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Abstract: This paper presents the application of polynomial chaos expansions (PCEs) to estimate
the probability of collision between two spacecraft. Common methods of collision risk assessment
use either Monte Carlo analyses or assume a Gaussian probability distribution function (pdf). PCEs
provide a means for approximating the solution to a large set of stochastic ordinary differential
equations, which includes orbit propagation. When compared to Monte Carlo methods, sampling-
based, non-intrusive PCE techniques greatly reduce the number of orbit propagations required
to approximate the a posteriori pdf. Additionally, PCEs make no assumption that the propagated
distribution will be Gaussian or that the state pdfs are uncorrelated for two spacecraft. This paper
considers two cases where these assumptions are no longer valid. Results demonstrate that more
than 100,000 Monte Carlo trials are required to estimate the collision probability, but accurate
estimates may be achieved with less than 300 orbit propagations by performing most of the analysis
via PCE evaluations.
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1. Introduction

As the space in low-Earth and geosynchronous orbit becomes increasingly congested, rigorous
methods of estimating the risk of collision between any two objects becomes increasingly important.
Such methods must be highly accurate to both identify possible collisions and minimize the number
of false alarms that waste fuel and disrupt satellite operations. This paper considers a new application
of polynomial chaos (PC) expansions for the quantification of collision risks in scenarios where
already established methods no longer apply.

Several methods of conjunction assessment already exist and are used for satellite operations today.
The most commonly discussed methods [1–3] share several assumptions, including, but not limited
to:

1. the probability density function (pdf) describing the position state is a multivariate Gaussian
distribution,

2. the uncertainties for the two objects are uncorrelated.

This paper considers situations where at least one of these conditions is not satisfied. Recent research
demonstrates that assumption (1) is not strictly true in astrodynamics [4–10], with various methods
suggested for non-Gaussian uncertainty propagation. Assumption (2) is valid for most scenarios,
and almost surely true for orbital debris. However, given the increasing interest in formation flying
and fractionated spacecraft, the inclusion of relative measurements in their orbit determination
creates correlated uncertainties between the satellites.
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Conjunction assessment based on Monte Carlo (MC) methods provides the most accurate, but
computationally expensive, estimate of the collision risk. Such methods reduce the assumptions,
and are only limited by the accuracy of the propagator, the initial uncertainty, and computation
time. However, the computation time requirements pose a major limitation in adoption of such
methods [11–13]. Several tools exist to reduce the long computation times associated with Monte
Carlo methods, with these tools leveraging off of both improvements in computation capabilities
and theories developed to reduce the number of MC trials. Sabol, et al. [11] demonstrate the use
of the supercomputer capabilities to perform Monte Carlo analyses within seconds per satellite.
Dolado et al. [12] consider importance sampling to reduce the number of orbit propagations required
to quantify collision probability. Garmier et al. [13] reduce the overall computation time by filtering
out scenarios with a sufficiently low probability of collision, thereby limiting the total number of
Monte Carlo trials for a given space object catalog. The PC-based methods discussed in this paper
share similarities with Monte Carlo, but use polynomial surrogates to reduce the total number of
orbit propagations.

Polynomial chaos expansions (PCEs) allow for the approximation of the solution to a stochastic
differential equation that is square-measurable, possibly non-Gaussian, with respect to the input
uncertainties [14–25]. PC-based methods use a projection of the stochastic solution onto a basis of
orthogonal polynomials in stochastic variables that is dense in the space of finite-variance random
variables. Using this polynomial basis, these PC methods provide a response surface in the space of
the random inputs, thereby allowing for the generation of realizations at a future point in time when
given random inputs at the initial time. In generating these realizations, no additional evaluations
of the orbit propagator are required, thereby reducing the computation time. The current authors
already demonstrated the use of PC for propagating orbit uncertainty over relatively long durations
(10 days), and results demonstrate the ability to accurately approximate a non-Gaussian pdf at the
final time [4]. This research considers the use of PC, specifically the generated response surfaces, to
conduct conjunction assessment. As discussed later, the collision assessment assumptions listed
above do not apply when using PC-based methods.

