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ABSTRACT

Two extensions of the fast and accurate special perturbation method recently developed by Peláez et al. are presented
for respectively elliptic and hyperbolic motion. A comparison with Peláez’s method and with the very efficient Stiefel-
Scheifele’s method, for the problems of oblate Earth plus Moon and continuous radial thrust, shows that the new for-
mulations can appreciably improve the accuracy of Peláez’s method and have a better performance of Stiefel-Scheifele’s
method. Future work will be to include the two new formulations and the original one due to Peláez into an adaptive
scheme for highly accurate orbit propagation.

1 Introduction
Equations of motion derived by the variation of parameters (VOP) method are effective in dealing with the long-term
study of the motion of asteroids, comets, as well as natural and artificial satellites subject to relatively small perturbation
forces, mainly because, unlike the methods formulated in rectangular coordinates, describe the evolution of elements (or
integrals of the motion), which exhibit no error propagation with respect to the unperturbed two-body problem. The VOP
can be further improved introducing a two-body regularization which cancels out the dependence on the eccentricity of
the propagation error of the physical time in the pure Keplerian motion. The Stiefel-Scheifele’s method [1], which is
based on the set of regular elements attached to the parametric coordinates of the well-known Kustaaheimo-Stiefel (K-S)
regularization, is very accurate, or equivalently fast, expecially in case of weak perturbations and long-term integrations.
In addition, as noted by Arakida and Fukushima [2], the linear character of the error growth, which characterizes the body
position and the physical time, is in this case independent on the integrator used.

Recently, the performance of the Stiefel-Scheifele’s method has been further improved by Fukushima (see [3], [2]
and references therein) using different techniques, in particular single and quadrupole scaling methods and VOP method,
applied to the K-S regularization.
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A different strategy towards the improvement of a VOP method has been followed by Peláez et al. In a recent article
[4] Peláez has proposed a new formulation for the two body-problem equations of motion, borrowing elements of rigid-
body dynamics. The idea is to track the evolution of an orbital frame moving with the particle and link a new set of
generalized orbital elements to this frame. The result is an improvement in accuracy (or, equivalently, computational
speed) with respect to other efficient methods in orbital dynamics, such as K-S and Sperling-Bürdet, and a more compact
and simple formulation of the equations of motion. Another key advantage of Peláez’s method is that it allows to a unique
formulation for elliptic, parabolic and hyperbolic motion so that transitions from different kinds of orbits can be managed
without stopping the integration. This fact is related to the choice of the fictitious time, which coincides with the true
anomaly in the pure Keplerian motion. However, the consequence of this choice is that full regularization cannot be
achieved due to the structure of the Sundmann transformation employed [1]. From a practical point of view, when the
orbital motion approaches a rectilinear motion, i.e. along highly eccentric orbits, the growth of the propagation error is
amplified.

Two sets of regular elements are developed in the framework of Peláez’s method [4] for propagating the elliptic and
hyperbolic motions respectively. The starting point of our procedure for constructing the two element formulations is
the introduction of a pseudo-eccentric anomaly for the ellipse and a pseudo-hyperbolic anomaly for the hyperbola. We
show that, for the elliptic motion, the gain in accuracy obtained with the new method in place of Peláez’s method is
improved, and its performance is comparable to and better than Stiefel-Scheifele’s method. The formulation for the
hyperbolic motion will be ready very soon. Peláez’s method and its two extensions will be part of an adaptive scheme
of orbital propagation, which switches between the three formulations for accurately propagating the motion of a particle
even in the critic situation of near-rectilinear motion. Optimal switch conditions will be found in order to meet accuracy
requirements for the cases of highly eccentric orbit and planetary capture.

2 Peláez’s special perturbation method
The starting idea of Peláez’s special perturbation method (see [4]) is the decomposition of the position vector of a point
mass x into the product of its magnitude R = ‖x‖ and its direction i = x/R. The decomposition in the projective
coordinates (R, i), so-called after Ferrándiz, is a preliminary operation in obtaining a set of linearized equations of
motion (Deprit [5]).

Non-dimesionalization is performed and the differential equations with respect to non-dimensional time τ are derived
for:

1. z = 1/r, where r is the non-dimensional orbital radius;

2. u = vr, where vr is the non-dimensional radial velocity;

3. ψ = h, where h is the non-dimensional specific angular momentum;

4. the components of the unit quaternion q = (ε1, ε2, ε2, ε4) related to the orbital frame R = 〈i, j, k〉. The unit
vectors of R are defined by the relations:

i =
x
R

, k =
x× v
‖x× v‖ , j = k× i , (1)

where v = ẋ is the velocity vector.

