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Abstract: A control method is developed for the solar sail normal vector to trace a desired 
circular coning trajectory at orbit rate. The coning trajectory is defined in the local vertical 
local horizontal (LVLH) frame and the coning occurs about an LVLH equilibrium sail attitude. 
Past research has shown that sail attitude equilibria exist in the LVLH frame under the influence 
of aerodynamic, gravity gradient and solar torques. Precession of the sail normal from these 
equilibria causes sail normal coning about that equilibrium attitude. If the coning happens at 
orbit rate, wide variety of orbital effects can be induced. This results in an inexpensive 
spacecraft with a longer duration mission as compared to other conventional efforts. A special 
case of analyzing circular cones (at orbit rate coning) reveals that desired orbital effects are 
induced by employing the sail coning method. The control method herein minimizes the angular 
momentum error between the actual and desired angular momentum vectors at orbit rate. Since 
angular momentum is a function of sail normal, angular momentum error reduction raises hope 
in reducing the sail normal error between the actual and desired sail normal vectors as well. 
Results for tracking a 1° circular cone about an LVLH equilibrium point where maximum orbital 
effects are induced is presented. The sail normal is traced with an accuracy of 0.05°. The control 
torques required to induce this circular orbit rate coning are on the order of 10-6 Nm (acceptable 
on small sailcraft).  
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1. Introduction 
 

Solar sails are an attractive solution for expensive and massive space missions. 
Traditional spacecraft must carry in-space propulsion fuel that increases both launch mass and 
cost. A sail exposed to solar radiation offers free and continuous propulsion by manipulating the 
sail thrust vector direction relative to the Sun. Figure 1 illustrates a simple solar sail 
configuration and Fig. 2 shows how the solar radiation thrust force is used for propulsion.                                                         

               
Figure 1.  Solar sail configuration                         Figure 2.  Solar radiation thrust force 

A solar sail consists of a sailcraft bus that houses the necessary electronics and hardware, a large, 
reflective, gossamer sail and an attitude manipulation component (tip vanes, thrusters, reaction 
wheels). The integrated effect of the reflected photons provides the propulsive thrust force. A 
large sail area is required in order to interrupt the photon radiation and produce an appreciable 
amount of thrust force. Since acceleration is inversely proportional to mass for a given thrust 
force, the mass of the sailcraft must be kept to a minimum. Thus, the sail and bus are designed to 
provide a large area-to-mass ratio and maximize the propulsion acceleration. Incident rays of 
sunlight reflect off of the sail (assume specular reflection from a perfectly flat sail) and produce 
two force components: one in the direction of the incident sunlight and another in the opposite 
direction of the reflected rays. In the net force vector, the components tangent to the sail surface 
cancel and the components normal to the surface add to produce the thrust force approximately 
in the sail normal direction. NASA’s CubeSail project used a perfectly reflective 40 m2 square 
sail in simulation to show that at 1 AU from the Sun, 0.03 N of solar radiation thrust force can be 
produced [1]. Although this force is relatively small compared with other propulsion methods, it 
is available continuously and hence can still be used to propel spacecraft for long distances 
without carrying any propellant.   

The free propulsion from solar radiation makes extended mission durations feasible with 
reduced spacecraft mass and cost. A typical science mission is expected to cost on the order of 
one million dollars per kilogram of spacecraft mass [1]. This leaves high potential for low-cost 
science missions that have reduced spacecraft mass. As an example, results from a comet 
rendezvous mission study to reach Comet 88P/Howell using chemical propulsion and solar 
sailing are shown in Figure 3. 
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Figure 3.  Comet Rendezvous Mission Study Using Chemical and Solar Sail Propulsion 

Via traditional chemical propulsion, a Hohmann transfer from the Earth to the comet required 
400 kg of propellant mass, whereas the solar sail completed the same mission with a total 
spacecraft mass of 3 kg (a factor of ~135 reduction in spacecraft mass). This translates into lower 
launch costs to Earth escape velocity and reduced development costs for the spacecraft [2]. The 
transfer time for the high thrust approach using chemical propulsion was 0.7 years as compared 
with 10 years for the solar sail. Therefore, for missions where transfer time is not a critical 
parameter, solar sail propulsion can result in significant fuel mass savings.  
 The significant solar thrust propulsion enables non-Keplerian orbits for solar sails. With 
this unique capability of solar sails, many space science missions can be achieved which are 
difficult to implement using conventional (chemical) propulsion techniques. Conventional 
propulsion can only produce Keplerian orbits such as ellipses, parabola and hyperbola (parts of a 
conic section). However, non-Keplerian orbits can be produced with constant sail thrusting 
through which orbit raising and precession can be achieved. One such mission is the study of the 
Earth magnetotail for which non-Keplerian orbits are desired. This requires the spacecraft orbit 
to continuously rotate to follow a Sun-synchronous path and also raise its orbit to explore the 
entire magnetotail. Two mission scenarios using conventional and solar sail propulsion are 
illustrated in Figure 4. 

