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Abstract: Statistical orbit determination is used to obtain estimates of the state of an orbiting
object along with a statistical description of the uncertainty of this estimate. The probability density
function (PDF) forms the complete description of this uncertainty and can be estimated using the
particle filter (PF) with a large number of particles. Practical application of the PF to most actual
orbit determination problems, for example maintaining a large catalog of orbit debris objects, will
require a way of accurately representing this PDF with minimal information loss, using far less data
than represented by the full set of particles. The Independent Component Analysis (ICA) is used to
decorrelate non-Gaussian particle distributions and reduce their dimensions, while maintaining
higher order statistical information. In contrast, methods such as the Principal Component Analysis
(PCA) only preserve second order statistics. Both the PCA and the ICA are applied to two scenarios.
The first involves a highly eccentric orbit with a lower apriori uncertainty covariance. The second
one is an orbit with a lower eccentricity, but a higher a priori covariance. The performance of both
these methods are quantified using the mean square error (MSE), the Kolmogorov-Smirnov (K-S)
test and the excess kurtosis as statistical measures.

Keywords: Orbit Determination, Particle Filter, Non-Gaussian, Data Compression, Nonlinear
Estimation.

1. Introduction

Statistical Orbit Determination (OD) is the estimation of the states of a space object based on noisy
measurements. In recent years, there has been a dramatic increase of space objects (assets and space
debris) particularly in Low Earth Orbit (LEO) [1]. This increase of space objects pose a threat to
the space assets based on potential collisions as well as the increase in operational costs during
maneuvers required to avoid collisions. OD is applied to this problem to estimate the future states
and the uncertainty of space objects to be used to predict the likelihood of collisions. An accurate
statistical description of the uncertainty of state estimates is critically important for assessing the
collision risk. For instance, in 2009, CelesTrak predicted that an Iridium Satellite and the defunct
Russian Satellite Cosmos, would have a close approach of 584 meters [2, 3], nevertheless they
collided with one another. Since 1998, the International Space Station (ISS) has performed 13
maneuvers to avoid collisions with space debris [4]. The last maneuver was in 2009, performed
to avoid the debris from the Iridium and Cosmos satellite collisions. This required 30 hours to
plan and execute [4] as well as the cost of propellant for the delta-V maneuver implemented. The
classical methods of statistical OD, such as the extended Kalman filter (EKF) [5] and the unscented
Kalman filter (UKF) [6], may not always be the best choice of an estimator for all problems because
they only consider the second moments (covariance matrix) of the state. As long as the observation
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error and process noise can be accurately assumed to have a Gaussian distribution, these second
moments are sufficient to infer all other statistics as well. One example in which the non-Gaussian
errors could arise is when state estimates are based upon short arcs of tracking data when tracking
orbit debris. Hence, an accurate prediction of the states over longer durations of time is imperative
for such tracking and collision avoidance applications.

A good prediction of not only the mean state, but also the shape of the state distribution is important
for the orbit debris problem, since even events with very low probabilities are of concern. To
accurately predict the likelihood of these low-probability events, we must accurately predict the
tails of the distribution. Given that the orbit dynamics are non-linear, even if the a priori state
vector has a Gaussian distribution, propagation with non-linear dynamics would evolve a Gaussian
a priori state into a non-Gaussian one. In addition to predicting the state distribution, there
also needs to be a method of numerically representing this distribution in order to generate a
catalog of all orbiting objects for predicting the likelihood of possible collisions. At present, orbit
catalogs use some definition of a common ephemerides, for example the North American Aerospace
Defense Command (NORAD) Two-line elements ephemerides, which only represent the mean orbit
state, providing no information on its probability distribution. Development of nonlinear filtering
techniques are necessary to predict the state error distribution (a full Probability Density Function
(PDF)), are necessary in order to address this type of problem. The Particle Filter algorithm (PF) is a
popular nonlinear filtering technique, based on a sequential Monte Carlo approach representing the
required state PDF by a weighted set of random samples or particles. The fidelity of the prediction
and estimation of the state PDF increases with the increase in the number of particles.

