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Abstract: The means to detect an ever increasing number of small Near Earth Asteroids and 
other small celestial bodies (SCB) in the past decades has renewed the interest of a great number 
of space agencies across the world, their nature having the potential to bring a new 
understanding on the formation of our Solar System. The constraints associated with small 
celestial body missions require high precision navigation systems which cannot solely rely upon 
conventional inertial sensing techniques due to the lack of a gravity field of SCB's. Thus, visual 
navigation techniques become a valuable alternative despite their heavy computational burden. 
Combining visual linear pose estimation techniques with inertial motion estimates, this work 
presents a Rao-Blackwellized Particle Filter Simultaneous Localization and Mapping (RBPF-
SLAM) algorithm that aims at estimating the position and attitude - or pose - of a spacecraft 
maneuvering near a SCB. The RBPF SLAM uses visual signatures to recognize landmarks on the 
surface and triangulate its position with respect to it. The performance and limitations of this 
approach are presented through a sensitivity analysis. 
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1. Introduction 
 
Small celestial bodies (SCB) such as asteroids and comets have started to become the center of 
attention of near-term space exploration programs amongst the space agencies across the world. 
While JPL-NASA has already completed several missions targeting SCB's with NEAR-
Shoemaker, Stardust, or Deep Impact, JAXA's Hayabusa mission was a first in landing on an 
asteroid, recovering samples, and returning to Earth to deliver them. Since the end of this 
successful mission to the asteroid Itokawa, ISAS-JAXA has been preparing the follow-up 
Hayabusa II mission, and is also actively studying new visual navigation schemes that will 
enhance the autonomy and accuracy for a potential Hayabusa Mark II mission. 
 
The constraints associated with the navigation near SCB is very different than for large planetary 
bodies. The very rugged surface of SCB's makes safe landing sites sparse and narrow, requiring 
precision down to 10's of meters. Also the very week gravitational pull imposes strict constraints 
on the narrow landing speed range required to avoid either damaging the spacecraft or making it 
bounce back from the surface to outer space [1][2]. Conventional techniques used mainly for 
landing on large planetary bodies typically results in very large landing error ellipses in the order 
of 100's meters, making them inadequate for SCB missions [3]. One of the reasons is that the 
SCB's gravity is too weak to interact with inertial sensors, allowing motion to be detected only 
with respect to the spacecraft's own reference frame. 
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Thanks to the increasing computational capabilities of new computers, visual navigation has 
become a promising alternative, coping with the inertial sensors shortcomings by detecting 
visual landmarks on the SCB surface and determining the spacecraft's position and orientation 
according to them, i.e. its pose. JPL-NASA has undertaken several researches in the past decade, 
starting with the DIMES algorithm which combines measurements from a descent camera, a 
radar altimeter, and an inertial measurement unit (IMU) to measure the spacecraft altitude and 
attitude [4][5]. This combination of navigation cameras and IMU was then developed further by 
establishing catalogs of recognizable crater landmarks with 3D coordinates known a priori [6], 
and using them to reconstruct the spacecraft pose [7][8]. Similar schemes using Scale Invariant 
Feature Transform (SIFT) were also proposed [9], as well as various implementations using 
Kalman Filtering [10], particle filters, and Unscented Transforms [7].  
 
Although significant work has been done on navigation involving fixed stereo-camera systems, 
the maximum baseline between two cameras fixed on the spacecraft is smaller than the depth of 
the features being observed by several order of magnitude during the approach, descent and 
landing (ADL) phase. Considering the added complexity of a wide baseline stereo-camera 
system that would requires two spacecrafts or alternatively, a mothership and an orbiter, the most 
practical approach remains the monocular structure-from-motion techniques [4], [5], [6], [8], 
[11]. 
 
