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Abstract: The means to detect an ever increasing number afl $¢ear Earth Asteroids and
other small celestial bodies (SCB) in the past deséhas renewed the interest of a great number
of space agencies across the world, their natureirtpa the potential to bring a new
understanding on the formation of our Solar Syst&ime constraints associated with small
celestial body missions require high precision gation systems which cannot solely rely upon
conventional inertial sensing techniques due toldiok of a gravity field of SCB's. Thus, visual
navigation technigues become a valuable alternaliespite their heavy computational burden.
Combining visual linear pose estimation techniquath inertial motion estimates, this work
presents a Rao-Blackwellized Particle Filter Siran#ous Localization and Mapping (RBPF-
SLAM) algorithm that aims at estimating the positend attitude - or pose - of a spacecraft
maneuvering near a SCB. The RBPF SLAM uses vigpedtares to recognize landmarks on the
surface and triangulate its position with respeztitt The performance and limitations of this
approach are presented through a sensitivity analys
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1. Introduction

Small celestial bodies (SCB) such as asteroidscantets have started to become the center of
attention of near-term space exploration programsrast the space agencies across the world.
While JPL-NASA has already completed several missidgargeting SCB's with NEAR-
Shoemaker, Stardust, or Deep Impact, JAXA's Hayalmission was a first in landing on an
asteroid, recovering samples, and returning tohEtotdeliver them. Since the end of this
successful mission to the asteroid Itokawa, ISASAAhas been preparing the follow-up
Hayabusa Il mission, and is also actively studymmeyv visual navigation schemes that will
enhance the autonomy and accuracy for a potengighblisa Mark Il mission.

The constraints associated with the navigation 8&8B is very different than for large planetary
bodies. The very rugged surface of SCB's makeslaatkng sites sparse and narrow, requiring
precision down to 10's of meters. Also the very kvgavitational pull imposes strict constraints
on the narrow landing speed range required to agtidtr damaging the spacecraft or making it
bounce back from the surface to outer space [1{I&nventional techniques used mainly for
landing on large planetary bodies typically resirtgery large landing error ellipses in the order
of 100's meters, making them inadequate for SCBiomns [3]. One of the reasons is that the
SCB's gravity is too weak to interact with inerts@nsors, allowing motion to be detected only
with respect to the spacecraft's own referencedram



Thanks to the increasing computational capabilibésiew computers, visual navigation has
become a promising alternative, coping with thertiak sensors shortcomings by detecting
visual landmarks on the SCB surface and determithiegspacecraft's position and orientation
according to them, i.e. ifsose JPL-NASA has undertaken several researches ipabiedecade,
starting with the DIMES algorithm which combines aserements from a descent camera, a
radar altimeter, and an inertial measurement UkitU] to measure the spacecraft altitude and
attitude [4][5]. This combination of navigation caras and IMU was then developed further by
establishing catalogs of recognizable crater lamisnavith 3D coordinates knowa priori [6],
and using them to reconstruct the spacecraft pdge]. Similar schemes using Scale Invariant
Feature Transform (SIFT) were also proposed [9]wal as various implementations using
Kalman Filtering [10], particle filters, and Uns¢ed Transforms [7].

Although significant work has been done on navaainvolving fixed stereo-camera systems,
the maximum baseline between two cameras fixedherspacecraft is smaller than the depth of
the features being observed by several order ofnimate during the approach, descent and
landing (ADL) phase. Considering the added compjerif a wide baseline stereo-camera
system that would requires two spacecrafts orraterely, a mothership and an orbiter, the most
practical approach remains the monocular strudiram@-motion techniques [4], [5], [6], [8],
[11].

This research builds upon the monocular structtoeHmotion techniques by proposing a

single-camera-based Simultaneous Localization aadpihg (SLAM) scheme in the context of

a Hayabusa-type mission. This paper follows uphenwork presented by the authors on using
linear visual pose estimation algorithms basedhenttiangulation of SURF visual descriptors as
interest points, for the generation of particles &0Rao-Blackwellized Particle Filter (RBPF)

SLAM [12][13].