The next step in [4] is to change the independent variable from τ to fictitious time σ, according to the transformation:

dτ

dσ
=

r2

h
. (2)

Finally, the variation of parameters technique is applied and the differential equations of the elements attached to the
quantities z, u, ψ and q are determined. In the next section we explain the meaning of the elements introduced by the
method.
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Figure 1: Orbital frames R and U0 (k-axis view).

2.1 Integrals of the motion
One of the elements is the specific angular momentum ψ and needs no explanation.

Let fp = (fpx, fpy, fpz)
T be the perturbing acceleration vector (non-dimensional) expressed in the orbital frame R,

which was defined in (1). The angular velocity (non-dimensional) of R is given by:

ω =
r

h
fpz i +

h

r2
k . (3)

Let us consider a reference frame U which is rotating with respect to R at the angular velocity:

Ωrel = − h

r2
k ,

then, the angular velocity of U is:
Ω =

r

h
fpz i .

We note that when fpz is equal to zero the unit vectors of U remain fixed with respect to inertial space. More precisely, U
represents a family of reference frames, which are rotated with respect to R of σ + C clockwise around the direction of
the osculating angular momentum vector, where C is an arbitrary constant.

For C = 0 the corresponding orbital frame U0 = 〈u1, u2, u3〉 is defined as follows:

[u1, u2, u3] = [i, j, k]Qu , (4)

where

Qu =




cos σ sin σ 0
− sinσ cos σ 0

0 0 1



 .

The unit vectors u1 and u2 are depicted in Fig. (1).
The elements attached to the quantities z and u, named A and B in [4], are multiplied by ψ and the new elements:

q1 = ψA q2 = ψB
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are introduced. We project the eccentricity vector on R:

e = −x
r
− 1

µ
h× v = −i− 1

q3
k× (u i + s j) , (5)

and by exploiting the relations:

s = q3 + q1 cos σ + q2 sin σ (6)
u = q1 sinσ − q2 cos σ , (7)

for, respectively, the non-dimensional transverse and radial velocity, and the identities k× i = j and k× j = −i, Eq. (5)
yields:

e =
(

q1

q3
cos σ +

q2

q3
sinσ

)
i−

(
q1

q3
sinσ − q2

q3
cos σ

)
j .

Eq. (4) is used to project e on U0, it results:
e =

q1

q3
u1 +

q2

q3
u2 , (8)

and if the new variables:

ζ1 =
q1

q3
, ζ2 =

q2

q3

are introduced into Eq. (8), we finally get:
e = ζ1 u1 + ζ2 u2 .

The previous equation indicates that ζ1 and ζ2 are the projections of the eccentricity vector on the unit vectors u1 and u2:

ζ1 = e cos αe

ζ2 = e sinαe ,

where αe, shown in Fig. (1), is the angle between u1 and e. At the initial time t0, σ is equal to the arbitrary constant
σ0. By setting σ0 equal to the initial true anomaly ϑ (t0), it results αe (t0) = 0, which means that u1 is parallel to the
eccentricity vector at t0.

Now we deal with the elements attached to the unit quaternion q. They represents the components of the unit quater-
nion related to the orbital frame R0 = 〈i0, j0, k0〉, whose unit vectors are defined by:

[i0, j0, k0] = [i, j, k]Q0 ,

where

Q0 =




cos&σ sin&σ 0
− sin&σ cos&σ 0

0 0 1



 ,

with&σ = σ−σ0. We recognize that R0 belongs to the family of frames indicated by U , and, in particular, it corresponds
to the choice C = −σ0. As a consequence, this frame is invariant when the motion is unperturbed, and also when the
disturbing acceleration is locked within the orbital plane. According to our assumption on σ0, the frameR0 is permanently
rotated of ϑ (t0) with respect to U0.