This research builds upon the monocular structure-from-motion techniques by proposing a 
single-camera-based Simultaneous Localization and Mapping (SLAM) scheme in the context of 
a Hayabusa-type mission. This paper follows up on the work presented by the authors on using 
linear visual pose estimation algorithms based on the triangulation of SURF visual descriptors as 
interest points, for the generation of particles for a Rao-Blackwellized Particle Filter (RBPF) 
SLAM [12][13]. 
 
The SLAM proposed in this work extends the scheme presented previously by introducing a 
data-fusion method which combines IMU-based particles and vision-based particles, and uses a 
screening method which discards outlying vision-based particles by verifying that their motion 
estimate is within the maximum error range of the IMU motion estimate. The proposed SLAM 
approach assumes no a priori knowledge on the SCB topography or the existence of particular 
surface feature with known geometric properties such as craters. 
 
The proposed SLAM uses the novel visual landmark mapping technique discussed in [14]. It 
maps landmarks spatially using an octree database designed for very large environments, and 
sorts landmarks by their visual descriptor -or signature- using a modified binary search tree 
dynamically linked to their position within the octree. This scheme facilitates and robustify the 
data association step of the SLAM. It also offers a solution to the inherent problem of false 
associations of visual landmarks when  new landmark observations are matched with previously 
visited ones solely based on the overlap of their estimated 3D position (see discussion of this 
problem in [15][16]). 
 
This paper presents an overview of the RBPF-SLAM in section 1; the techniques used to 
generate motion estimates to propagate particles from one time step to another in section 2; the 
approach to calculate the particles' likelihood and probability to be sampled for the next iteration 
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in section 3; the visual landmark database in section 4; and the results and discussion in section 
5. 
 
1. Overview of the Proposed Monocular RBPF-SLAM algorithm 
 
The algorithm of the Rao-Blackwellized Particle Filter SLAM developed for this work is 
summarized in Figure 1. It proceeds as follows: 

 
I. Inputs:  

1) The IMU motion estimate between the current and previous time steps; 

2) The images of a single navigation camera;  

3) The range sensor reading paired with each camera image, and the known fixed 
transform between the range sensor frame and the camera image frame. 

 
II.  Relative motion estimates:  

1) The IMU readily provides the relative motion estimate which describes the spacecraft 
position and attitude changes with respect to its pose at the previous time step. Given an 
approximate Gaussian distribution of its mean motion estimate, and a standard 
deviation modeled according to the upper range of the sensor's rated error, a sample 
population of motion estimates can be generated within this maximum error range, 
constituting the first part of the relative motion estimate population. 

 

Figure 1. Monocular RBPF-SLAM 
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2) Two subsequent camera images focusing on the same area of the target SCB can be 
paired and used with linear pose estimation algorithms to provide relative motion 
estimates after extracting and matching visual features from them. Four of these linear 
algorithms have been investigated in [11][13], namely the 5-point, 7-point, 8-point, and 
8-point RANSAC algorithms. These algorithms give the change in position and attitude 
of the spacecraft relative to its pose at the previous time step. A sample population of 
relative motion estimates can be generated by randomly sampling groups of visual 
features, and using one of these algorithms on each one of these groups. Once scaled 
using the range sensor information - see section 2.2 for details - the visual-based 
relative motion estimates provide the same information as the IMU-based motion 
estimates, and can thus be fused in the same sample population. 

 
III.  Particle Generation:  

1) A sub-sample of the particles of the previous iteration are selected for each relative 
motion estimate. Each of these particle provides one pose estimation and the associated 
landmark distribution for the previous time step.  

2) The pose of a particle can then be updated by adding to it the relative motion estimate 
calculated at step II, effectively converting that relative motion estimate into an updated 
pose expressed with respect to the SLAM's global reference frame. 

3) Each particle belonging to the subsample selected for a relative motion estimate lead to 
the creation of a new particle belonging to the current iteration's population. The 
particle population of the previous time step is ultimately deleted once the new particle 
population  has been generated and updated. 
 