Whereas the PF is capable of predicting the state PDF, it does not produce a compact form for
storing and distributing the distribution. Representing the state PDF of an orbit numerically, using
a large number of particles is not a practical method for storing or distributing the orbit state
data. The objective of this work, therefore, is to develop new methods for representing the full
PDF of the orbit state, in a compact data record which could be distributed much in the same
way as ephemerides are used today. We will approach this problem by investigating methods to
decorrelate the the state into independent uni- or multi-variate components, whose PDFs could be
more compactly represented. For example, some components of the decorrelated PDF could be
accurately represented by many fewer particles than the original state PDF, or might be easier to
approximate with continuous functions using methods such as the wavelet transforms, characteristic
functions, and/or kernel densities. Conventional methods that perform orthogonal transformations
to obtain linearly uncorrelated variables, such as the Principal Component Analysis (PCA), assume
a Gaussian distribution and thus would lose information present in the higher moments if the
distribution is not Gaussian. In this paper, we will apply a method known as the Independent
Component Analysis (ICA) [7, 8, 9, 10] method, which is capable of decorrelating non-Gaussian
data by finding the local extrema of the kurtosis (fourth order moment) of a linear combination of
the states, transforming them into non-Gaussian independent components.

Methods such as PCA and ICA provide a method for additional compression from dimensional
reduction in some cases. For example, the OD process may require the augmentation of the state
with additional components that are not strongly correlated with the minimal subset of components
required for accurate state prediction. PCA and ICA would be expected to assign relatively lower
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eigenvalues to components arising from such states, identifying them as good candidates for
elimination. Furthermore, the OD process may use a state vector whose coordinate representation is
well-suited to OD, but less suitable for long-term propagation. The transformation of coordinates
inherent in PCA and ICA may help to identify alternative representations, analogous to orbital
elements, which have a simpler PDF structure, and hence be more easily predicted.

To demonstrate our approach, we apply ICA and PCA to both decorrelate and dimensionally
reduce the particle filter predictions of the PDF of a two-body orbit in cartesian coordinates. Since
out-of-plane motion in such orbits is known to be decoupled from in-plane motion, we anticipate
that a dimensional reduction from 6 states to 4 may reasonably approximate the most strongly
non-Gaussian components of the PDF. We will show that the resulting compression of the original
6-dimensional Cartesian set of 1000 particles can be used to accurately reconstruct the original PDF,
at the epoch at which we perform the translation. Each component of the transformed state PDF
could then be compressed independently as a univariate distribution. This stage of the process is the
topic of ongoing work, and will not be addressed in this paper.

This paper is organized into eight sections. Section 1 covers the introduction, section 2 describes
the Particle Filter algorithm. In section 3, the methods of decorrelation, scaling and dimensional
reduction are described and the problem description is presented in section 4. The results are
presented in section 5 and the conclusion and future work are presented in section 6. Section 7 will
constitute the acknowledgements and the references are listed in section 8.

2. Particle Filter

In order to incorporate the higher order moments of the state and measurement errors, we need
to be able to study the evolution of the full state PDF in the OD process. The particle filter is a
simulation-based filter based on the sequential Monte Carlo approach, effective in estimating the
full state PDF of nonlinear models or non-Gaussian PDFs [11, 12, 13]. The central idea of a PF
is to represent the required probability density function (PDF) by a set of N >> 1 random state

realizations known as particles {X(i)
k }

N

i=1, with associated weights {w(i)
k }N

i=1 at time k with the state
mean Xk, such that

p(Xk|Yk)≈
N∑

i=1
w(i)

k δ (Xk−X(i)
k ) (1)

where the particles are identically and independently distributed (i.i.d) samples drawn from the
initial PDF with an initial Gaussian distribution assumption. The weights are the probability values
that are the approximations of the relative densities of the particles such that their sum equals
one [11, 12, 13]. The state estimate is given as a conditional density called the posterior density
p(Xk|Yk). Estimators based on this posterior density are constructed from Bayes’ theorem, which
is defined as

p(X|Y) =
p(Y|X)p(X)

p(Y)
(2)

where p(X) is called the prior density (before measurement), p(Y|X)is called the likelihood and
p(Y)is called the evidence (normalizes the posterior to assure the integral sums up to unity) [11, 13].
In the execution of the general PF algorithm, a common effect ensues where the variances of the
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weights typically increases over time. This phenomenon is known as sampling degeneracy, in that
there is an insufficient number of effective particles required to fully capture the PDF. A way of
overcoming the sampling degeneracy is to derive the importance distribution that minimizes the
variance of the distribution of the weights. The corresponding weights are given by:

wk = wk−1 p(Yk|Xk−1) (3)

wk = wk−1

∫
p(Yk|Xk)p(Xk|Xk−1)dXk (4)