In general, for each choice of the value of C, exists a SO(3) rotation with respect to an inertial reference frame based
on the following Euler angles: the right ascension of the ascending node Ω, the inclination i and the angle:

ω = ω − αe − C ,

where ω is the argument of periapsis. For example, ω = ω − αe + σ0 for R0, and ω = ω − αe for U0. The angles Ω, i
and ω are integrals of the motion, even when the acceleration vector is not zero and lies on the orbital plane.
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Once the orbital frames U0 and R0 are defined, the elements can be introduced:

α =
(

ζ1 ζ2 ζ3 ε10 ε20 ε30 ε40

)T , (9)

where ζ1 and ζ2 are the projections of the eccentricity vector on u1 and u2 respectively, ζ3 is the inverse of the non-
dimensional specific angular momentum, and ε10, ε20, ε30, ε40 are the components of the unit quaternion which defines
the rotation between an inertial frame and R0. The differential equations of these elements are:

dζ1

dσ
= 2g {ŝ sinσfpx + [ζ1 + (1 + ŝ) cos σ] fpy} (10)

dζ2

dσ
= 2g {−ŝ cos σfpx + [ζ2 + (1 + ŝ) sinσ] fpy} (11)

dζ3

dσ
= −2gζ3fpy (12)

dε10

dσ
= gfpz [cos (σ − σ0) ε40 − sin (σ − σ0) ε30] (13)

dε20

dσ
= gfpz [cos (σ − σ0) ε30 + sin (σ − σ0) ε40] (14)

dε30

dσ
= −gfpz [cos (σ − σ0) ε20 − sin (σ − σ0) ε10] (15)

dε40

dσ
= −gfpz [cos (σ − σ0) ε10 + sin (σ − σ0) ε20] , (16)

where:

ŝ = 1 + ζ1 cos σ + ζ2 sinσ

g =
1

2ζ4
3 ŝ3

. (17)

The time equation takes the form:
dτ

dσ
=

1
ζ3
3 ŝ2

.

2.2 Singularities of Peláez’s method
Note that g, which appears on the right-hand sides of Eqs. (10) - (16), can also be written in the form:

g =
h4

(1 + e cos ϑ)3
, (18)

where h is the non-dimensional specific angular momentum, e is the eccentricity and ϑ is the true anomaly. Therefore,
the differential equations of the elements become singular when the term 1 + e cos ϑ is zero. This situation occurs when:

1. e = 1 and ϑ = π: rectilinear ellipse at apoapsis, parabola for r equal to infinity;

2. cos ϑ = −1/e: hyperbola for r equal to infinity.

From a practical point of view there are two cases of interest: highly eccentric orbits near the apoapsis, and hyperbolic
orbits near the asymptotes.

As regard the time equation, which is Eq. (2), it contains a singularity for h equal to zero, i.e. when the motion is
rectilinear.
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3 Extension of Peláez’s method for elliptic motion
For the time being we deal with elliptic motion. We will write soon the formulation for hyperbolic motion.

3.1 First three elements: shape of the osculating ellipse and orientation on its plane
We express Newton’s second law of motion for the perturbed Kepler problem in the orbital frame R, which is defined by
relations (1), and project on the i-axis. If non-dimensional quantities are employed (see [4]), the resulting equation takes
the form:

d2r

dτ2
− h2

r3
+

1
r2

= fp · i . (19)

It is a known fact (see [6]) that the eccentric anomaly is a regularizing variable for Kepler motion, and for this reason in Eq.
(19) we change the independent variable from non-dimensional time τ to eccentric anomaly E through the transformation:

dτ

dE = r
√

a , (20)

where a is the non-dimensional semi-major axis. For a generic quantity x the two relations below are derived:

dx

dτ
=

1
r
√

a

dx

dE
d2x

dτ2
=

1
r2a

[
d2x

dE2
−

(
1
r

dr

dE +
1
2a

da

dE

)
dx

dE

]
. (21)

We set x = r in Eq. (21) and use the result in Eq. (19). After multiplying both sides by r2a, we get:

d2r

dE2
− 1

r

(
dr

dE

)2

− h2a

r
+ a = (fp · i) r2a +

1
2a

da

dE
dr

dE . (22)

Since the term containing the derivative of a vanishes in the case of pure Kepler motion, it is of the character of a
perturbing term and it is consequently shifted to the right-hand side. From the expression of the non-dimensional Kepler
energy:

EK =
1
2r

[
1
ra

(
dr

dE

)2

+
h2

r
− 2

]
,

after rearranging the terms, we obtain:

1
ra

(
dr

dE

)2

+
h2

r
= 2 (rEK + 1) .

Both sides are then multiplied by −a, and EK is substituted by −1/ (2a). Some simplifications lead to the equality:

−1
r

(
dr

dE

)2

− h2a

r
= r − 2a .