The SLAM proposed in this work extends the schemesgnted previously by introducing a
data-fusion method which combines IMU-based pa&siand vision-based particles, and uses a
screening method which discards outlying visionelaparticles by verifying that their motion
estimate is within the maximum error range of thiJImotion estimate. The proposed SLAM
approach assumes @mopriori knowledge on the SCB topography or the existeriqgeadicular
surface feature with known geometric propertiehaascraters.

The proposed SLAM uses the novel visual landmarkpimg technique discussed in [14]. It
maps landmarks spatially using an octree databesigred for very large environments, and
sorts landmarks by their visual descriptor -or aigre- using a modified binary search tree
dynamically linked to their position within the oee. This scheme facilitates and robustify the
data association step of the SLAM. It also offersotution to the inherent problem of false
associations of visual landmarks when new landrmobdervations are matched with previously
visited ones solely based on the overlap of thstimated 3D position (see discussion of this
problem in [15][16]).

This paper presents an overview of the RBPF-SLAMséttion 1; the techniques used to
generate motion estimates to propagate partictes bne time step to another in section 2; the
approach to calculate the particles' likelihood prabability to be sampled for the next iteration



in section 3; the visual landmark database in secti and the results and discussion in section
5.

1. Overview of the Proposed Monocular RBPF-SLAM algorihm

The algorithm of the Rao-Blackwellized Particlet&il SLAM developed for this work is
summarized in Figure 1. It proceeds as follows:

l. Inputs:
1) The IMU motion estimate between the current andipues time steps;

2) The images of a single navigation camera,;

3) The range sensor reading paired with each camesgemand the known fixed
transform between the range sensor frame and thereamage frame.

Il. Relative motion estimates
1) The IMU readily provides the relative motion esttmmavhich describes the spacecraft
position and attitude changes with respect toateat the previous time step. Given an
approximate Gaussian distribution of its mean nmmtEstimate, and a standard
deviation modeled according to the upper rangenefgensor's rated error, a sample
population of motion estimates can be generatetlinvithis maximum error range,
constituting the first part of the relative motiestimate population.
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Figure 1. Monocular RBPF-SLAM



2)

Two subsequent camera images focusing on the seeaeoh the target SCB can be
paired and used with linear pose estimation allgorét to provide relative motion
estimates after extracting and matching visualutest from them. Four of these linear
algorithms have been investigated in [11][13], ngntlee 5-point, 7-point, 8-point, and
8-point RANSAC algorithms. These algorithms give thhange in position and attitude
of the spacecraft relative to its pose at the previtime step. A sample population of
relative motion estimates can be generated by ralydsampling groups of visual
features, and using one of these algorithms on eaehof these groups. Once scaled
using the range sensor information - see secti@nf@. details - the visual-based
relative motion estimates provide the same infolomaas the IMU-based motion
estimates, and can thus be fused in the same sammidation.

I1l. Particle Generation

1)

2)

3)

A sub-sample of the particles of the previous tieraare selected for each relative
motion estimate. Each of these particle provides mwse estimation and the associated
landmark distribution for the previous time step.

The pose of a particle can then be updated by gddiit the relative motion estimate
calculated at step I, effectively converting thatative motion estimate into an updated
pose expressed with respect to the SLAM's gloateace frame.

Each particle belonging to the subsample selected felative motion estimate lead to
the creation of a new particle belonging to therenir iteration's population. The

particle population of the previous time step isnuhtely deleted once the new particle
population has been generated and updated.

IV. Data Association
1) Each new particle is assigned all the new obsemstcorresponding to the matched

visual features between the current and the prevcamera image.