This means that the weights can be calculated before the particles are propagated to time k. From
the equations above, we see that there is a problem in the sense that the evaluation of the integral
generally does not have an analytic form and that the particles’ weight updates are based on the
knowledge of the state at the past time step and the current measurement only i.e. p(Xk|Xk−1,Yk).
So, a reasonable choice for the importance distribution is the transition prior p(Xk|Xk−1)[11].

2.1. PF Algorithm

Let Xk = (X0,X1, ...,Xk) and Yk = (Y0,Y1, ...Yk) be the stacked vectors of states and observations
up to time k and {wi

k, i = 1,2, ...,N} represent the weights of the N particles at each time k. The
estimation process can be sectioned into three parts: initialization, time update or prediction and the
measurement update. Each step is described below for the PF implementation.

1. Initialization at k = 0, for i = 1,...,N
• Sample N particles from the prior Xi

0 ∼ p(X0)
• Calculate the weights of the particles from the initial distribution (assume Gaussian)

wi
0 = p(Xi

0)

• Normalize the weights wi
0 =

wi
0

wT
using total weight wT =

∑N
i wi

0
2. Time Update or Prediction at k ≥ 1, for i = 1,...,N

• Update the particles through the dynamics

Xi
k = f (Xi

k−1)+ vk (5)

p(Xk|Yk−1) =
∫

p(Xk|Xk−1)p(Xk−1|Yk−1)dXk−1 (6)

3. Measurement Update
• Update the weights using the innovation from the measurements assuming that the

measurements are Gaussian distributed

wi
k = wi

k−1
p(Yk|Xi

k)p(Xi
k|Xi

k−1)

q(Xi
k|X i

k−1,Yk)
(7)

• We assume that the importance distribution q(Xi
k|X i

k−1,Yk) in this case is equal to the
prior density p(Xi

k|Xi
k−1) [13], so that,

wi
k = wi

k−1× p(Yk|Xi
k) (8)

• Normalize the weights wi
k =

wi
k

wT
using total weight wT =

∑N
i wi

k

• The final posterior density estimate p(Xk|Yk) =
∑N

i=1 w(i)
k δ (Xk−X(i)

k )
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The prior density is usually broader than the likelihood, thus only a few particles will be assigned
higher weight during the measurement update step, causing sampling degeneracy. The solution to
overcome sampling degeneracy is resampling the particles. Let Ne f f denote the effective sample
size, which can be estimated by [11, 14]: N̂e f f =

1∑
i(w

i
k)

2 . Also let Nth denote a lower threshold for
the effective sample size, which is arbitrarily chosen with respect to the accuracy desired; the larger
the threshold, the more accurate the PDF results and the more computational cost incurred.

If Ne f f > Nth, then the sampling degeneracy is not low enough, the filter continues on to step
2 for the next time update. Otherwise, the particle with the highest weight will be replicated
to replace the particles falling below the threshold and then the weights will be renormalized.
However, resampling does have its own shortcomings, since the particles that have higher weights
are statistically selected each time thus reducing the diversity of the samples. This loss of diversity
may also cause divergence of the estimates. To avoid the loss of diversity the replicated particles
are “jittered/spread-out” by adding process noise to spread the resampled particles [11, 14].

3. Decorrelation, Scaling, and Dimensional Reduction

The PF requires the implementation of a large number particles to achieve a good PDF representation.
In addition, the computational and data allocation costs compound with the increase in both the
number of particles and the dimension of the state. We propose to compress the data with respect to
the dimensional size and the number of particles used. However, since the state does not possess
a Gaussian distribution, conventional methods that perform orthogonal transformations to obtain
linearly uncorrelated variables, such as the PCA, will eliminate the information present in the higher
moments. Hence, we propose to apply the method of Independent Component Analysis (ICA). ICA
has been developed for decorrelating non-Gaussian data by finding the local extrema of the kurtosis
(fourth order moment) of a linear combination of the states and thus producing the non-Gaussian
mutually independent components [7, 15, 16].