The previous relation is straight applied to Eq. (22), which becomes:

d2r

dE2
+ r − a = (fp · i) r2a +

1
2a

da

dE
dr

dE . (23)

Note that this equation is not singular when r = 0: the original Eq. (19) has been regularized.
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What we want to do now is to use the variation of parameters technique in order to find the set of two regular elements
attached to r and dr/dE , and the differential equations which describe their behaviour. In the pure Kepler motion the
terms on the right-hand side of Eq. (23) disappear to give:

d2r

dE2
+ r = a .

This equation can be analytically integrated and the solution is represented by:

r = a + A cos E + B sin E , (24)

where A and B are integration constants depending on the initial conditions. In Eq. (24) we prefer to collect a, and
introduce the elements η1 and η2:

r = a (1− η1 cos E − η2 sin E) . (25)

From the comparison of Eq. (25) with the well-known expression of the orbital radius (here non-dimensional) in terms of
the eccentric anomaly E:

r = a (1− e cos E) ,

we infer that:

η1 = e cos (E −E) (26)
η2 = e sin (E −E) . (27)

We named E “eccentric anomaly” as E, however, along a generic osculating ellipse, E differs from E by a constant. This
fact is shown if we recall the expression of the time derivative of E (see [7], p. 503), given by:

dE

dτ
=

dE
dτ

+
∂E

∂ṽ
· fp , (28)

where ṽ is the non-dimensional velocity vector, and impose fp = 0: when the motion is unperturbed the term E − E is
constant.

We substitute Eq. (23) with the corresponding system of two first-order differential equations:

dr

dE = w (29)

dw

dE + r − a = (fp · i) r2a +
w

2a

da

dE . (30)

A solution of the perturbed problem is sought in the form:

r = η3 (E) [1− η1 (E) cos E − η2 (E) sin E ]
w = η3 (E) [η1 (E) sin E − η2 (E) cos E ] ,

where, from now on, a is replaced by η3. If these relations are introduced in Eqs. (29) and (30), the differential equations
governing the evolution of η1 and η2 are obtained. They are reported below together with the derivative of η3 with respect
to E :

dη1

dE = η2
3

{(
l2 sin E − 2 r̂ η2

)
fp · i + l [(1 + r̂) cos E − η1] fp · j

}

dη2

dE = η2
3

{(
−l2 cos E + 2 r̂ η1

)
fp · i + l [(1 + r̂) sin E − η2] fp · j

}

dη3

dE = 2η3
3 [(η1 sin E − η2 cos E) fp · i + l fp · j] ,
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where the quantities r̂ and l are defined by:

r̂ =
r

a
= 1− η1 cos E − η2 sin E (31)

l =
√

1− e2 =
√

1− η2
1 − η2

2 . (32)

Finally, we report the time equation (2) in terms of η1, η2 and η3:

dτ

dE = η3/2
3 r̂ , (33)

where r̂ is provided by Eq. (31).
Eqs. (26) and (27) indicate that η1 and η2 are the projections of the eccentricity vector on two orthogonal axis which

lie on the osculating orbital plane. Because η1, η2 and e are integrals of the motion, we infer that the two axis are fixed
with respect to inertial space as long as the motion is unperturbed, as we are going to show.

Let us introduce the orbital frame RE = 〈iE , jE , kE〉 defined as follows: the x-axis (iE) lies on the osculating plane
and is rotated counter-clockwise by the angle E (eccentric anomaly) with respect to the eccentricity vector e, the z-axis
(kE) is oriented as the osculating angular momentum vector, and the y-axis (jE) completes the setup to yield a Cartesian
dextral system. The angular velocity of RE is given by:

ωE =
r

h
fpz i +

[
h

r2
− d (ϑ− E)

dτ

]
kE , (34)

where i is the unit position vector. With the help of the differential equations of E and ϑ derived with Poisson’s variational
method, which are respectively given by Eq. (28) and the equation:

dϑ

dτ
=

h

r2
+

∂ϑ

∂ṽ
fp , (35)

the third component of ωE is written in the form:

ωE,z = ωE · kE =
dE
dτ

− ∂ (ϑ− E)
∂ṽ

· fp . (36)

So, as we expected, when there is no perturbing acceleration (fp = 0), RE rotates at the angular velocity of dE/dτ around
the fixed axis kE .

Let UE,0 = 〈uE,1, uE,2, uE,3〉 be a reference frame that is rotated clockwise with respect to to RE of E around kE

according to the transformation:
[uE,1, uE,2, uE,3] = [iE , jE , kE ]QE,u , (37)

where:

QE,u =




cos E sin E 0
− sin E cos E 0

0 0 1



 .