IV.  Data Association: 
1) Each new particle is assigned all the new observations corresponding to the matched 

visual features between the current and the previous camera image. 
2) A level of similarity between every observations of each particle and all previously 

mapped landmark is calculated. If this level of similarity is greater than a given 
threshold, the observation is associated - or matched - to the corresponding visual 
landmark. The level of similarity between an observation and a visual landmark is 
calculated based on the Euclidean difference between their Speeded Up Robust 
Feature descriptor as discussed in [17][18].  
 

V. Particle Likelihood and Resampling: 
1) Each matched observation of a particle is evaluated according to the likelihood that 

the statistical distribution of the associated landmark position is equal to the 
observation's position distribution, i.e. its mean and standard deviation according to a 
standard Gaussian model. 

2) The likelihood of the particle is given as the product of the likelihood of the matched 
observation and their associated landmark. 

3) All newly generated particles are then assigned a probability proportional to their 
likelihood with respect to the sum of the likelihoods of the rest of the population.  

4) The new population is then scaled down to a tractable number by performing a 
random pick of the particles with no replacement. Each particle has a chance of being 
selected equal to the probability established in step V.3). 
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 Visual Landmark Database Update: 
5) The visual landmarks associated with the observations are updated based on the 

position distribution of the latter.  
6) Each new particle inherits the visual landmark database of its predecessor, and thus, 

each remaining particle from the sub-sampling of step 4) update its own visual 
landmark database. 
 

VI.  Controller update: the spacecraft's navigation software updates its latest pose estimate with 
the pose of the most likely particle for the current time step. A low-pass filter is used to 
smooth out the changes of the pose estimate over time, providing a more stable output for 
the spacecraft controller. 

 
2. Relative Motion estimates and Particle Generation 
 
2.1. IMU Motion estimates 
 
The IMU is used for two purposes: 1) generating relative motion estimates; 2) providing a 
bracket of realistic motion estimates based on the mean motion reported by the unit and its know 
maximum error percentage. This bracket is used to screen out all outlying motion estimates 
obtained from the linear visual pose estimation algorithms.  
 
The model of the IMU is: 

X(t) = X(t-1) + ∆Xtrue + Φ (0, σx)     (1) 
α(t) = α (t-1) + ∆α true + Φ (0, σα)     (2) 

with  X(t), α (t), the 3D position vector and attitude vector at time t of the spacecraft in the 
SLAM's global reference frame 

 ∆X, ∆α, the true displacement and angular shift of the spacecraft at time t with respect to 
the spacecraft's reference frame at time (t-1) 

 σx, σα,  the white Gaussian noise associated with the IMU measurement  
 
 

 
Figure 2. Matched SURF features in a pair of subsequent images of the asteroid Itokawa 
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The bracket outside of which visual pose estimates are screened out is defined as: 
 

X(t) ϵ {X' (t-1) - 3σx,  X' (t-1) - 3σx }    (3) 
α(t) ϵ {  α' (t-1) - 3σα,  α' (t-1) - 3σα }    (4) 

 
2.2. Visual Motion Estimates 
 
Relative visual motion estimates are calculated based on the 5-point algorithm by Nistér  [19], 
the 7-point algorithm by Hartley and the 8-point algorithms by Longuet-Higgins [20]. The 
approach is to generate in a first step the population of visual features that can be matched 
between the current image frame and the one generated at the previous time step - see Figure 2. 
The second step is to randomly sample sub sets of 5, 7 and/or 8 matched visual features. The 
third step consists of the following algorithm described in [13] which will be briefly summarized 
here for the sake of completeness: 
 
1. Solve the linear set of equations linking the normalized image points x of the image from the 

previous time step to the normalized image points x'  of the image of the current time step, 
and decompose the essential matrix E into its translation and rotation components T and R 
respectively: 

 
x'  E[3x3] x = 0      (5) 

RTE u
sx =]33[      (6) 

 with u
sT , the skew symmetric matrix of the unscaled translation vector Tu 

2. Triangulate the pairs (xi, xi') of image points to obtain the depth xi,z using the possible 
solutions Tu, R resulting from the decomposition of the Essential matrix, and keep only the R, 
Tu solution giving a positive depth: 
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''
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⋅⋅−−⋅−
=     (7) 