2) A level of similarity between every observationseafch particle and all previously

V. Par

mapped landmark is calculated. If this level of ifanity is greater than a given
threshold, the observation is associated - or nedtchto the corresponding visual
landmark. The level of similarity between an obation and a visual landmark is
calculated based on the Euclidean difference betwbeir Speeded Up Robust
Feature descriptor as discussed in [17][18].

ticle Likelihood and Resampling

1) Each matched observation of a particle is evaluataibrding to the likelihood that

2)
3)

4)

the statistical distribution of the associated haadk position is equal to the
observation's position distribution, i.e. its meard standard deviation according to a
standard Gaussian model.

The likelihood of the particle is given as the prodof the likelihood of the matched
observation and their associated landmark.

All newly generated particles are then assignedcodability proportional to their
likelihood with respect to the sum of the likeliltsoof the rest of the population.

The new population is then scaled down to a tréetamomber by performing a
random pick of the particles with no replacemericlEparticle has a chance of being
selected equal to the probability establishedep %£.3).



Visual Landmark Database Update
5) The visual landmarks associated with the obsemstiare updated based on the
position distribution of the latter.
6) Each new patrticle inherits the visual landmark blase of its predecessor, and thus,
each remaining particle from the sub-sampling @ps#) update its own visual
landmark database.

VI. Controller updatethe spacecraft's navigation software updatdatst pose estimate with
the pose of the most likely particle for the cutreme step. A low-pass filter is used to
smooth out the changes of the pose estimate awer providing a more stable output for
the spacecraft controller.

2. Relative Motion estimates and Particle Generation
2.1. IMU Motion estimates

The IMU is used for two purposes: 1) generatingitreé motion estimates; 2) providing a
bracket of realistic motion estimates based omtban motion reported by the unit and its know
maximum error percentage. This bracket is usedctees out all outlying motion estimates
obtained from the linear visual pose estimatiomaigms.

The model of the IMU is:
Xty = Xe-1) + AXtrye + @ (0, 6y) (1)
o = o 1) + Ab e + @ (0, 64) (2

with X@), @, the 3D position vector and attitude vector atttrof the spacecraft in the
SLAM's global reference frame
AX, Aa, the true displacement and angular shift of treecepratft at timé with respect to
the spacecraft's reference frame at titrb) (
Ox, G, the white Gaussian noise associated with the tveasurement

Figure 2. Matched SURF features in a pair of subsegpnt images of the asteroid Itokawa



The bracket outside of which visual pose estimatescreened out is defined as:

X € {X (1) - 3o X'@-1) - 30 } )
ap €{ o' t1) - 304, 0'¢1) - 304} (4)

2.2.Visual Motion Estimates

Relative visual motion estimates are calculatecetham the 5-point algorithm by Nistér [19],
the 7-point algorithm by Hartley and the 8-poingaithms by Longuet-Higgins [20]. The
approach is to generate in a first step the pojmadf visual features that can be matched
between the current image frame and the one gedkesatthe previous time step - see Figure 2.
The second step is to randomly sample sub sets dfamd/or 8 matched visual features. The
third step consists of the following algorithm déised in [13] which will be briefly summarized
here for the sake of completeness:

1. Solve the linear set of equations linking the ndinea image pointg of the image from the
previous time step to the normalized image poxitef the image of the current time step,
and decompose the essential matrix E into its ltios and rotation componentsandR
respectively:

X' E[gxg] x=0 (5)
B = TR (6)
with  T.', the skew symmetric matrix of the unscaled traiwiavectorT

2. Triangulate the pairsx{, x;") of image points to obtain the depth, using the possible
solutionsT", R resulting from the decomposition of the Essentiatrix, and keep only thi,
T" solution giving a positive depth:

HXH ~Rx-T)- Rx-x')(x‘-T)
|-Rx HXH ~(-Rx-x)’

(7)

i,z

3. Find the scaling factos that convert the unscaled translation vedtbinto the scaled vector
T =s T, by measuring with the range sensor the dist&noéthe reference image poixr:
corresponding to the 3D poiXk/i, and assuming that the distance to the referemmbmark
0; corresponding to the image poinis, ') is the same aXg;;, provided thatx; or x;' is
within the vicinity ofxg/e1 In the image plane defined by the axgsyr; - see Figure 3.