 
Figure 4.  Exploring Earth Magnetotail Using Chemical and Solar Sail Propulsion 
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The chemical propulsion (purple line – rocket) with fuel enough for initial orbit injection 
produces an elliptical orbit, which then stays inertially fixed as the Earth (along with the 
magnetotail) rotates about the Sun. Since the magnetotail rotates with the Sun-Earth line, an 
inertially fixed Keplerian orbit with spacecraft apogee inside the magnetotail provides less than 
three months of science data. The spacecraft collects data for a limited time until the magnetotail 
rotates away with the Earth. In contrast, the solar sail propulsion system provides a unique 
steering capability that enables long-term residence within the magnetotail. In addition, the sail 
orbit can also be raised to provide full coverage of the magnetotail. The solar sail propulsion 
(yellow line – sail) allows the semi-major axis of the orbit to increase and precess with the Earth 
rotation. With a continuous Sun-synchronous apse-line precession to rotate and raise an elliptical 
Earth orbit, at least two years of scientific data could be returned [3]. Solar sail propulsion may 
provide an optimum propulsion system over conventional chemical propulsion, at least in some 
missions. It may also have advantages over electric propulsion due to the ease in attaining non-
Keplerian orbits with reduced mission mass and cost [4].  
 
1.1 Solar Sail Attitude Dynamics and Control 
 

Solar sail research on orbit analysis focuses on producing orbit raising/lowering and inducing 
orbital effects using the sails. These effects can yield otherwise expensive orbits such as Sun-
synchronous and halo types. Orbit changes result from orienting the thrust vector, and in order to 
achieve the desired orbital effects, the sail must operate at the required attitude to modulate the 
solar thrust. Thus, orbit analysis has also motivated the research work on sail attitude 
manipulation. Sails typically contain a small spacecraft bus in the midst of a large, gossamer 
structure. Most sail work has addressed feasibility concerns related to orbit analysis and 
structural sail dynamics. Due to this configuration, significant solar, aerodynamic and gravity 
gradient torques act on the sail and can disturb the sail orientation (attitude) relative to the sun. 
Accordingly, large control torques are needed to counteract these attitude disturbances, and an 
understanding of sail attitude dynamics is required in order to design appropriate control 
algorithms. 

Recent studies have analyzed natural sail dynamics in order to maintain the desired thrust 
vector pointing [5 and 6]. Generally, large external torques are required to maintain the desired 
thrust vector pointing relative to the Sun. Lawrence, et. al. have shown that specific kinds of 
torques can be generated naturally under the influence of solar, aerodynamic and gravity gradient 
torques [5]. This reduces the need for expensive and massive traditional attitude control 
techniques (attitude jets or reaction wheels). The basic idea is to operate at the attitude equilibria 
of the sail normal vector in the local vertical local horizontal (LVLH) frame. An extension of this 
idea is to utilize a slight deviation of the sail normal from these equilibria, which results in sail 
normal coning about that equilibrium. McMahon, et. al. have shown that any desired orbit 
changes can be obtained with sail normal coning at orbit rate (circular cones) [6]. 
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Figure 5.  Solar Normal Coning in Local Vertical Local Horizontal Frame 

In Fig. 5, the sail normal cones about the LVLH equilibrium attitude, EN̂ . With a slight 
deviation,θ from the equilibrium attitude, the normal vector,n̂  traces a coning trajectory, CT in 
the L-frame (defines natural sail coning). The cone tracing should occur at orbit rate to attain 
desired sail orbit changes. Swartwout, et. al.’s sail steering law also produces the desired orbital 
effects, however with significant control torque and rapid maneuvers that can damage the sail 
[7]. In contrast, McMahon’s approach produces smooth sail rotation rates that avoid disturbing 
the structural sail dynamics [6]. In his work, all ranges of the desired orbital effects can be 
attained when the natural sail coning occurs at orbit rate [6]. This work intends to build upon 
these studies and explore the feasibility of designing a control that can enable the sail normal to 
trace a circular coning trajectory at orbit rate.   
 
2. Solar Sail Coning Dynamics 
 
 In this section, the dynamics of the solar sail are presented. With the sail dynamics, the 
concept of sail attitude equilibrium in the local vertical local horizontal frame (L-frame) is 
explained. The L-frame sail attitude equilibria enable sail normal coning in the inertial frame (A-
frame). A small perturbation from the sail attitude equilibria induces L-frame coning of the sail 
normal about those sail equilibria. This L-frame coning of the sail is discussed. Natural 
environmental torques can cause sail precession and enable L-frame sail coning.  
 Many orbital effects can be obtained due to the L-frame coning of the sail normal about 
the sail equilibria. However, the natural rate and shape of coning of the sail normal about the sail 
equilibrium point does not yield the desired orbital effects. Control torques can be used to 
enforce the desired rate and coning shape (circular cones). Results showing the coning of the sail 
normal in the L-frame about the sail equilibrium are presented.    
 
2.1. Reference Frames 

In order to describe the sail dynamics in a circular orbit, the reference frames used are 
given in Figure 6 [5].  
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Figure 6.  Reference Frames used to Develop Sail Dynamics5 

 The A-frame{ }zyx ˆ,ˆ,ˆ is the inertial (fixed) frame. Thex̂andŷ define the Earth equatorial frame 
with x̂ pointing along the vernal equinox. Theẑ is normal to the equatorial frame. The local 
vertical local horizontal or L-frame { }ovr ˆ,ˆ,ˆ  rotates along with the orbit at orbit rate. Ther̂ points 
along the orbit radial direction,v̂ is in the direction of the sail velocity vector andô is aligned with 
the orbit angular momentum. The C-frame{ }qpn ˆ,ˆ,ˆ is the sail body-fixed frame. Then̂ points 

along the sail normal vector (normal to the plane of the sail). Thep̂ andq̂remain in the plane of 

the sail. The B-frame{ }mln ˆ,ˆ,ˆ is also a body frame except that it does not rotate with the sail in the 

rotation aboutn̂. Thel̂ andm̂ lie in the plane of the sail. Thus, the only difference between the B-
frame and C-frame is the rotation aboutn̂ . The B-frame is taken to be aligned with the C-frame 
at the initial time epoch. 
 