Canonical units will be used, since the states have widely different scalings in orders of magnitudes
(i.e. position vs velocity), we normalize the particles for our states based on the canonical units.
For distance, we scale the value by the distance unit (1 DU⊕) which is equivalent to the value of
the radius of the Earth (6378.145km). For velocity, the scaling metric is given as the distance unit/
time unit (1 DU⊕/TU⊕) of equivalency 7.90536828 km/s [17]. The implementation of the scaling
will help to ensure an equal weighting of information from the velocities that are typically of lower
magnitudes.

As an introduction to ICA, we will first review Principal Component Analysis (PCA), commonly
used to decorrelate data with a Gaussian distribution.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) is the orthogonal transformation of a set of possibly correlated
data into a set of linearly uncorrelated variables known as the principal components [18, 19]. In
other words, PCA finds a smaller set of variables with less redundancy [20]. The number of the
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principal components obtained are usually equal to or less than the dimension of the original data
set. The component with the largest variance is deemed as the first component and each succeeding
component with a higher variance is computed in that order under the constraint that it be orthogonal
to the preceding components [18, 20].

The principal components are obtained by first centering the data set (i.e. state particles Xi
k) and

subtracting its mean to obtain the standardized data set x̃i
k

x̃i
k = Xi

k−E[Xi
k] (9)

The eigenvectors V corresponding to the decreasing eigenvalues D, represent the direction of the
components in order of their decreasing variances.

Cx̃x̃ = E{x̃x̃T} (10)
D = V−1Cx̃x̃V (11)

In PCA, the components with negligible collective eigenvalues can be considered as redundant or
pertaining to negligible information. Thus, the principal components kept are in reference to the
directions with the maximum variance and are considered sufficient to represent the original data in
a new coordinate frame within a reasonable level of accuracy.

The shortcomings of using the PCA for a non-Gaussian distributed data is that the principal
components computed are based on the covariance matrix, which only incorporates second order
moments statistics. Hence using the principal components obtained by PCA defeats the purpose of
implementing the PF to obtain the non-Gaussian distributed particles of our state estimates.

3.2. Independent Component Analysis

Independent Component Analysis (ICA) is a signal processing technique that is used to represent
a set of random variables as linear combinations of statistically independent component variables
[7, 8, 9, 10, 20, 21]. The most common demonstration of the application of the ICA is known as the
‘cocktail party problem’. Given a room with three people speaking at the same time to an audience
and three microphones recording the mixture of the three speech signals x1(t),x2(t), and x3(t). Each
of these recorded signals can be represented as a weighted sum of the speech signals emitted by the
three speakers, denoted by s1(t),s2(t), and s3(t). This is expressed as a linear equation:

x1(t) = a11s1(t)+a12s2(t)+a13s3(t) (12)
x2(t) = a21s1(t)+a22s2(t)+a23s3(t) (13)
x3(t) = a31s1(t)+a32s2(t)+a33s3(t) (14)

where ai j with i, j = 1, . . .3 are some parameters that depend on the distances of the microphones
from the speakers [20, 21]. It would be easy to solve for the speech signals s1(t),s2(t), and s3(t) if
we knew ai j, but neither of them are known. However, if we can assume that the signals s1(t),s2(t),
and s3(t) are statistically independent at each time instant t, we can use ICA to solve for ai j and in
turn solve for s1(t),s2(t), and s3(t).
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Beyond the assumption that the signals are statistically independent, the independent components
must have non-Gaussian distributions in order for higher order cumulants or moments to be useful
in the estimation of the independent components [7, 20]. For Gaussian distributions, the higher
order moments are zero. Given that our state estimates using the PF are non-Gaussian, we expect
some benefit from implementing the ICA for state decorrelation and dimensional reduction.

