 0.0171/0.0374 0.0181/0.0376 0.0177/0.0374 
Piston 0.0173/0.0404 0.0176/0.0410 0.0175/0.0410 
Tip/tilt 0.0173/0.0381 0.0178/0.0382 0.0173/0.0385 

4.2. Evaluation of Estimation and Control Functions for Tip/Tilt Errors 
To reassure the effectiveness of the proposed tip/tilt estimation procedure, statistical performances of x-tilt 
and y-tilt estimations using both unconstrained gradient optimization method and SUMT are summarized 
here.  The average errors shown here are the root-mean-square estimation errors across all mirrors.  Golay-
7 configuration is used to simulate one pair of phase-diversity images.  The simulated Sun image is used to 
serve as the extended source. X-tilt deviations are generated by uniform noise generator with maximum 
deviations ranging from 4/π  to π4 . 
 
Table 4 shows the average estimation errors for unconstrained gradient optimization method excluding the 
bad estimates where the 2-norm of the estimated tip/tilt deviations is larger than the empirical threshold. 
When the empirical rule is applied to the tip/tilt estimations, the tip/tilt estimation results meet the 
rotational precision requirement if the maximum scale of the uniformly distributed tip/tilt deviations is no 
larger than π2 .  

Table 4. Tip/Tilt Average Estimation Error 

Deviation► 

▼Imaging Source 
π/2 π 2π 3π 4π 

Point Source 0.0015 4.0451e-4 0.5038 1.3904 2.7874
Extended 0.0751 0.1510 0.4010 2.1243 3.1393

 

                                                 
2 Due to the mounting of these actuators, small piston deviations are inevitable.  
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In the previous results, we have assumed that the defocusing amount of the phase-diversed image is known.  
In reality, however, we would probably only have knowledge of its approximate value.  We would then 
need to estimate the defocusing amount along with the tip/tilt deviations. Table 5 summarizes the average 
estimation errors for the case of joint estimation excluding bad estimates according to the empirical rule 
that we derived, as given by the first number in each cell.  For comparison with the average estimation error 
for joint estimation, each cell also includes a second number representing the average estimation error 
when only tip/tilt deviations are estimated.  These data reveal the degree of performance deterioration due 
to the lack of prior knowledge in the defocusing amount. 
 
We have also studied the use of SUMT as an alternative optimization method.  All of the optimization 
variables (tip/tilt deviations in this case) are constrained to be within ±3π.  We observe that the average 
estimation errors via SUMT are comparable to the results in Table 6 using unconstrained gradient search 
method with outlier excluded. 

Table 5. Tip/Tilt Average Estimation Error for Joint Estimation 

Deviation► 

▼Imaging Source 
π/2 π 2π 3π 

Point Source 0.001587/ 

4.0463e-5 

0.001779/ 

4.1761e-5 

0.22045/ 

0.2203747 

0.53189/ 

0.493030 

Extended 0.008147/ 

0.003007 

0.71257/ 

0.51776 

0.9154/ 

0.63074 

0.9413/ 

2.9270e-5 
 

Table 6. Tip/tilt Average Estimation Errors via SUMT 

Deviation► 

▼Imaging Source 
π 2π 3π 

Point Source 0.00568 0.04694 1.1579
Extended 0.039213 0.4208 2.26801 

4.3. Evaluation of Estimation and Control Functions for Piston Errors 
The piston estimation method is via wavelength diversity and SUMT.  Here, we assess the technique 
through examination of statistical results in terms of average piston estimation errors.  The input data are 
generated using our monochromatic interferometer simulation program under the Golay-7 configuration.  
According to the calibration data collected by FIT, two images are simulated using wavelengths of 600 nm 
and 700 nm for each run of the piston estimation.  Here, the effective wavelength is 4200 nm, that is, seven 
times of 600 nm.  We therefore set the constraint on the piston optimization variables to be ±3.5λ. 

 

Table 7. Average Piston Estimation Errors (Extended Source) 

Tilt 
Deviation► 

▼Piston 
0 π/12 π/6 π/4 π/3 5π/12 

2π 0.4722 0.55078 0.89816 1.16549 1.39181 1.585805
4π 0.462948 0.4689 0.97264 1.17298 1.3661961 1.645779
6π 0.410226 0.70546 0.93671 1.190100 1.443579 1.75521
8π 4.27170 4.3481 4.310285 5.16525116 2.966947 4.88295
 
 
Table 7 summarizes the results when one snapshot of the Sun image was taken as the extended source.  The 
piston deviations are uniformly distributed between ±2π, ±4π, or ±6π.  To study the impact of the tip/tilt 
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deviations on the piston estimation, the tip/tilt deviations are also uniformly distributed between 0 (no 
deviations), ±π/12, ±π/6, ±π/4, ±π/3, or ±5π/12.  Tip/tilt deviations impact the piston estimation 
performance negatively.  The average piston estimation errors increase for larger tip/tilt deviations.  The 
average piston estimation errors also mostly increase when the piston deviations increase and the 
estimation results are not reliable once the piston deviations are larger than the ±7π constraint.  

4.4. Evaluation of the Integrated Estimation/Control Procedure 
Figure 9 demonstrates the effectiveness of the proposed integrated estimation/control procedure by 
showing four iterations of the procedure.  In each case, the left-hand side of the figure shows the exit-pupil 
phase errors and the right-hand side of the figure shows the corresponding simulated point spread function.  
In this example, the initial piston/tip/tilt deviations xΔ  in radians for the apertures are represented by the 
following matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3.86171.8787-3.51022.31070.5904-1.8781- 0.4467
3.3580-1.79481.62991.5461-1.1351-3.35872.9538
4.9476-4.28568.7590-5.36584.9294-7.45071.5339  

where the first row is the piston deviation, the second row is the x-tilt deviation and third row is the y-tilt 
deviation.  Each column of the matrix corresponds to one aperture. 
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Figure 9. Integrated Estimation/Control Example 

The tip/tilt deviations are corrected during the first three iterations and the piston deviations are corrected 
during the last iteration.  In this example, the final exit-pupil phase errors are almost zero and the point 
spread function is well aligned.  At the last iteration, the magnitude of the maximum piston deviations is 
0.00022 radian, the magnitude of the maximum x-tilt deviations is 0.0000316 radian and the magnitude of 
the maximum y-tilt deviations is 0.0000055 radian. 

5. CONCLUDING REMARKS 
This study is concerned with the development of estimation techniques for determining the errors in the 
optical configurations of space interferometers without depending on prohibitively expensive metrology 
instrumentation.  The idea is to extract the necessary error information from the raw images collected by 
the interferometer.  To ensure that the study will be realistic in addressing the underlying issues, the Stellar 
Imager (SI) mission has been selected to provide the backdrop for defining the problem.  
 
To this end, separate estimation techniques have been developed and verified for estimating the three 
classes of errors: x/y translational, piston, and tip/tilt. The assessment of the algorithms developed has been 
based on simulated data as well as images collected by the FIT.  The results establish the efficacy of the 
estimation algorithms in providing useful estimated data for the five degrees of freedom of mirror 
deviations for controlling the errors, and this has been demonstrated for seven mirrors in a Golay-7 
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configuration.  Future research is recommended for further testing and refinement of these algorithms in a 
physical laboratory setting. 
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