2.2. Description of Sail Equilibria in L-frame and Inertial Sail Normal Coning 
 

Any fixed sail normaln̂ in the L-frame describes the sail equilibrium attitude in the L-
frame. The sail attitude can be defined by the sail normal vector,n̂because the sail is symmetric 
aboutn̂and the rotation aboutn̂does not alter the forces on the sail. When the sail normal,n̂ is 
fixed in the L-frame, but not aligned with ô , the sail rotates with the orbit and produces inertial 
coning ofn̂at orbit rate.  
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Figure 7.  Illustration of Inertial Coning of the L -frame Fixed Sail Normal 

In Figure 7, the sail normal remains fixed in the L-frame (indicated by the constant angleψ ) and 

causes inertial coning ofn̂at orbit rate. By choosing ψ appropriately, the sail angular momentum 
precesses to provide inertial coning with desirable orbit change effects. The angular momentum 
precession, in turn, is caused by torques acting on the sail. Forn̂ to remain fixed in the L-frame 
and enable inertial coning, the sail angular momentum must precess at a desired rate. 

A r&hdesired




= τ required            (1) 

where
r&hdesiredandτ requiredare the desired precession of the angular moment and required torque to 

attain this desired motion, respectively. Lawrence, et. al. [6] have shown that thisτ requiredcan be 

achieved with naturally induced environmental torques (atmospheric, gravity gradient and solar) 
acting on the sail.  
 
2.3. L-frame Sail Normal Coning 
 

The sail normaln̂can be described in the L-frame via a cone angleβ and a clock angleφ . 
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Figure 8.  Cone and Clock Angles of the Sail Normal relative to the L-frame5 

From Figure 8 [5], the sail normal,n̂becomes 
                                            ( ) ( ) ( )ovrn ˆcosˆcossinˆsinsinˆ βφβφβ ++−=                                   (2)  
Lawrence, et. al. have shown that for the developed sail dynamics, a small sail normal 
perturbation from the L-frame attitude equilibrium enables the sail normal to cone about that 
equilibrium point [5]. This constitutes sail normal coning in the L-frame illustrated in Figure 9.  

 
Figure 9.  Illustration of the Sail Normal Coning in the L-frame 

The 0n̂ exhibits the sail equilibrium point andn̂ is the coning sail normal vector. The perturbation 

is given by a small deviation,δβ  in the cone angle,β . The coning is defined such that the cone 
need not be circular or have a fixed coning rate. McMahon, et. al. have shown that desired orbital 
effects can be induced when the L-frame coning occurs at orbit rate such that one rotation 
of n̂around 0n̂ is completed in one orbital period and has a circular coning shape [6]. They state 

that the greatest orbital effects can be induced when the sail normal is operated at β = 35°
 and 

φ °= 0o for 1° cones. This study is performed using these parameters. 
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2.4. Natural Dynamics of Sail Normal Coning in L-frame using CubeSail Simulation 
 
 Lawrence, et. al. have created a MATLAB simulation for a CubeSail (small solar sail 
satellite) that propagates the sailcraft attitude under the influence of aerodynamic, solar pressure 
and gravity gradient torques over a circular, Low Earth Orbit [5]. The sailcraft studied consists of 
a solar sail and sailcraft bus, which is located out of the sail plane. The sailcraft model used in 
this study is shown in Figure 10. 

 
Figure 10.  Physical Components and Dimensions of the Sailcraft Model 

The sail is assumed to be flat, rigid, uniform, square with a sailcraft bus located out of the sail 
plane at a distance cr along the sail normal,n̂. Since the sail is symmetric and rotation 

aboutn̂does not alter any solar, aerodynamic, or gravity gradient forces, the sail attitude can be 
described only by the sail normal vector when considering these external effects. The bus is 
located near the plane of the sail (0.22 m) as compared with the sail size (40 m2), which enables 
the sailcraft moment of inertia to be similar to that of a flat plate [8]. A large, gossamer sail will 
be non-rigid in space. It is argued that the orbital element control applications using coning 
motions produce smooth, low frequency environmental torques, on the order of orbit frequency 
and require closed loop settling times on the order of several orbits. The disturbance frequencies 
and control system bandwidths are on the order of 10-4 Hz (for 700 km Low Earth Orbit), 
whereas the lowest structural modes of the sail are in the range of 10-1 to 10-2 Hz [4]. This 
suggests that the torque applications do not excite the sail structural modes, thus justifying the 
rigid body assumption from a control-structure interaction viewpoint. Non-uniform material 
properties within the sail will cause imperfect solar reflections and variations in pressure-loading 
on the sail. The varying pressure-loading issue will deform the sail and hence it will no longer 
remain flat in orbit. A deformed sail will experience different torques as a function of attitude. 
However, the varying pressure-loading issue is a secondary effect and offers more insight on the 
sailcraft torque as a function of attitude by deviating from the ideal case. This study focuses on 
the ideal (flat) case. The case of a non-spinning sail is analyzed in this work. The orbit and 
sailcraft parameters used are shown in Table 1. 
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Table 1.  Orbit and Sailcraft Parameters 

Orbit Parameters 
Altitude, a 700 km 
Inclination, i  90° 
Right ascension of ascending node, Ω  180° 
Orbit rate, oω  1.06 x 10-3 rad/s 