XR/Fl = RRl/Fl [O'O’ D]T JrTF21/|:1 (8)
S= XR/Fl/Xi,z 9)

with Rpr1, Tpr1, the fixed rotation and translation componentsth@ rigid transform
mapping the measured distarizdrom the range sensor reference frame R1 to theeca
reference framé&1 with axesxcy, Ye1, Zc1.



Figure 3. Monocular motion estimate from visual fetures between pairs of images

Relative motion estimates generated from visuak pestimation algorithms are typically un-
scaled, implying that the rotatidR and the translation directioRf' of the spacecraft are fully
determined, but the magnitude of the translationois The algorithm described above uses the
readings of the range sensor to measure the tei@nde to the visual landmark detected in the
image frame, and thus resolve the scale ambigiityen no visual features are close to the range
sensor's reference poinkgry in the camera framEL or pointxg/e in F2, the algorithm can use
the depth of previously triangulated visual landksathat remains in the field of view 6fL or

F2, and reconstruct the scale of the scene usindptiaard propagation algorithm described in
more details in [11].

2.3. Particle Generation From a Relative Motion Estimate

For each relative motion estimate for time dig@ sub-sample of the particlepﬁL’G inherited
from the previous time stedp; are selected and copied to constitute part ohéve population of
particles p\'l; . For each pair of particlefp{i!e, {L]le} the updated poséﬁ,[ki?e,)_(t[ﬂe}of the
spacecraft expressed as a quaternion and a 3Dopos#ctor with respect to the SLAM's global
reference framés is calculated by incrementing the pose of theiq:iarlp{ﬂbG by the relative
motion estimate [R,T] converted to a quaterniontpms pair {sz,Fl,TFZ,Fl} defining the
orientation and position of reference fraRzwith respect td-1:

qtk,G :th,G Ok 2/F1 (10)
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Once the relative motion has been propagated, ¢he particle has the most up-to-date pose
estimate conditional to that particle’'s path asneef by the Rao-Blackwellization approach
described in [15]. The final step of the creatiohaonew particle is to express all new

observations{@itk..(a,im’tk}, l.e. visual landmark detected K2 and matched ifr1, from their
local reference framg2 to the SLAM's global reference frarze

0 0 B ~ 0 ) L }
fo] [ XKoae] s - 12
|:®tk'G:| {thlG} q[k "e Jrares |:®i,tk,F2:| (qFZ/Fl) (qtk J“G) ( )

3. Particle Likelihood Estimation and Resampling

The likelihoodL of a particle is calculated as the product ofltkedlihood of all the observations

being matched with a previously mapped landmankd the likelihood of the unmatched
observation considered as new landmarks. The lmtteraluated by locating the triangulated
position of the unmatched observation within theABLs occupancy map, and to use the
probability that an obstacle exists within thataarei.e. the obstacle probability - as the
observation's likelihood.

The likelihood of matched observation is calculatesing the null hypothesis test that the
position distribution of the landmark observed u& to the position distribution of the
landmark as mapped in the SLAM's landmark datalfagere 4 represent the distribution of the
observed landmark agi(c1), and the distribution of the previously mappeatimark as(,,c2).
The P-value related to the confidence interval thattthe distributions are equal gives a useful
approximation of the likelihood that the two armatch.

The overall likelihood for that observation-landikaair is given by applying the same test and
calculating the P-value along the x,y,z axes defjrthe volumetric uncertainty distribution of
the landmark:

Lo =Px Py P, (13)

o/2 o/2

Dim(i) Dim(i)

A 4

H.01 MOz (ul - p2), \/(G]z/nl +6,%/ny)
Figure 4. Likelihood based on the P-value betweemvb landmark position distribution
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P=0 + | + (14)
( (0'1 +O'z/nz) (0'1 +O—2/n2)
with ® the cumulative probability distribution function.