The eccentricity vector is projected on UE,0, to give:

e = e cos (E − E) uE,1 + e sin (E −E) uE,2 ,

and by substituting Eqs. (26) and (27) in the above equation, we get:

e = η1 uE,1 + η2 uE,2 . (38)

The angular velocity of UE,0 relative to RE is:

ΩE,rel = −dE
dτ

kE ,
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so that the angular vecocity of UE,0 becomes:

ΩE =
r

h
fpz i−

[
∂ (ϑ− E)

∂ṽ
· fp

]
kE . (39)

We conclude our proof by stating that the elements η1 and η2 are the projections of e on UE,0, as shown by Eq. (38), and
that this reference frame, according to Eq. (39), is inertially fixed when the motion is unperturbed.

Introduction of a time-element

We introduce an element with respect to the fictitious time τ , called the time-element. In order to find it we consider the
pure Kepler motion. By integrating Eq. (33), the fictitious time is obtained:

τ =
(
C0 + η3/2

3 E
)
− η3/2

3 (η1 sin E − η2 cos E) , (40)

where C0 is the constant of integration. The term:

τ∗ = C0 + η3/2
3 E , (41)

which linearly depends on the independent variable, is the time-element. Let us, firstly, plug Eq. (41) into Eq. (40) and
rearrange the terms to get:

τ∗ = τ + η3/2
3 (η1 sin E − η2 cos E) . (42)

Then, we differentiate Eq. (42) with respect to E . After exploiting Eq. (33) and simplifying, it results:

dτ∗

dE =
√

η3

[
η3

(
1 +

dη1

dE sin E − dη2

dE cos E
)

+
3
2

dη3

dE (η1 sin E − η2 cos E)
]

. (43)

Once τ∗ is known, the fictitious time is calculated by the relation:

τ = τ∗ − η3/2
3 (η1 sin E − η2 cos E) .

3.2 The remaining four elements: the unit quaternion
We present two possible formulations for the unit quaternion.

Reference frame R

Let us consider the reference frame R, which was defined in (1). The evolution of the unit quaternion ε = (ε1, ε2, ε3) , ε4

associated to R in the independent variable E , is governed by the relations:

dε

dE =
r
√

a

2
(ε× ω + ε4ω)

dε4

dE = −r
√

a

2
ε · ω , (44)

where we remember that all the quantities involved are non-dimensional, and ω is the angular velocity vector of R. After
substituting the expression of ω, given by Eq. (3), the derivatives take the form:

dε1

dE =
√

a

2

(
h

r
ε2 +

r2fpz

h
ε4

)
(45)

dε2

dE = −
√

a

2

(
h

r
ε1 −

r2fpz

h
ε3

)
(46)

dε3

dE =
√

a

2

(
h

r
ε4 −

r2fpz

h
ε2

)
(47)

dε4

dE = −
√

a

2

(
h

r
ε3 +

r2fpz

h
ε1

)
. (48)
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The differential equations of the elements attached to the components of the unit quaternion q = (ε1, ε2, ε3, ε4) are
determined by applying the variation of parameters technique to Eqs. (59) - (62) (see [4]). A direct way for obtaining
these equations is to multiply both sides of Eqs. (13) - (16) by:

dσ

dE =
h
√

a

r
. (49)

We have:
dε10

dE = Gfpz [cos (σ − σ0) ε40 − sin (σ − σ0) ε30] (50)

dε20

dE = Gfpz [cos (σ − σ0) ε30 + sin (σ − σ0) ε40] (51)

dε30

dE = −Gfpz [cos (σ − σ0) ε20 − sin (σ − σ0) ε10] (52)

dε40

dE = −Gfpz [cos (σ − σ0) ε10 + sin (σ − σ0) ε20] , (53)

where G is the product of g, defined by Eq. (18), with dσ/dE . The quantity G can be explicitated in terms of η1, η2, η3

and E as follows:

G =
η2
3 (1− η1 cos E − η2 sin E)2

2
√

1− η2
1 − η2

2

.

Because σ appears in Eqs. (50) - (53), it is added to the set of integration variables and its derivative with respect to E is
written in a suitable form for being integrated:

dσ

dE =
√

1− η2
1 − η2

2

1− η1 cos E − η2 sin E . (54)

In the pure Kepler problem Eq. (54) is analytically integrable by separation of variables to yield:

σ = 2 tan−1 (1 + η1) tan
(E

2

)
− η2√

1− η2
1 − η2

2

+ 2 tan−1 η2√
1− η2

1 − η2
2

+ C0 , (55)

where C0 is the constant of integration.