Right ascension of sun, sr  90° 

Declination of sun, sd  0° 

Solar flux at 1 AU, sF  1358 W/m2 

Atmospheric density, ρ  5 x 10-14 kg/m3 

Aerodynamic moment coefficient, amτ  1.18 x 10-5 Nm 

Solar moment coefficient, smτ  9.84 x 10-6 Nm 

Gravity gradient moment coefficient, gmτ  6.33 x 10-6 Nm 

Sailcraft Parameters 
Sail side length, L  6.325 m 
Sail mass, sm  1.7 kg 

Sailcraft bus mass, bm  1.3 kg 

Distance to bus from sail plane inn̂direction, cr  0.22 m 

Axial moment of inertia, nI  11.3 kgm2 

Transverse moment of inertia, tI  5.7 kgm2 

Sail reflectivity, s 0.9 
Aerodynamic coefficient of drag, dC  2.2 

Specular reflectance fraction, sf  0.7 

 
The simulation is run for three orbital periods and shows the results for the motion of the 

sail normal,n̂ in the L-frame.  
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Figure 11.  Sail Normal Coning in the L-frame about the Equilibrium Point, [ β=35°, ϕ=0°]  

The three-dimensional plot shows the motion ofn̂ in the L-frame. The two-dimensional plot gives 
a time history of the cone and clock angles over the course of several orbital periods. Then̂cones 
about the equilibrium point in the L-frame. However, the coning does not occur at orbit rate (one 
cone is traced in two orbits). In addition, the coning is not circular asn̂moves in the vicinity of 
the equilibrium point.  
 Since the natural motion is not orbit rate circular coning (desired for useful orbital 
effects) control torques on the sailcraft are necessary. The control torque induces the desired 
coning and enforces orbit rate coning. The part of the control torque used to induce the desired 
coning (referred to as coning control torque) allows the sail normal to trace the desired shape of 
the coning trajectory, whereas the other part of the control torque enforcing orbit rate coning 
(called as the rate control torque) allows the sail normal to trace the trajectory at the desired rate. 
The total control torque required to attain the desired orbit rate circular coning is a combination 
of these two control torques. The next section addresses the type of control method that can be 
used in order to enforce orbit rate circular coning and analyzes its performance.  
 
3. Control Method 
 

A control method is developed to enable the sail normal n̂ to track the desired sail normal 
cn̂  on the circular coning trajectory and provide orbit rate coning in the L-frame. The control law 

must establish a relationship between the control torque, controlτ  and sail motion n̂relative to the 

desired cn̂ that provides closed loop stability. Note that the sail angular momentum,h
r

and controlτ  

are related by the simple dynamics τ=



h

inertial
&r . Thus, a control method is developed such 

thath
r

tracks the desired angular momentum, ch
r

on the coning trajectory at orbit rate. The control 

law is used to reduce the error betweenh
r

and ch
r

. Since sail angular momentum is a function of 

sail normal/angular position or sail attitude (Eq. 14), the control law is created with the hope that 
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error reduction in angular momentum and thus tracking the desired angular momentum at orbit 
rate will also lead to tracking the desired sail angular position at orbit rate (enablen̂ to track cn̂ ). 

This control method enables the sail angular momentum vector Sh
r

to trace the sail angular 

momentum vector on the desired circular coning trajectory ch
r

at orbit rate. This in-turn can cause 

the sail normal vector, n̂ to trace the desired normal, cn̂ and hence yield the desired circular 

coning at orbit rate. HereSh
r

is the simplified notation for the angular momentum vector of the C-

frame as seen by the A-frame (given as[ ]CS

A
h
r

). Likewise, ch
r

is the simplified notation for the 

desired angular momentum vector of the C-frame as seen by the A-frame (given as[ ]Cc

A
h
r

). In 

order to prescribech
r

the kinematics of the coning trajectory are calculated. For a given0β and 0φ , 

the desired coning trajectory is illustrated in Figure 12. 

 
Figure 12.  Desired Coning Trajectory 

The desired trajectory traces a circular cone (half cone angle,δ ) about nominal sail normal0n̂ at 

orbit rate oω . The cone lies in a plane perpendicular to0n̂ . The sail normal position on the cone at 

each time step is given bycn̂ . The motion of the sail normal cn̂ is determined by rotating0n̂ via a 

time-varying rotation matrix, 0
cR which has rotation axisÊand rotation angleδ . In order to 

calculateÊ , a vector, 1Ê perpendicular to0n̂ is defined in the L-frame components.  

                                                  [ ]
( ) ( )
( ) ( )

( ) 















⋅−

⋅

=→⊥

0

00

00

101

sin

coscos

sincos
ˆˆˆ

β
φβ

φβ

LEnE                                      (3) 

A plane can be defined by two orthogonal vectors. Along with 1Ê , the plane of the cone is 

determined by calculating another vector, 012 ˆˆˆ nEE ×= . Now, the vectorÊ  at each time step can 

be expressed as a linear combination of1Ê and 2Ê in the plane of the cone. 
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                                              ( ) ( ) 2010
ˆsinˆcosˆ EtEtE ⋅+⋅= ωω                                                        (4) 

With the rotation axis,Êand defined rotation angle,δ , the rotation matrix, 0
cR  is [9] 
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and the sail normal,cn̂ is given by 0
0 ˆˆ nRn cc ⋅= . Using the definition of the sail normal in the L-

frame, the desired angular position (cβ and cφ ) of the sail at each time step on the coning 

trajectory can be computed as 

                                          [ ]
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                            (6) 

Figure 13 presents an example of the desired circular coning trajectory (half cone angle, o1=δ ) 
throughout one orbital period for a given sail equilibrium point at o350 =β and o00 =φ .   