4. The SLAM's visual landmark database

The proposed landmark database combines an enhaecgidn of Farfield’'s memory-shared
octree occupancy grid [21] with a Red-Black bin@garch tree [22] to catalog the visual
landmark by their visual signature. The visual aigine may be a SIFT [23] or SURF descriptor
[17], or any other visual feature descriptor cotiisgsof a consistently ordered array of floating
point values describing various visual charactesstigure 5 shows a schematic representation
of how the SLAM's map information is stored in meno

The concept of the octree, is to represent a volahspace by a single cell, and to recursively
subdivide this cell into 8 sub-cells of equivalermtlumes until each cell has reached a
homogeneous state or the maximum defathi.e. the smallest cell permissible representirey t
highest resolutiony, of the map.

The nodes shown in the structure of Figure 5 aresjrey node oreaf nodes with an obstacle
probability varying from 0.0 (white) to 1.0 (dar&d). An obstacle probability is assigned to each
leaf node as a measure of the likeliness that@mark is present within the volume represented
by them.

The likelihood of the landmark defined by the splatidistributed Gaussian model described in
section 3 is the basic input giving the obstactEbpbility for each cell in the octree. The state of
an octree cell can be one of the three as desagitagghically in Figure Bigure 7: a free cell (no
landmarks); a mixed cell (low probability of havimglandmark); an obstacle cell (landmark
present with a high certainty).

v

mmmﬁmmmm

[ T T T T T [ 1 [ T T T T T T 1]

[OT2T3 e s5[6]7] [oT 12734

o ERRRa
[N EN EX EN KN B KN |

L T 1 [ |

B EREREE

Figure 5. The SLAM's map comprising a Red Black tre sorting visual landmark
signatures and an octree occupancy tree (left) repsentation in memory (right)
volumetric representation of the octree encapsulatg Itokawa
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Figure 6. Octree cell states and state transitioras a function of the obstacle probability

Because octrees use a lot of memory, particuldrlgne is attached to each particle of a
population of hundreds, memory optimization is nendy. In this work, leaf cells are merge
into their single parent cell when their state halfenade them free or obstacle cells. Redundant
information is thus deleted by having 1 cell comitag the information of 8. If a leaf cell
becomes mixed but has not reached the maximumeodéeth, it is subdivided into 8 children in
an attempt to have them all reaching a higher @egfecertainty by becoming either free or
obstacle cells. The threshagbgee andpopst defining the state of a cell has a direct impactiee
frequency at which cells are merged or subdivideetlaon new observations updating the cell's
obstacle probability.

While octree cells contain the obstacle probabihigt a landmark is present nearby, the nodes of
the Red Black tree (RBT) contains the informatian the visual landmark's mean position,
standard deviation, as well as the landmark's Visigaature, i.e. its SURF or SIFT descriptor.
In order to make the system more stable, the ugdagthanisms for the obstacle probability of
the octree cells uses a low pass filter with a troastanta,. Low-pass filters with another
constanta, implement the same mechanism for updating thésstall information of the RBT
nodes with the information provided by new obseoret:

Pupdate= Pra T %o (pk - pk—l) with ao € [0, 1] (15)

5. Results and discussion

The overall performance of the SLAM in estimatihg 6 DOF pose of the spacecraft during the
approach descent and landing (ADL) phase of a Sd8siom where JAXA's Hayabusa
spacecraft performs close proximity operations tieartokawa asteroid have been presented in
[14]. For the sake of completeness, the resultsdfraulation run is presented in Figure 7.