Given that at a time k we have an estimated state vector Xi of dimension-d, with N particles
Xi = (X1,X2, . . .XN), we form a linear combination of p-dimensional independent variables s j =
(s1,s2, . . .sN), where p≤ d; we then compute a mixing matrix A(d× p), such that

X = As (15)

where ∀ j,sj has unit variance. The data X is pre-whitened to obtain a new set of data x = MX
that is uncorrelated and has a unit variance, with M known as the whitening matrix. We compute
the orthonormal matrix B whose columns w1,w2, . . .wp are in the direction of the maximum or
minimum kurtosis of x (see Fig. 1).

kurt(wT x) = E{(wT x)4}−3[E{(wT x)2}]2 (16)
= E{(wT x)4}−3||w||4 (17)

The columns w1,w2, . . .wp are solved using the objective function J (w) under the constraint that
||w||= 1,

J (w) = E{(wT x)4}−3||w||4 +F(||w||2) (18)

where F is a penalty term due to the constraint. In order to solve for the columns w1,w2, . . .wp,
rapidly, a fixed-point iteration scheme is generated by taking the expectation of Eq. 18, equating it
to zero and normalizing the penalty term. We obtain

w = α(E{x(wT x)3}−3||w||2w) (19)

where α is an arbitrary scalar that diffuses under the normalizing constraint of w.

Hence, the fixed-point iteration scheme is implemented as follows:
1. Take a random initial vector w(0) or norm 1. Let k = 1.
2. Let w(k) = E{x(w(k−1)T x)3}−3w(k−1).
3. Divide w(k) by its norm
4. If |w(k)T w(k−1)| is not close enough to 1, let k = k+1 and go back to step 2, or else output

vector w1, and continue until ws is obtained.

The essential objective is to find the vector w, of norm 1, such that the linear combination of
wT x, has maximum or minimum kurtosis. That will give us the independent components s, where
p = d [20]. Moreover, if dimensional reduction is desired such that p≤ d, then the number of the
independent components desired is declared beforehand. Hence the search for the columns of the
matrix B, is maximized based on the stated number of independent components.

A detailed description of the algorithm implementation can be found in references [7, 20]. Hence,
our independent components s are given by

x = MX = MAs (20)
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Figure 1. Search for projections that correspond to points on the unit circle, using whitened mixtures
of uniformly distributed independent components [20]

B = MA (21)
s = BTx (22)

One ambiguity in the ICA method is that the order of the independent components is indeterminate.
Because both A and s are unknown, the order of the sums in Eq. 12, Eq. 13 and Eq. 14, can be
interchanged and hence any independent component can be called the first one [20]. This is not
a hindrance in our application, since our goal is to obtain the independent components that are
dimensionally reduced and that could be compressed univariately or bivariately.

4. Problem Description

Given the state estimate particles Xi
k, we are interested in demonstrating the use of ICA to extract the

independent components from the distribution of the particles Xi
k, while preserving information in

the higher order moments. We will look at two orbit scenarios and compare the results of reducing
the state dimension using ICA and PCA. In both cases, we will reduce the dimensions from a
6-dimensional vector to a 4-dimensional state vector, each using 1000 particles with their respective
weights. Retaining the information from the eigenvector matrix and the mean of the data matrix for
the PCA, we compute the reconstructed data from the dimensionally reduced principal components.
The PDFs for data reconstructed from the ICA and that reconstructed from the PCA will each be
compared to the original distribution of the 6-dimensional state vector.

4.1. Scenario 1

The first scenario, is an orbit with a very large eccentricity of 0.8181 and a 24hr orbital period
(see Fig. 2). The initial conditions were [7488.36km, 71793.70km, 24219.13km, -0.9275km/s,
-0.0257km/s, 0.363km/s], defined as apogee given in the Earth Centered Inertial (ECI) frame in
Cartesian coordinates. The standard deviation for the position and the velocity states for the
a priori uncertainties were 1m and 1mm/s respectively. The satellite has four opportunities of
measurements from 2 Deep Space Network (DSN) ground stations located at Canberra, Australia
and Madrid, Spain for a duration of 75 minutes each, using the Satellite Toolkit (STK) [22] software
for a realistic scenario simulation. The last two measurement opportunities are obtained from a
space-based observation network called TDRSS (Tracking and Data Relay Satellite System) for a
duration of 15 minutes each. NASA Goddard Space Flight Center’s Orbit Determination Toolbox
(ODTBX) [23] was used in conjunction with the developed PF code and STK. The ODTBX has
various capabilities such as implementing ground station and space based measurements as well as
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valuable plotting capabilities. In Fig. 3, the distribution of the particles for the position states are