 
3. Find the scaling factor s that convert the unscaled translation vector Tu into the scaled vector 

T = s Tu, by measuring with the range sensor the distance D of the reference image point xR/F1
 

corresponding to the 3D point XR/F1, and assuming that the distance to the reference landmark 
θi corresponding to the image points (xi, xi') is the same as XR/F1, provided that xi or xi' is 
within the vicinity of xR/F1 in the image plane defined by the axes xFj, yFj - see Figure 3.  

 

[ ] 1/11/11/ ,0,0 FR
T

FRFR TDRX +=    (8) 

ziFR xXs ,1/=      (9) 

with RD/F1, TD/F1, the fixed rotation and translation components of the rigid transform 
mapping the measured distance D from the range sensor reference frame R1 to the camera 
reference frame F1 with axes xC1, yC1, zC1. 
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Figure 3. Monocular motion estimate from visual features between pairs of images 

 
Relative motion estimates generated from visual pose estimation algorithms are typically un-
scaled, implying that the rotation R and the translation direction Tu of the spacecraft are fully 
determined, but the magnitude of the translation is not. The algorithm described above uses the 
readings of the range sensor to measure the true distance to the visual landmark detected in the 
image frame, and thus resolve the scale ambiguity. When no visual features are close to the range 
sensor's reference points xR/F1 in the camera frame F1 or point xR/F2 in F2, the algorithm can use 
the depth of previously triangulated visual landmarks that remains in the field of view of F1 or 
F2, and reconstruct the scale of the scene using the forward propagation algorithm described in 
more details in [11]. 
 
2.3. Particle Generation From a Relative Motion Estimate  
 
For each relative motion estimate for time step tk, a sub-sample of the particles ][
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Once the relative motion has been propagated, the new particle has the most up-to-date pose 
estimate conditional to that particle's path as defined by the Rao-Blackwellization approach 
described in [15]. The final step of the creation of a new particle is to express all new 

observations { }s
tN

s
t kmk ,,1 ...ΘΘ , i.e. visual landmark detected in F2 and matched in F1, from their 

local reference frame F2 to the SLAM's global reference frame G: 
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3. Particle Likelihood Estimation and Resampling 
 
The likelihood L of a particle is calculated as the product of the likelihood of all the observations 
being matched with a previously mapped landmark, and the likelihood of the unmatched 
observation considered as new landmarks. The latter is evaluated by locating the triangulated 
position of the unmatched observation within the SLAM's occupancy map, and to use the 
probability that an obstacle exists within that area - i.e. the obstacle probability - as the 
observation's likelihood. 
 
The likelihood of matched observation is calculated using the null hypothesis test that the 
position distribution of the landmark observed is equal to the position distribution of the 
landmark as mapped in the SLAM's landmark database. Figure 4 represent the distribution of the 
observed landmark as (µ1,σ1), and the distribution of the previously mapped landmark as (µ2,σ2). 
The P-value related to the confidence interval that the two distributions are equal gives a useful 
approximation of the likelihood that the two are a match. 
 
The overall likelihood for that observation-landmark pair is given by applying the same test and 
calculating the P-value along the x,y,z axes defining the volumetric uncertainty distribution of 
the landmark:  
 

Lp = Px Py Pz      (13) 

 

 
Figure 4. Likelihood based on the P-value between two landmark position distribution 
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with Φ the cumulative probability distribution function.  
 
4. The SLAM's visual landmark database 
 
The proposed landmark database combines an enhanced version of Farfield’s memory-shared 
octree occupancy grid [21] with a Red-Black binary search tree [22] to catalog the visual 
landmark by their visual signature. The visual signature may be a SIFT [23] or SURF descriptor 
[17], or any other visual feature descriptor consisting of a consistently ordered array of floating 
point values describing various visual characteristics. Figure 5 shows a schematic representation 
of how the SLAM's map information is stored in memory. 
 