The list of the main parameters affecting the pemtnce of the SLAM using the proposed
algorithms are listed in Table 2. Thmodule column refers to the navigation sub-system
responsible for each parameter, andaffectcolumn gives the logical description of how the
parameter affects the performance of the SLAM. @uhe complex interactions between those
parameters, the search space mapping the perfoenodtice SLAM as a function of each one of
them is highly non-linear, and the problem of glbbaptimizing the whole set of parameters
quickly become intractable. For that reason, tmsisigity study that was conducted to optimize
the performance of the SLAM was restricted to asstilof parameters, and for a limited range
for each one of them. The range of values testexpegified in the description column of the
table.
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Figure 7. Error over pose of the spacecraft duringhe ADL phase for 400 resampled
particles: (a) Filtered x,y,z, position, (b) unfilered y-position

Table 1: Simulated scenario parameters and noise sces

Parameters Description
. Size: 556 x 303 x 243 m

Target Body. Asteroid Angular speed: 0.000144 rad/s
Itokawa _ 5

Gravity Const: 2.51 x 1Hkm’/s?

N | Initial altitude: 700 m

Spacecraft conditions (With itia| relative speed: 0.1 m/s
respect to the asteroid . .
reference frame) Final relative speed: 0.014 m/s

Trajectory within the equatorial plane of the asigr

Navigation Camera:

Image size: 512 x 512

Noise: White noise of + 10 grey intensigvEls for every pixel (i.e.
4%)

Range sensor

Noise: +10% of distance measurement

SLAM localization system

Simulated sampling tim&59.72 sec, i.e. (4.33 min)

Lighting conditions:

Reflectance Model: Lambert model

Configuration: Sun, asteroid, @&rspacecraft are aligned (same a:
the Hayabusa mission)

These results are based on simulation runs wherealyabusa spacecratt is first facing the flank
of ltokawa asteroid, performing 2 full observatiorbits. The sensors noise and the other
parameters of the simulation are shown in TablelHile the effects of each parameters on the
system is described qualitatively in Table 2, andriitatively in Table 3.
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Table 2: Main parameters affecting the performanceof the SLAM

Parameters Module Description Effect
High number increases population diversity and
Number of | SLAM g pop y
. Response tested for 50 ~ 400 convergence rate toward the true spacecraft pose,
resampled | importance . . . .
. . resampled particles but also increases computational time and mer
particlesNr | resampling
usage
High number increases chances of having accurate
Number of | SLAM g . . g .
. . Response tested for 500 ~ 200&stimates, but also increases computational time
motion motion . . .
. resampled particles and decreases probability of screening out
estimates\Ny, | model .
erroneous particles
See description of these Changes visual landmarks deletion rate from the
Piee and Landmark | thresholds in section 4 database
Pobstacle database Response tested . = 0.05 Changes the merge and expansion rate of octree
~ 0.2, andPypsiacle= 0.70 ~ 0.95 cells in the database, affecting memory usage
Changes rate of variability of occupancy grid,
impacting likelihood estimation for new landma
Low-pass and particle resampling
filters Landmark | Response tested fay = 0.004 | Changes the landmarks deletion rate from the
constant database ~ 0.03, andxp = 0.004 ~ 0.016| database, limiting the number of reobservable
{av,ac} landmarks
Changes merge and expansion rate of octree cells,
affecting memory usage
Maximum . .
Response tested for a maxim Changes merge and expansion rate of octree cells,
octree depth | Landmark . . .
octree deptldy, =4 ~ 6 as well as the map size, directly affecting memory
dv and map | database

And ry = 150 ~ 800 meters | usage and computation time

resolutionr y

The upper half of Table 3 provides the set of valigsted, and the lower half provides the mean
error {e (x), e (y), e (2), e0]} and the standard deviatiors {(x), o (y), o (2), c (8)} over the
position and the orientation of the spacecraftrdfie loop-closure of the SLAM. In cases where
ranges are given for parameters rather than swajiees, the results shown are the best one
obtained for that range. The intent is to prove #rdire ranges of parameters are actually sub-
optimal considering that the best case obtainel thiem gives poorer results than other sets of
parameters.