 

 
Figure 13.  Desired Circular Coning Trajectory having Half Cone Angle, δ=1° about a 

Nominal Sail Normal of β0=35°, Φ0=0° (One Orbital Period) 

The nominal sail normal 0n̂ is rotated at each time step with0cR to yield the desired cone given 

by cn̂ . The cβ and cφ of the coning motion (extracted fromcn̂ ) exhibit sinusoidal behavior and can 

be expressed as 
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From the desired angular position, the desired angular position rate ( cβ& and cφ& ) is determined. 
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The rate also has sinusoidal motion. Along with the desired angular positions and rates, the 
desired angular velocity ( *

B
Lω
r

) is also required to derive the kinematics of the coning trajectory. 
The rate of change ofcn̂ in the L-frame is 
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since the sail normal is fixed in the B-frame. The B-frame is defined such that the motion ofn̂ in 
the L-frame only describes the sail tip and tilt velocities (there is no rotation about then̂  
direction). Hence, Eq. 9 can define only two velocity components uniquely. Let the angular 
velocity components of B

Lω
r

in the L-frame be  
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and re-arranged to give 
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The A matrix is singular because its determinant is found to be zero. One of the velocity 
components is linearly dependent on the other two and hence multiple solutions for B

Lω
r

exist. 
Figure 14 depicts the meaning of multiple solutions in this case. 
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Figure 14.  Multiple Angular Velocity Solutions 

In Figure 14, B
Lω
r

is expressed in the B-frame components. All solutions have the samel̂ andm̂ 

components but differentn̂components because the use of cB
L n̂×ω
r

equation makes then̂velocity 

component arbitrary (the kinematic Eq. 9 can only describe two velocity components uniquely). 
However, the B-frame is defined to have no component of the angular velocity in then̂direction. 
This requires then̂velocity component to be zero. Thus, the unique angular velocity 
solution, *

B
Lω
r

can be obtained by projecting one of theB
Lω
r

solutions onto the plane defined 

by cn̂ such that no component of the angular velocity occurs in the sail normal direction. 
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The unique solution is obtained by removing any velocity component in thecn̂ direction. Now, 

the simulation and desired angular momentum vectors can be expressed as 

                                                ( ) ( ) ( ) mIlInIh TTnS ˆˆˆ 321 ⋅+⋅+⋅= ωωω
r

                              (13) 

                                     ( ) ( )( )*
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where 1ω , 2ω and 3ω are the B-frame components of C
Aω
r

, and cnω is the desired inertial sail spin 

given by 
ωnc = n̂c ⋅

A rωC = n̂c ⋅
A rωL + L rωB

* + B rωC( ) = n̂c ⋅
A rωL = n̂c ⋅ωoô       (15) 

because 0ˆ * =⋅ B
L

cn ω
r

and choosing 0=C
Bω
r

 for no sail spin rate relative to the L-frame for a non-

spinning sail. The angular momentum error is then found to be   
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 (16) 

where the error term is decomposed into and expressed as a function of sail normal angular 
position and sail normal angular velocity components. In order to determine a control 

torque controlτ   that reduces the angular momentum error, a Lyapunov stability approach will be 

used. First, a Lyapunov function candidate is defined. 
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T
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                                                     (17) 

From Eq. 17 , the function V is positive definite with respect to angular momentum error. The 
behavior of the derivative of V can then be used to infer the behavior of the angular momentum 
error.  
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Because the inertial derivative of angular momentum yields torque, the derivative of V can also 
be expressed as 

                                                         

( ) ( )

conestaycec

controlSeS

cS
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cS hh
dt

dV

_τττ

τττ

ττ

+=

+=

−⋅−=
rr

                                                 (19) 

where Sτ and cτ are total torques of the actual (simulation) and desired coning trajectory,                                                               

Seτ and ceτ are environmental torques of the simulation and coning trajectory, conestay_τ and controlτ  

are the additional torques  required to stay on the desired cone and the control torque applied in 
the simulation, respectively. The derivative of V becomes 

                                           
( ) ( )

ceSee

CS
T

econestaycontrol hh
dt

dV

ττδτ

δτττ

−=

−⋅+−=
rr

_                                        (20) 

In order to ensure that the derivative of V remains negative definite with respect to the angular 
momentum, controlτ  should be chosen as 

                                         ( ) econestayCScontrolcontrol hhk δτττ −+−⋅−= _

rr

                                        
(21) 

which enables the derivative of V to be negative definite, as desired. 

                                                ( ) ( )CS

T

CScontrol hhhhk
dt

dV rrrr
−⋅−−=          

                                     
(22) 

The stability analysis proves that C
Ah
r

∆ decays to zero [9] and thus the control law enablesSh
r

to 

track ch
r

, for any positive control gain,controlk . 