The concept of the octree, is to represent a volume of space by a single cell, and to recursively 
subdivide this cell into 8 sub-cells of equivalent volumes until each cell has reached a 
homogeneous state or the maximum depth dM, i.e. the smallest cell permissible representing the 
highest resolution rM of the map.  
 
The nodes shown in the structure of Figure 5 are either grey node or leaf nodes with an obstacle 
probability varying from 0.0 (white) to 1.0 (dark red). An obstacle probability is assigned to each 
leaf node as a measure of the likeliness that a landmark is present within the volume represented 
by them.  
 
The likelihood of the landmark defined by the spatially distributed Gaussian model described in 
section 3 is the basic input giving the obstacle probability for each cell in the octree. The state of 
an octree cell can be one of the three as described graphically in Figure 6Figure 7: a free cell (no 
landmarks); a mixed cell (low probability of having a landmark); an obstacle cell (landmark 
present with a high certainty). 
 

  
Figure 5. The SLAM's map comprising a Red Black tree sorting visual landmark 

signatures and an octree occupancy tree (left) representation in memory (right) 
volumetric representation of the octree encapsulating Itokawa 
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Figure 6. Octree cell states and state transitions as a function of the obstacle probability 

 
Because octrees use a lot of memory, particularly if one is attached to each particle of a 
population of hundreds, memory optimization is mandatory. In this work, leaf cells are merge 
into their single parent cell when their state have all made them free or obstacle cells. Redundant 
information is thus deleted by having 1 cell containing the information of 8. If a leaf cell 
becomes mixed but has not reached the maximum octree depth, it is subdivided into 8 children in 
an attempt to have them all reaching a higher degree of certainty by becoming either free or 
obstacle cells. The threshold pfree and pobst defining the state of a cell has a direct impact on the 
frequency at which cells are merged or subdivide based on new observations updating the cell's 
obstacle probability. 
 
While octree cells contain the obstacle probability that a landmark is present nearby, the nodes of 
the Red Black tree (RBT) contains the information on the visual landmark's mean position, 
standard deviation, as well as the landmark's visual signature, i.e. its SURF or SIFT descriptor. 
In order to make the system more stable, the updated mechanisms for the obstacle probability of 
the octree cells uses a low pass filter with a time constant αO. Low-pass filters with another 
constant αV implement the same mechanism for updating the statistical information of the RBT 
nodes with the information provided by new observations: 
 

( )11 −− −+= kkOkupdate pppp α   with αO ϵ [0, 1]   (15) 

 
5. Results and discussion 
 
The overall performance of the SLAM in estimating the 6 DOF pose of the spacecraft during the 
approach descent and landing (ADL) phase of a SCB mission where JAXA's Hayabusa 
spacecraft performs close proximity operations near the Itokawa asteroid have been presented in 
[14]. For the sake of completeness, the result of a simulation run is presented in Figure 7. 
 
The list of the main parameters affecting the performance of the SLAM using the proposed 
algorithms are listed in Table 2. The module column refers to the navigation sub-system 
responsible for each parameter, and the effect column gives the logical description of how the 
parameter affects the performance of the SLAM. Due to the complex interactions between those 
parameters, the search space mapping the performance of the SLAM as a function of each one of 
them is highly non-linear, and the problem of globally optimizing the whole set of parameters 
quickly become intractable. For that reason, the sensitivity study that was conducted to optimize 
the performance of the SLAM was restricted to a subset of parameters, and for a limited range 
for each one of them. The range of values tested is specified in the description column of the 
table. 
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Figure 7. Error over pose of the spacecraft during the ADL phase for 400 resampled 

particles: (a) Filtered x,y,z, position, (b) unfiltered y-position 
 
 