Figure 2. Illustration of the orbit trajectory for scenario 1 during the first orbital period

illustrated in planar X-Y and Y-Z views at apogee after one orbital period. Each particle has its own
corresponding weight. The histogram illustrates the scattering of the particles, especially at the tails
of the distribution.
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Figure 3. Scenario 1: Scatter plot and histogram showing the distribution of the particles of the
position state vector for Scenario 1 in the X-Y plane (left) and Y-Z plane (right) (All units are in
km).
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4.2. Scenario 2

For the second scenario, we will look at an orbit of eccentricity 0.2 and an approximate 0.75
day orbital period. The standard deviation for the position and the velocity states for the a prior
uncertainties were 1km and 1m/s respectively. The semi-major axis is 35000km, with an initial
condition of [28000km, 0km, 0km, 0km/s, 4.133km/s, 0km/s] at perigee. In this scenario, we
are interested in observing the evolution of the particles with a larger initial uncertainty that
are propagated over the entire orbital period without any measurement update, given a smaller
eccentricity. This will illuminate how the region of uncertainty grows over time. In Fig. 4, the
distribution of the particles for the position states are illustrated in planar X-Y and Y-Z views after
one orbital period at perigee. Each particle also has its own corresponding weight. The histogram
illustrates how heavily skewed the distribution of the particles in the X-Y plane become. This plane
is also along the trajectory of the orbit, which illustrates the “banana-shaped” non-Gaussian region
of uncertainty. In observing the Y-Z plane, despite that there is no motion in the Z-direction, the
uncertainties present are caused by the propagation of the initial particles defined by the region of
uncertainty, as well as unmodeled perturbations that are added as process noise.
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Figure 4. Scenario 2: Scatter plot and histogram showing the distribution of the particles of the
position state vector for Scenario 2 in the X-Y plane (left) and Y-Z plane (right) (All units are in
km).
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5. Results

In this section, we compare the distributions of the reconstructed states from PCA and ICA with
the original state distributions produced by the particle filter under Scenarios 1 and 2, above. Two
metrics will be used for this comparison, mean square error (MSE) and the Kolmogorov-Smirnov
(K-S) test. The MSE is computed as follows:

MSE =
||Xi

original−Xi
reconstructed||2

N
(23)

The MSE illuminates the overall accuracy of the errors in the reconstructed data. However, in order
to accurately illustrate the goodness-of-fit of the distributions, we will look at the K-S test statistic.
The K-S test is a nonparametric test that can be used to compare two sample distributions by
quantifying the distance between the empirical cumulative distribution functions [24, 25]. The K-S
test is useful in comparing two sample distributions as it is sensitive in both the location and shape
of the cumulative distribution functions. The K-S test statistic Dnm for two samples distributions Fn
and Gm is given as:

Dnm = sup
X
|Fn(X)−Gm(X)| (24)

For our cases, both n and m have 1000 samples, and the smaller values of the distance metric
Dnm indicate a better agreement between two distributions, reaching 0 when the distributions are
identical.

5.1. Scenario 1: PCA vs ICA

In Scenario 1, the reconstructed data for the positional states using the ICA were fully reconstructed
with a lesser error as compared to the positional reconstruction from PCA (see Fig. 5). However,
for the velocity states, we found that the PCA slightly outperformed the ICA based on the values
of the mean square errors and the K-S test statistic values in the x and y components, as shown in
Tab. 1 and Tab. 2 respectively. Since the ICA computes the independent components based on the
maximum or minimum kurtosis of the whitened data, the independent components calculated are
based on the maximum kurtosis values of the data. It is stated that maximizing non-Gaussianity
implies independence [20], hence the higher the values of kurtosis indicates higher independence
of the components. The excess kurtosis is calculated as a comparison to the Gaussian distribution
by subtracting off a value of 3. Positive values indicate sharper peaks relative to the Gaussian
peaks while negative values indicate otherwise. For the PCA, based on the 4 principal components
obtained, the excess kurtosis for these components were 0.13, -0.14, -0.08 and 0.01 while for the
ICA the excess kurtosis for the 4 independent components were 0.27, 0.13, 0.12 and -0.1.