Reference frame RE

Let us consider the reference frame RE = 〈iE , jE , kE〉, previously introduced. The axis of RE can be defined as:

iE = cos (ϑ− E) i− sin (ϑ− E) j (56)
jE = sin (ϑ− E) i + cos (ϑ− E) j (57)
kE = k , (58)

where i, j and k are the unit vectors of the reference frame R defined in (1). Let εE = (εE,1, εE,2, εE,3) , εE,4 be the
unit quaternion associated to RE . Then, we exploit the relations (44), wherein ω is replaced by ωE , provided by Eq.
(34), to get:

dεE,1

dE =
√

a

2

{
rωE,z εE,2 +

r2fpz

h
[cos (ϑ− E) εE,4 − sin (ϑ− E) εE,3]

}
(59)

dεE,2

dE =
√

a

2

{
−rωE,z εE,1 +

r2fpz

h
[cos (ϑ− E) εE,3 + sin (ϑ− E) εE,4]

}
(60)

dεE,3

dE =
√

a

2

{
r2fpz

h
[− cos (ϑ− E) εE,2 + sin (ϑ− E) εE,1] + rωE,z εE,4

}
(61)

dεE,4

dE = −
√

a

2

{
r2fpz

h
[cos (ϑ− E) εE,1 + sin (ϑ− E) εE,2] + rωE,z εE,3

}
, (62)
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where ωE,z is reported in Eq. (36). When the motion is unperturbed Eqs. (59) - (62) simplify in:

dεE,1

dE =
1
2

εE,2

dεE,2

dE = −1
2

εE,1

dεE,3

dE =
1
2

εE,4

dεE,4

dE = −1
2

εE,3 .

This system of four differential equations can be analytically integrated to provide the solutions:

εE,1 = cos
(
E − E0

2

)
εE,10 + sin

(
E − E0

2

)
εE,20 (63)

εE,2 = cos
(
E − E0

2

)
εE,20 − sin

(
E − E0

2

)
εE,10 (64)

εE,3 = cos
(
E − E0

2

)
εE,30 + sin

(
E − E0

2

)
εE,40 (65)

εE,4 = cos
(
E − E0

2

)
εE,40 − sin

(
E − E0

2

)
εE,30 , (66)

where εE,10, εE,20, εE,30, εE,40 are constants in the pure Kepler motion, but vary with E when perturbations are applied.
The equations which describe the evolution of these quantities in the perturbed two-body motion are found by plugging
Eqs. (63) - (66) into Eqs. (59) - (62). After some algebra we get:

dεE,10

dE = −A
∂ (ϑ− E)

∂ṽ
· fp εE,20 + Gfpz [cos (ϑ− E +&E) εE,40 − sin (ϑ− E +&E) εE,30] (67)

dεE,20

dE = A
∂ (ϑ− E)

∂ṽ
· fp εE,10 + Gfpz [cos (ϑ− E +&E) εE,30 + sin (ϑ− E +&E) εE,40] (68)

dεE,30

dE = −A
∂ (ϑ− E)

∂ṽ
· fp εE,40 −Gfpz [cos (ϑ− E +&E) εE,20 − sin (ϑ− E +&E) εE,10] (69)

dεE,40

dE = A
∂ (ϑ− E)

∂ṽ
· fp εE,30 −Gfpz [cos (ϑ− E +&E) εE,10 + sin (ϑ− E +&E) εE,20] , (70)

where &E = E − E0 and:

A =
η3/2
3

2
(1− η1 cos E − η2 sin E) .

The trigonometric functions in Eqs. (67) - (70) can be expressed in terms of η1, η2 and E by means of the identities:

e cos E = η1 cos E + η2 sin E
e sinE = η1 sin E − η2 cos E .

If in place of ϑ− E in Eqs. (56) - (58) we set σ − E , Eqs. (67) - (70) take a more simple form:

dε̃10

dE = Gfpz [cos (σ − E0) ε̃40 − sin (σ − E0) ε̃30] (71)

dε̃20

dE = Gfpz [cos (σ − E0) ε̃30 + sin (σ − E0) ε̃40] (72)

dε̃30

dE = −Gfpz [cos (σ − E0) ε̃20 − sin (σ − E0) ε̃10] (73)

dε̃40

dE = −Gfpz [cos (σ − E0) ε̃10 + sin (σ − E0) ε̃20] , (74)

11



where σ is calculated by integrating Eq. (54).