Table 1: Simulated scenario parameters and noise sources 

Parameters Description 

Target Body: Asteroid 
Itokawa  

Size:  556 x 303 x 243 m 

Angular speed:  0.000144 rad/s 

Gravity Const:  2.51 x 10-9 km3/s2 

Spacecraft conditions  (with 
respect to the asteroid 
reference frame) 

Initial altitude:  700 m 

Initial relative speed:  0.1 m/s 

Final relative speed:  0.014 m/s 

Trajectory within the equatorial plane of the asteroid 

Navigation Camera:  
Image size: 512 x 512 

Noise:  White noise of ± 10 grey intensity levels for every pixel (i.e. ± 
4%) 

Range sensor  Noise: ±10% of distance measurement 

SLAM localization system  Simulated sampling time:  259.72 sec, i.e. (4.33 min) 

Lighting conditions:  
Reflectance Model:  Lambert model 

Configuration:  Sun, asteroid, and spacecraft are aligned (same as for 
the Hayabusa mission)  

 
These results are based on simulation runs where the Hayabusa spacecraft is first facing the flank 
of Itokawa asteroid, performing 2 full observation orbits. The sensors noise and the other 
parameters of the simulation are shown in Table 1, while the effects of each parameters on the 
system is described qualitatively in Table 2, and quantitatively in Table 3. 
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Table 2: Main parameters affecting the performance of the SLAM  

Parameters  Module Description Effect 

Number of 
resampled 
particles NR  

SLAM 
importance 
resampling 

Response tested for 50 ~ 400 
resampled particles 

High number increases population diversity and 
convergence rate toward the true spacecraft pose, 
but also increases computational time and memory 
usage 

Number of 
motion 
estimates NM  

SLAM 
motion 
model 

Response tested for 500 ~ 2000 
resampled particles 

High number increases chances of having accurate 
estimates, but also increases computational time 
and decreases probability of screening out 
erroneous particles 

Pfree  and 

Pobstacle  

Landmark 
database 

See description of these 
thresholds in section 4 
Response tested for Pfree  = 0.05 
~ 0.2, and Pobstacle = 0.70 ~ 0.95 

Changes visual landmarks deletion rate from the 
database 
Changes the merge and expansion rate of octree 
cells in the database, affecting memory usage 

Low-pass 
filters 
constant 
{ αV , αO }   

Landmark 
database 

Response tested for αV = 0.004 
~ 0.03, and αO = 0.004 ~ 0.016 

Changes rate of variability of occupancy grid, 
impacting likelihood estimation for new landmarks 
and particle resampling 
Changes the landmarks deletion rate from the 
database, limiting the number of reobservable 
landmarks 
Changes merge and expansion rate of octree cells, 
affecting memory usage 

Maximum 
octree depth 
dM and map 
resolution rM  

Landmark 
database 

Response tested for a maximum 
octree depth dM = 4 ~ 6  
And rM = 150 ~ 800 meters 

Changes merge and expansion rate of octree cells, 
as well as the map size, directly affecting memory 
usage and computation time 

 
The upper half of Table 3 provides the set of values tested, and the lower half provides the mean 
error {e (x), e (y), e (z), e (θ)} and the standard deviation {σ (x), σ (y), σ (z), σ (θ)} over the 
position and the orientation of the spacecraft after the loop-closure of the SLAM. In cases where 
ranges are given for parameters rather than single values, the results shown are the best one 
obtained for that range. The intent is to prove that entire ranges of parameters are actually sub-
optimal considering that the best case obtained with them gives poorer results than other sets of 
parameters.  
 