 Unfortunately, from examining the decomposed components within the angular                
momentum error (Eq. 16), the Lyapunov function is not positive definite with respect to the sail 
normal because V can be zero even when sail normal is not (a combination of non-zero sail 
normal angular position error and velocity error can enable V to become zero). Thus, whether the 
sail normal error ( cnnn ˆˆˆ −=∆ ) decays to zero has not been proven. Since the angular momentum 

error is a function of sail normal angular position (Eq. 16), the control law reducing C
Ah
r

∆ is 

implemented anyway (below) with the hope that 0→∆ C
Ah
r

 can cause 0ˆ →∆n  and enablen̂ to 

track the desiredcn̂ on the coning trajectory. 
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 The environmental torques act on the sail based on its attitude, and these attitudes differ 
in the simulation and on the desired coning trajectory, unless the simulation trajectory exactly 
matches the desired coning motion. Since the application of control torquecontrolτ  is intended to 

enable 0→∆h
r

, and that may cause simulation sail attitude,n̂  →desired cone sail attitude, cn̂ , it 

may be reasonable to assume that eδτ is small. In this case 

                                                 
( ) ( )CS

T
conestaycontrol hh

dt

dV rr
−⋅−= _ττ

 

                                                
( ) conestayCScontrolcontrol hhk _ττ +−⋅−=

rr

                                          
(23)

 
The conestay_τ can be given by 

                                                              
 cecconestay τττ −=_                                                         

(24) 

 where cτ is the torque required to trace the desired cone, which is rather complicated to calculate 

on-line (inertial derivative of the desired angular momentum, Eq. 14). The environmental torques 
on the desired cone, ceτ involve many estimates of environmental factors and thus their analytical 

predictions can become inaccurate. If possible, such calculations (variables involving many 
unknowns) on a small sailcraft should be avoided. They can be avoided with the idea that in 

controlτ , controlk is a user-defined constant term and can be chosen large enough such that its term in 

Eq. 23 dominates the effect of conestay_τ . With these simplifications, the Lyapunov                 

function and control torque are approximated by 

                                                        

( ) ( )
( )CScontrolcontrol

CS
T

control

hhk

hh
dt

dV

rr

rr

−−=

−⋅=

τ

τ

                                                    
(25) 

 
4. Results 
 

The sail dynamics under the influence of environmental torques are presented for a non-
spinning sail. The result for the equilibrium point, [ oo 0,35 == φβ ] is given. This equilibrium 
point is selected because it induces the largest orbital effects [6]. The control method 
performance in tracing the desired cone at orbit rate is examined. The robustness of the control 
method is tested by adding initial condition errors to the sail angular position (these simulate 
errors in the sail attitude that emerge from disturbances) and using larger coning cones (greater 
orbital effects can be induced with cones larger than 1°). The control method is designed to 
reduce the angular momentum error. The Lyapunov function indicates the performance of the 
control method for reducing this error.   
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Figure 15.  Lyapunov Function, Its Approximated Derivative and A-frame Angular 

Momentum Components for Coning Trajectory having Half Cone Angle, δ=1° about a 
Nominal Sail Normal of β0=35°, Φ0=0° 
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The Lyapunov function V in Fig. 15, and thus the angular momentum error magnitude, is 
significantly lower than the absolute sailcraft angular momentum (~103 times lower). This 
indicates that the control method is successful in reducing the angular momentum error. On the 
other hand, even though the (approximate) derivative of V is always negative, the function V 
does not monotonically decrease. The derivative of V was approximated from 

( ) ( )CS
T

econestaycontrol hh
dt

dV rr
−⋅+−= δτττ _  to ( ) ( )CS

T
control hh

dt

dV rr
−⋅= τ  with simplifying 

assumptions eliminating conestay_τ  and eδτ , as discussed earlier. In order to understand the 

incompatible behavior between V and its approximated derivative, the individual torque 
components in the non-approximated derivative are examined in Figure 16. 
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Figure 16.  Torques of the System in the B-frame 

The controlτ is approximated using ( )CScontrol hhk
rr

−− . The magnitude is on the order of 10-6 Nm, 

which is reasonably sized for a small sailcraft. For a similar 3 kg and 40 m2 solar sail, magnetic 
control was used to enable inertial coning of the sail normal at orbit rate and predicted maximum 
control torques on the order of 10-5 Nm [10]. In Figure 16, the eδτ torque is ~103 times lower in 

magnitude thancontrolτ and conestay_τ , justifying the assumption of eliminationeδτ from Eq. 23 

( eδτ is negligible as compared withcontrolτ and conestay_τ ). Note, however, that the conestay_τ torque is 

nearly identical (except for numerical noise) to the controlτ . The conestay_τ is determined numerically 

by calculating the total torquecτ required for precessing the angular momentum on the desired 

cone and deducting the environmental torques,ceτ  from cτ (Eqs. 24 and 26). The total torque on 
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the desired cone,cτ is the inertial derivative of the desired angular momentum, ch
&r

. A numerical 

solution for cτ can be obtained via a finite difference    

                                                         
t

h

tt

hh ccc
c ∆

∆
=

−

−
=

rrr

12

12τ                                                           (26) 

where ch
r

∆ is the change in desired angular momentum over a period of time, t∆ . The 1ch
r

and 

2ch
r

are calculated at timest and tt ∆+ via Eq. 14. The magnitude oft∆ is decreased enough (with 

machine limitations) to approximate 0→∆t . When the non-approximated derivative of V is used 
that includes the effects of conestay_τ and ceτ , the Lyapunov function and its derivative correspond 

to each other. 
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Figure 17.  Lyapunov Function and Its Derivative 

The derivative is no longer always negative explaining why V does not decrease. Even though V 
does not decrease, the oscillations of V are bounded. This indicates that the momentum errors 
within the system remain bounded and do not grow with time. Since V is a measure of the 
angular momentum error, the control method thus enables the sail angular momentum to trace 
the desired with some small, bounded error.  
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 In Figure 16, the conestay_τ torque is essentially identical to the control torque, controlτ . 