3.3 Set of differential equations
To resume, the complete set of differential equations of the elements is given by:

dη1

dE = η2
3

{(
l2 sin E − 2 r̂ η2

)
fp · i + l [(1 + r̂) cos E − η1] fp · j

}
(75)

dη2

dE = η2
3

{(
−l2 cos E + 2 r̂ η1

)
fp · i + l [(1 + r̂) sin E − η2] fp · j

}
(76)

dη3

dE = 2η3
3 [(η1 sin E − η2 cos E) fp · i + l fp · j] (77)

dε10

dE = Gfpz [cos (σ − σ0) ε40 − sin (σ − σ0) ε30] (78)

dε20

dE = Gfpz [cos (σ − σ0) ε30 + sin (σ − σ0) ε40] (79)

dε30

dE = −Gfpz [cos (σ − σ0) ε20 − sin (σ − σ0) ε10] (80)

dε40

dE = −Gfpz [cos (σ − σ0) ε10 + sin (σ − σ0) ε20] (81)

dσ

dE =
l

r̂
. (82)

where:

r̂ =
r

a
= 1− η1 cos E − η2 sin E

l =
√

1− e2 =
√

1− η2
1 − η2

2

G =
(η3r̂)

2

2l
.

We complete the set of Eqs. (75) - (82) with the equation of physical time:

dτ

dE = η3/2
3 r̂ ,

or with the equation of the time-element:

dτ∗

dE =
√

η3

[
η3

(
1 +

dη1

dE sin E − dη2

dE cos E
)

+
3
2

dη3

dE (η1 sin E − η2 cos E)
]

.

3.4 Formulation with the same elements of Peláez’s method and a different independent vari-
able

We change in Eqs. (10) - (16) the independent variable from σ to Ê , according to the relation:

σ = 2 tan−1

(√
1 + e

1− e
tan

Ê
2

)
, (83)

where e is the eccentricity. Both hands of the previous equation are differentiated with respect to σ to find the quantity:

dÊ
dσ

=
1− e cos Ê√

1− e2
− sin Ê

1− e2

de

dσ
, (84)
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Table 1: Comparison of special perturbation methods for the problem of oblate Earth plus the Moon.
Steps/Revolution RSS [km] &R [km]

Stiefel-Scheifele 62 0.0144 0.0005

dromo-original 62 0.0973 0.0973

dromo-versionB 62 0.1228 0.1060

dromo-versionA-te 62 46.2256 0.6138

dromo-versionA 62 47.6757 0.6035

Cowell 240 45.2104 24.5627

where:
de

dσ
=

1√
ζ2
1 + ζ2

2

(
ζ1

dζ1

dσ
+ ζ2

dζ2

dσ

)
.

The set of elements adopted by the method is the same of Peláez’s method and is reported in Eq. (9). The corresponding
differential equations in the new independent variable Ê are obtained by dividing Eqs. (10) - (16) by dÊ/dσ given in Eq.
(84). Finally, the following identities, which are consequences of Eq. (83), are employed:

cos σ =
cos Ê − e

1− e cos Ê

sinσ =
√

1− e2 sin Ê
1− e cos Ê

.

4 Results
We present numerical comparisons of the following schemes:

1. The original formulation of Peláez’s method (see [4]). Let us name it dromo-original.

2. The two modified versions of Peláez’s method, with and without the time-element, whose equations are reported in
section 3.3. Let us name them dromo-versionA and dromo-versionA-te respectively.

3. The modified version of Peláez’s method presented in section 3.4. Let us call it dromo-versionB.

4. Stiefel-Scheifele’s method (see [1]).

5. Cowell’s method.

Two problems are used for the comparisons: the first deals with a satellite in an highly eccentric orbit perturbed by (1)
the Earth oblateness and (2) the Lunar perturbation; the second problem deals with a continuous radial thrust applied to
a satellite in an initial circular orbit. To integrate the differential equations, the Runge-Kutta method of fourth order with
Cash-Karp parameters was applied.

4.1 Oblate Earth plus the Moon
The problem, which is the example 2b of the book by Stiefel and Scheifele [1] (page 122) is determining the position of
the satellite after 50 revolutions (288.12768941 msd) with the initial position and velocity vectors expressed in an inertial

13
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Figure 2: Steps for revolution and RSS of the error in function of the relative tolerance parameter of the RK 4(5) for
Stiefel-Scheifele’s method and Peláez’s special perturbation method.

reference frame by:

(x1, x2, x3) = (0.0, −5888.9727, −3400.0) km
(ẋ1, ẋ2, ẋ3) = (10.691338, 0.0, 0.0) km s−1 .