As it can be seen in Table 3, the landmark database parameters are critical to reach convergence. 
While the octree depth and the cell size with respect to the visual landmark uncertainty were 
major contributors to the performance of the SLAM, these parameters proved less sensitive than 
the time constants αO  and αV of low-pass filters of the octree cell's obstacle probability and the 
landmark position respectively. The study indicated that only values of less than 10% for pfree 
and above 90% for pobstacle give acceptable results in terms of computational speed and 
convergence. 
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Table 3: Result of sensitivity analysis 

Set#: 1 3 2 4 5 6 7 8 9 

αV
-1 125 125 125 125 125 125 30 ~ 100 150 ~ 250 125 

αO
-1 200 200 200 200  225 ~ 300  60 ~ 150 200 200 200 

Pfree   0.10 0.10 0.10 0.20 ~ 0.30 0.10 0.10 0.10 0.10 0.10 

Pobstacle 0.90 0.90 0.90 0.70 ~ 0.95 0.90 0.90 0.90 0.90 0.90 

NR 400 400 50 ~ 200 400 50 ~ 400 50 ~ 400 50 ~ 400 50 ~ 400 50 ~ 400 

NM 1000 1500 1e3 ~ 2e3 1000 1000 1000 1000 1000 1000 

dM 5 5 5 5 5 5 5 5 4; 5 

rM 250 250 250 250 250 250 250 250 
400 ~ 800; 
150 ~ 200  

Response*  S S C C C C C U U 

e(x) [m] 
σ(x) [m] 

-49.1 
62.1 

143.1 
77.7 

75.0 
126.3 

-15.8 
286.0 

11.5 
250.9 

94.5 
264.2 

50.4 
137.8 

20.2 
305.5 

136.6 
552.8 

e(y) [m] 
σ(y) [m] 

78.6 
90.8 

10.4 
80.5 

22.3 
115.3 

296.6 
142.8 

68.2 
132.3 

22.4 
165.8 

-2.0 
80.3 

164.5 
188.9 

144.3 
255.6 

e(z) [m] 
σ(z) [m] 

-41.3 
57.02 

-144.0 
85.3 

-112.5 
124.5 

-269.7 
153.6 

-227.0 
195.0 

-4.6 
242.7 

-100.8 
113.4 

-281.2 
223.7 

-117.2 
379.0 

e (θ) [deg] 
σ (θ) [deg] 

18.8 
7.2 

17.7 
8.2 

22.3 
8.9 

39.1 
8.6 

33.9 
17.1 

33.8 
17.4 

21.5 
8.8 

44.5 
6.2 

78.8 
11.8 

 (*) Response : (S) Stable convergence, (C) Critically stable (i.e. with oscillations), (U) Unstable (i.e. divergence) 

 
A broader range of value for αO  and αV were found to give good results within the range 0.0033 
to 0.0167, corresponding to the inverse time constants αO

-1  and αV
-1 ranging from 60 to 300 

respectively. The optimal set of parameters is shown in the column for set #1.   
 
The SLAM is particularly sensitive to the number of resampled particles, convergence occuring 
only in cases where that number is 400. Cases with higher number of resampled particles could 
not be performed due to the memory limitations imposed by the operating system under which 
the system was developed and tested. However, the trend outlined above clearly shows that 
higher number of resampled particles leads to convergence and to smaller errors over the 
spacecraft pose. 
 
6. Conclusion 
 
Combining visual linear pose estimation techniques with inertial motion estimates, this work 
presents a Rao-Blackwellized Particle Filter Simultaneous Localization and Mapping (RBPF-
SLAM) algorithm that aims at estimating the position and attitude - or pose - of a spacecraft 
maneuvering near a small celestial body. The RBPF SLAM uses visual signatures to recognize 
landmarks on the surface and triangulate its position with respect to it. Although it is well know 
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that RBPF SLAM are very sensitive to the number of particles generated and resampled at each 
iteration, this research has found that the stability and precision of the SLAM was also highly 
dependent on the operational parameters of the map which directly influences: i) the level of 
discretization of the space where visual landmarks are mapped; ii) how long a visual landmark is 
kept in memory; iii) how often its visual signature and position distribution is updated; iv) at 
what rate the landmark information changes as a function of new observations errors. While the 
proposed scheme is computationally intensive, it has the merit of offering a new approach to 
visual navigation, and to identify some key parameters of the SLAM that have a direct impact on 
its performance. 
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