Observe that the actual torque on the system from the simulation,Sτ and total torque required to 

stay on the desired cone,cτ are given by 

                                                      
conestaycerequiredc

controlsesimactualS

_

/

ττττ

ττττ

+==

+==
                                                  (27) 

When eδτ is negligible, the environmental torques seτ and ceτ can be expressed as 

                                                 eceSeceSee τττττδτ ==⇒→−= 0                                          (28) 

from which the total system and desired cone torques become 

                                                        
conestayerequiredc

controlesimactualS

_

/

ττττ

ττττ

+==

+==
                                                 (29) 

From these equations, in order to trace the desired cone and induce the required angular 
momentum precession rate, we must have the total simulation torque,Sτ → the desired cone 

torque, cτ . This explains the behavior in Figure 16, wherecontrolτ is found to be identical 

to conestay_τ .   

 The corresponding behavior for the sail normal is shown in Figure 18.  

 
Figure 18.  Sail Angular Positions for Coning Trajectory having Half Cone Angle, δ=1° 

about a Nominal Sail Normal of β0=35°, Φ0=0° in the L-frame 

The three-dimensional plot indicates that the control method enables the simulation sail 
normaln̂  to trace the desired circular cone. The simulation and desired trajectories in this case 
begin at the same initial conditions. In the cone and clock angles plot, bothβ andφ  complete one 
cycle in one orbital period and repeat the same pattern in the next orbital period. Thus, the 
control method also enables orbit rate coning. The errors in the individual components of sail 
normal in the coning tracing are shown in Figure 19. 
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Figure 19.  Individual L-frame Components of Simulated and Desired Sail Normal with 

Errors 

As the cone is traced, Figure 19 shows that the error magnitudes of the r̂ , v̂  and ô  sail normal 
components oscillate. Even though there are errors in the coning tracing, they appear to be 
bounded. In addition, the error magnitudes are significantly lower than the absolute component 
magnitudes (101-103 times lower). McMahon, et. al. assert that the shape of the coning need not 
be accurate as long as orbit rate coning is achieved in order to yield the orbital effects [6]. Thus, 
slight deviations from the circular coning are not expected to have significant deviations in the 
averaged orbital effects induced over an entire orbit.   
 A sensitivity analysis is performed where the control gain, controlk is varied to study the 

maximum angular position error between the simulated and desired sail normal. The angular 
position error definition is illustrated in Figure 20.  

 
Figure 20.  Angular Position Error 
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The angular difference between the desired and simulated sail normal is defined as the angular 
position error. Thecontrolk was varied over a range of 0-2 and the variation in maximum angular 

error (over one orbital period) was studied. In order to understand the results, the angular error 
between the simulated and desired angular momentum is also shown.  
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Figure 21.  Sensitivity Analysis of Maximum Angular Position and Momentum Error (for 

One Orbital Period) to variations in kcontrol 

The angular position error,eθ decreases more rapidly with steadily increasingcontrolk . As the 

magnitude of controlk increases, the decrease ineθ becomes less rapid, until the limitingeθ of 0.05° is 

reached (indicated by the dashed line). Smallercontrolk magnitudes result in smaller control torque 

magnitudes at each time step. With smaller control torque magnitudes, the simulated angular 
momentum is not corrected to trace the desired angular momentum as rapidly. This means that 
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the angular momentum error is larger for smallercontrolk  magnitudes. Ascontrolk increases, the 

angular momentum is corrected more rapidly to trace the desired. This results in a smaller error. 
The angular momentum error decays rapidly with increasing controlk . Since the angular position 

error is a function of angular momentum error, the eθ also decays in a similar fashion. Ideally, 

the error should decay to zero as increasing control torque will enable the simulation to trace the 
desired exactly. However, the eθ decays to a limiting value and not zero. This is because eθ is 

calculated using the simulated trajectory and desired analytical trajectory, whereas the control 
torque is a function of simulated trajectory and desired numerical trajectory. This means that the 
simulated trajectory traces the desired numerical trajectory and not analytical. The difference 
between analytical and numerical desired trajectories is shown in Figure 22. 
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Figure 22.  Numerical and Analytical Desired Coning Trajectories having Half Cone Angle, 

δ=1° about a Nominal Sail Normal of β0=35°, Φ0=0° (One Orbital Period) 

The total torque on a coning trajectory (half cone angle, o1=δ ) for a given nominal                          
o350 =β and o00 =φ  is calculated using Eq. 26 (calculate cτ ). This torque was applied in the 

simulation to yield the numerical coning trajectory. Differences exist because the instantaneous 
derivative of desired angular momentum is not available ( cτ is calculated numerically). The 

maximum angular position error between the analytical and numerical coning trajectories was 
found to be 0.05°. Hence, theeθ in Figure 21 decays to the numerical desired trajectory and 

reaches a limiting value of 0.05° (same as the maximum angular position error between the 
analytical and numerical coning trajectories). 
 The performance of the control method with the exact initial conditions has been 
presented so far. Practically, internal/external disturbances on the sailcraft causes initial 
condition errors with the sail attitude. Thus, the performance with initial condition errors should 
also be analyzed. Figure 23 illustrates how initial condition errors are added to the system. 
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Figure 23.  Initial Condition Error 

The red dot represents the exact initial conditions for the system. The initial condition error is 
obtained by adding an angular deviationd such that the initial angular position (and hence initial 
angular velocity) contains errors with respect to the desired coning trajectory. The control 
method performance for 1° and 10° deviations follows. 