The unperturbed Kepler orbit has an inclination of 30◦ with respect to the equator (x1, x2-plane) and an eccentricity
of 0.95. The satellite is initially at the pericenter at distance R = 6800 km. Details on the implementation of the two
perturbations are available in the book [1]. The reference solution given in [1]:

(x1,ref , x2,ref , x3,ref) = (−24219.0503, 227962.1064, 129753.4424) km , (85)

was obtained by integrating the differential equations of Stiefel-Scheifele’s method with 498 steps for revolution.
Bond and Allman in their book [8] use this problem in order to compare different methods. The solution (85) was

assumed as exact and the error calculated as the distance between the final position vector provided by each method and
the exact one. Also Peláez exploits the problem to test the performance of his special perturbation method [4], which
proves to be the most accurate between the other methods compared: Sperling-Bürdet, Kustaanheimo-Stiefel and Cowell.

We compare our selected methods by imposing a frequency of 62 steps of integration for revolution and recording two
different errors. The first is calculated as in the reference [8]:

RSS =
√

(x1,f − x1,ref)
2 + (x2,f − x2,ref)

2 + (x3,f − x3,ref)
2 ,

where (x1,f , y1,f , z1,f) is the final position obtained from a generic method. The second is the difference between the
magnitudes of the position vectors:

&R =
∣∣∣
√

x2
1,f + x2

2,f + x2
3,f −

√
x2

1,ref + x2
2,ref + x2

3,ref

∣∣∣ .

The results are shown in Table (1). The best performance belongs to Stiefel-Scheifele’s method in both the value of RSS
and that of &R. Second ranked is dromo-original, which shows a slightly better accuracy of dromo-versionB. The RSS
of Peláez’s special perturbation method is about 97 m, which is appreciably smaller than the value 250 m obtained by
Peláez [4]. Note that dromo-versionA and dromo-versionA-te have an RSS higher than 46 km, and a &R smaller than 1
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Table 2: Comparison of special perturbation methods for the problem of continuous radial thrust.
Steps Rf [km] &R [km]

Solution – 22735.0635 –

dromo-versionB 200 22735.0635 1.17× 10−5

dromo-versionA 200 22735.0636 3.54× 10−5

dromo-versionA-te 200 22735.0636 3.54× 10−5

Stiefel-Scheifele 200 22735.0636 8.00× 10−5

dromo-original 200 22735.0636 8.39× 10−5

Cowell 200 22734.6704 0.39

km: this means that the error is mainly in the orientation of the position vector, while its magnitude is propagated with a
good accuracy. Finally, Cowell’s method is the least accurate, even if we are not using an appropriate integrator for it.

Figure (2) compares the first two ranked methods, Stiefel-Scheifele’s and dromo-original, in terms of steps for revo-
lution and RSS plotted in function of the relative tolerance, which is a free parameter in the Runge-Kutta integrator.

4.2 Continuous radial thrust
A satellite is orbiting around the Earth in an circular orbit of radius r0 = 6800 km. At time t = 0, it is propelled by a
constant radial thrust of:

apx = 1.22719913916381× 10−3 km
s2

.

The problem is determining the magnitude of the position vector of the satellite after tf = 10000 s. The solution can be
analytically calculated, thanks to Tsien’s procedure, and results:

Rref = 22735.0635 km .

Also this problem is reported in the book by Bond and Allman [8], but they set a final time of tf = 12000 s, which
corresponds to escape from the Earth. The selected methods are compared with a required number of 200 steps of
integration for revolution, and the error is calculated as the difference with respect to the reference distance. The results
are reported in Table (2). The modifications of Peláez’s special perturbation method proposed in this paper are the most
accurate in predicting the final distance of the satellite, and so they beat Stiefel-Scheifel’s method, whose performance is
similar to that of dromo-original.

5 Conclusions
Starting from the special perturbation method developed by Peláez [4], an extension for the case of elliptic motion has been
developed. This extension consists of three versions, named dromo-versionA, dromo-versionA-te and dromo-version-B.
The comparison of these methods with the original Peláez’s method (named dromo-original) and also with the very
efficient Stiefel-Scheifele’s method is shown by using the problems of oblate Earth plus Moon and continuous radial
thrust. For the first problem Stiefel-Scheifeles method is the most accurate, followed by dromo-original, which slightly
improves the very good accuracy of dromo-versionaB. For the second problem all the new versions of Peláez’s method
developed in this paper show a better performance with respect to Stiefel-Scheifele’s method.
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