5.2. Scenario 2: PCA vs ICA

For the second scenario, we observe a more “banana-shaped” region of uncertainty described by
the particles. As in scenario 1, the results have the same explanations and conclusions. However,
for this case, the velocity states reconstructed from ICA have distributions closer to the original, as
compared to the PCA reconstructions (see Fig. 6, Tab. 3 and Tab. 4 ) with the exception of the z
component. Moreover, for this non-Gaussian epoch, it is clear that the non-Gaussian information
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Figure 5. Scenario 1 PCA vs ICA: Original Data (Red Squares) and Reconstructed Data (Blue Dots)

Table 1. Scenario 1: Mean Square Errors for PCA and ICA
MSE PCA ICA
X(DU2

⊕) 53.37×10−13 0.0001×10−13

Y (DU2
⊕) 3.19×10−13 0.0001×10−13

Z(DU2
⊕) 0.54×10−13 0.4822×10−13

Vx(DU2
⊕/TU2

⊕) 0.0001×10−14 0.0463×10−13

Vy(DU2
⊕/TU2

⊕) 0.18×10−13 0.0024×10−13

Vz(DU2
⊕/TU2

⊕) 0.01×10−13 0.1545×10−13
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Table 2. Scenario 1: Kolmogorov-Smirnov test statistic for PCA and ICA
K-S statistic PCA ICA
X 0.0150 0.0030
Y 0.0110 0.0020
Z 0.0080 0.0020
Vx 0.0060 0.0460
Vy 0.0130 0.0060
Vz 0.0110 0.0240

retention given in the values of excess kurtosis for the components using the ICA (23.39, 2.5,
0.02 and -0.4) confirms that upon further compressing these components univariately, the loss of
information will be much less compared to the PCA with excess kurtosis values of 1.30, 22.66, 0.46
and -0.08.

Table 3. Scenario 2: Mean Square Errors for PCA and ICA
MSE PCA ICA
X(DU2

⊕) 1.0722×10−8 0.0001×10−8

Y (DU2
⊕) 0.1365×10−4 0.0001×10−8

Z(DU2
⊕) 0.0051×10−12 0.4822×10−8

Vx(DU2
⊕/TU2

⊕) 13.941×10−8 0.0463×10−8

Vy(DU2
⊕/TU2

⊕) 0.0029×10−8 0.0024×10−8

Vz(DU2
⊕/TU2

⊕) 0.0052×10−12 0.1545×10−8

Table 4. Scenario 2: Kolmogorov-Smirnov test statistic for PCA and ICA
K-S statistic PCA ICA
X 0.0740 0.0080
Y 0.0100 0.0020
Z 0.0030 0.0150
Vx 0.0100 0.0060
Vy 0.1110 0.0280
Vz 0.0030 0.0560

6. Conclusion and Future Work

This work has shown that the ICA is capable of fully decorrelating particle filter states with
highly non-Gaussian distributions and for reducing dimensionality. The PCA was compared to
the ICA using three metrics, the mean square error (MSE), the Kolmogorov-Smirnov (K-S) test
statistic, and the distribution of excess-kurtosis values for the 4 reduced dimensions. ICA was
superior in reconstructing the positional states to PCA, while PCA outperformed ICA in the
velocity states’ reconstructions. Moreover, the K-S test statistic showed that the ICA produced
a better reconstruction in the positional states in scenario 1 and in all states but one in scenario
2. Since our goal was to maintain the non-Gaussian information by finding the components that
maximized kurtosis, it is clear from the values of excess kurtosis of the components that the ICA is
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Figure 6. Scenario 2 PCA vs ICA: Original Data (Red Squares) and Reconstructed Data (Blue Dots)
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better equipped to preserve non-Gaussian features in comparison to PCA. In the future, we expect
to report on our ongoing work to use decorrelated and possibly dimensionally-reduced particle
representations of orbital PDFs as the basis for accurately predicting such PDFs to times of interest,
such as conjunctions between space objects. We are studying the potential of methods based on
wavelet transforms, characteristic functions, and kernel densities to allow further compression, of
the univariate PDFs of each independent state. These reduced representations of each compact PDF
could be stored in a catalog of space objects’ PDFs. Once the compressed PDF has been transmitted
along with other parameters required for reconstruction, the original data can be reconstructed with
the goal of maximum information retention.
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