As it can be seen in Table 3, the landmark datapasemeters are critical to reach convergence.
While the octree depth and the cell size with respe the visual landmark uncertainty were
major contributors to the performance of the SLANEgse parameters proved less sensitive than
the time constantgo, anday of low-pass filters of the octree cell's obstgmlebability and the
landmark position respectively. The study indicatieat only values of less than 10% ffe

and above 90% fopgpstacle give acceptable results in terms of computatiosyaeed and
convergence.
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Table 3: Result of sensitivity analysis

Seti: 1 3 2 4 5 6 7 8 9
at 128 125 12r 125 125 125 | 30~100 150~250 125
e’ 200 200  20C 200 225-300| 60~150 200 | 200 200
Pee  0AC 010 0. 0.20 ~ 0.30 0.1C 0.1  01C 0. 0.1¢
Pwsace 0.9C 090  0.9¢ 0.70 ~ 0.95 0.9C 0.9 09 0. 0.9¢
Nr 400 400  50~20( 1400 50~400 (50~ 400 50 ~ 00 50 ~40( 50 ~ 40!
Ny 100C 1500 1e3~2e (1000  100C 1000  100C  100C  100C
o 5 5 5 5 5 5 5 5 45
u 250 (250 | 250 250 250 250 | 250 | 250 (30050

Responst S S C C C C C U U
ex)lm] 491 1431 |750 1538 115 945 504 202 1366
o0)[m] 621 (777 1263 2860  [250.9  |264.2 [137.8 3055  [552.8
ey)m] 786 (104 223 2966  [68.2 224 20 1645 1443
oy)[m] 90 805 (1153 1428  [1323 (1658 [80.3 (1889  |255.6
e@[m 413 1440 1125 2697 2270 4.6 1008 2812  |117.2
oz)[m 57.0: 853 (1245 1536 1950 2427 1134 2237  [379.0
e()[deg] 186 [17.7 [223  j39.1 33.9 338 215 445 (788
c(@)[deg) 72 82 8.9 8.6 17.1 174 88 6.2 11.8

(*) Response : (S) Stable convergence, (C) Critically stable (i.e. with oscillations), (U) Unstable (i.e. divergence)

A broader range of value fatn, anday were found to give good results within the rand¥83
to 0.0167, corresponding to the inverse time consi@ > anday™ ranging from 60 to 300
respectively. The optimal set of parameters is shiovthe column for set #1.

The SLAM is particularly sensitive to the numberre§ampled particles, convergence occuring
only in cases where that number is 400. Cases higiier number of resampled particles could
not be performed due to the memory limitations isggbby the operating system under which
the system was developed and tested. However,réinel butlined above clearly shows that
higher number of resampled particles leads to cgaree and to smaller errors over the

spacecraft pose.

6. Conclusion

Combining visual linear pose estimation techniquét inertial motion estimates, this work

presents a Rao-Blackwellized Particle Filter Simwgtous Localization and Mapping (RBPF-
SLAM) algorithm that aims at estimating the positiand attitude - or pose - of a spacecraft
maneuvering near a small celestial body. The RBEAMSuUses visual signatures to recognize

landmarks on the surface and triangulate its msivith respect to it. Although it is well know
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that RBPF SLAM are very sensitive to the numbeparticles generated and resampled at each
iteration, this research has found that the stgdlind precision of the SLAM was also highly
dependent on the operational parameters of the winégh directly influences: i) the level of
discretization of the space where visual landmarksmapped; ii) how long a visual landmark is
kept in memory; iii) how often its visual signatused position distribution is updated; iv) at
what rate the landmark information changes as atifum of new observations errors. While the
proposed scheme is computationally intensive, & e merit of offering a new approach to
visual navigation, and to identify some key pararsebdf the SLAM that have a direct impact on
its performance.
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