 
Figure 24.  Control Method Performance in Tracking Desired Angular Momentum and 

Sail Normal with Initial Condition Error of 1° (d=1 °), Zero Sail Spin 

The Lyapunov function decreases to the levels as with no initial condition errors. This means that 
the control method is able to track the desired angular momentum vector even with the initial 
condition error. The sail normal motion is coning about the sail equilibrium point, however the 
desired normal is not traced as well as with no initial condition errors. The rate of coning has 
also deviated slightly from orbit rate. The Lyapunov function levels drop to the expected levels 
after one time step. This is clearly evident in the sail angular momentum vector motion shown in 
Figure 25. 
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Figure 25.  Simulated and Desired Angular Momentum for Coning Trajectory with Initial 

Condition Error, d=1°, k control=1 

As expected, as the control authority is decreased ( )1.0=controlk , the simulation angular 

momentum tracks the desired cone more gradually (see Figure 26). 

 
Figure 26.  Simulated and Desired Angular Momentum for Coning Trajectory with Initial 

Condition Error, d=1°, k control=0.1 

With decreased control authority, the control torque application is reduced which enables the sail 
angular momentum to track the desired gradually instead of after one time step. This behavior is 
preferable in a small sailcraft to avoid any abrupt changes to the attitude that can damage the sail.  
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 The result with a larger initial condition error of 10° is presented in Figure 27.   

 
Figure 27.  Control Method Performance in Tracking Desired Angular Momentum and 

Sail Normal with Initial Condition Error of 10° (d= 10°), Zero Sail Spin 

The control method performance in tracing the desired angular momentum has deteriorated 
slightly, which is indicated by the Lyapunov function magnitude increase as compared with the 
1° deviation case (~10 times increase). However, there is significant deterioration in tracing the 
desired sail normal as compared with the 1° error case. The sail normal appears to trace a larger 
cone at a slightly different rate. This means that even though the control method performance did 
not deteriorate noticeably in tracing the desired angular momentum, the performance degraded 
significantly in tracing the desired sail normal. 
 The control method robustness is further examined by analyzing the results for tracing 
larger cones (larger half-cone angles). The results for 5° and 60° cones are presented below. 

 
Figure 28.  Control Method Performance in Tracking Desired Angular Momentum and 

Sail Normal with 5° cone, Zero Sail Spin 

The errors from tracking the desired angular momentum are on the same order of magnitude as 
for the 1° cone (Lyapunov function level has the same order of magnitude). In addition, there are 
no significant deviations from orbit rate coning of the sail normal vector. The sail normal motion 
tracks the desired 5° circular cone with no significant differences as compared with the 1° cone 
case. 
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Figure 29.  Control Method Performance in Tracking Desired Angular Momentum and 

Sail Normal with 60° cone, Zero Sail Spin 

However, the control performance has deteriorated significantly for cones as large as 60°. The 
sail normal does not cone around the equilibrium point. The angular momentum tracking also 
has increased errors as compared with smaller cones (~102 times larger). 
 
5. Conclusion 
 

Sail attitude equilibria exist in the LVLH frame under the influence of gravity gradient, 
aerodynamic and solar torques. When the sail normal is precessed, the sail normal naturally 
cones about that equilibrium point. However, the sail normal coning has to follow a circular 
coning trajectory at orbit rate to induce the desired orbital effects. In this paper, a control method 
is developed that enables sail normal coning (circular cones) about the LVLH attitude equilibria 
at orbit rate. The control method is designed such that the sail angular momentum tracks a 
desired trajectory. The control method causes the sail angular momentum to track the desired 
angular momentum on the coning trajectory over an orbit and reduces the initial angular 
momentum error. Since angular momentum is a function of the sail angular position (sail 
normal), a reduction in angular momentum error is hoped to reduce the sail normal error between 
the actual and desired sail normal vectors on the coning trajectory. The performance of the 
angular momentum error reduction control method is analyzed using a case where the sail 
normal is tracking a 1°circular cone at orbit rate about an LVLH equilibrium point which induces 
the maximum orbital effects.  

At this equilibrium, the control method allows the actual sail normal to trace the desired 
sail normal on the circular coning trajectory at orbit rate with an accuracy of 0.05°. The coning is 
at orbit rate (accurate coning rate), but there are errors in the shape of the coning (inaccurate 
circular coning). Even though there are errors in the circular cone tracing (10 to 103 times lower 
than the absolute sail attitude), they are bounded. In addition, past work asserts that the shape of 
coning need not be as accurate as long as orbit rate coning is achieved in order to attain the 
desired orbital effects. Thus, slight deviations from circular coning that cause these error 
magnitudes in the cone tracing are within the acceptable range. Studies are performed to analyze 
the control method performance when the sail normal position is deviated from the desired 
coning trajectory and while tracking larger cones. The performance of the control method 
deteriorates (deviated from orbit rate coning and had increased circular cone tracing errors) when 
the initial condition deviation was increased to 10° and cones became as large as 60°. In 
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summary, this control method functions well for tracking the desired angular position (sail 
normal) at the chosen LVLH equilibrium point, for small cones and small initial condition errors. 

Past work analyzed orbit rate coning for circular coning trajectories in order to induce the 
desired orbital effects. The assumption for circular coning can be relaxed and induced orbital 
effects for non-circular cones can be studied. A non-circular cone alters the sail normal thrust 
vector direction relative to the sun differently. This produces different orbital changes whose 
usefulness can be analyzed. This could relieve the control method from the need to provide 
perfectly circular cone tracing and only concentrate on enabling orbit rate coning. 

In this work, a flat, rigid sail model is used. A large, gossamer sail is not perfectly flat or 
rigid in space. This work can be further extended to include non-flat, non-rigid sail dynamics. 
Finally, the practical implementation of the control torque required to enable the orbit rate 
coning of the desired trajectory with the existing hardware can be studied (e.g. using reaction 
wheels, tip vanes, or sailcraft bus deflection). 
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