The rest of this paper is organized as follows. Section 2 provides an overview of polynomial chaos.
Section 3 then discusses how methods based on PC may be employed to estimate the probability
of collision. The test cases used to demonstrate the benefits of PC are then described in Section 4,
with the test results presented in Section 5. Section 6 then concludes the paper.

2. Polynomial Chaos

Methods based on polynomial chaos provide a means for generating an approximation to the
solution of a stochastic system by projecting it onto a basis of spectral polynomials. Wiener [26]
first proposed this type of approximation, with methods based on Hermite chaos expansions first
established [14–17] and later generalized to non-Gaussian input uncertainties [18]. The generated
PCE represents the stochastic solution as a linear expansion of multi-variate polynomials that are
functions of the input uncertain variables ξ ∈ Rd where d is the stochastic dimension of the system.
Solving for the PCE means estimating the coefficients, or weights, of the expansion. PC-based
methods provide a computationally efficient means to represent any square-measurable, possibly
non-Gaussian distribution, and have already been demonstrated for orbit propagation [4].
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Let (S,F ,P) be a probability space with the sample space S and the probability measure P on
σ-algebra F . The d random inputs to the system are ξ ∈ Rd : S → Γd ⊆ Rd on (S,F ,P),
where these elements are independent and identically distributed (iid) and characterize the input
uncertainties. Additionally, we denote the set of ordinary differential equations (ODEs) that, for the
present case case, describe the temporal evolution of a satellite’s state, as

A(t, ξ) = 0, (t, ξ) ∈ [t0, tf ]× Γd, P − a.s. in S (1)

where A is a stochastic ordinary differential operator and t ∈ [t0, tf ] is the temporal variable. This
work considers the propagation of orbit state uncertainty using PC with the goal of performing
conjunction assessment. Let X(t0) be the orbit state at time t0 with uncertainty that may be
represented by the probability space (S,F ,P). For this discussion, assume X ∈ Rd, i.e., the
number of state variables equals the number of stochastic inputs to the system. PC-based methods
are then used to generate a solution to the stochastic operator A that describes the space of possible
solutionsX(tf ) at any future time tf .

In the context of PCEs, the orbit solutionX(t, ξ) may be approximated by the finite series

X̂(t, ξ) =
∑

α∈Λp,d

cα(t)ψα(ξ) (2)

where X̂ is the approximate solution to the true value X , Λp,d := {(α1, . . . , αd) : ‖α‖1 ≤
p, ‖α‖0 ≤ d} is the set of multi-indices of size d defined on the non-negative integers, ψα are the
multi-variate polynomials of maximum degree p,

ψα(ξ) = ψα1(ξ1)ψα2(ξ2) · · ·ψαd
(ξd), (3)

serve as the basis functions for the approximation, and the vector of coefficients cα(t) yields the
PCE solution. In other words, the multivariate polynomials (of maximum degree p) are simply the
product of univariate polynomials, and the degree of each polynomial is defined by the index αi.
We note that a vector representation for cα effectively allows for the simulataneous representation
of d PCEs, i.e. one for each element of the vectorX ∈ Rd. The number of terms in Eq. (2) is

P :=
(p+ d)!

p!d!
. (4)

For PC methods to apply, the basis {ψα} must be orthonormal with respect to the random inputs ξ∫
Γd

ψα(ξ)ψβ(ξ)ρ(ξ) dξ = δαβ (5)

where δα,β is the Kronecker delta function. Eq. (5) specifies that the random inputs ξ and their
probability function ρ(ξ) determines the polynomials ψα in Eq. (3). The current paper only
considers ξ ∈ N (0, Id), i.e., the random inputs are multivariate Gaussian with zero mean and
unit variance. Hence, ψα are Hermite polynomials [18]. Although ξ are Gaussian distributed, the
uncertainty ofX(t0) is not necessarily Gaussian.
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The PCE in Eq. (2) provides a method for generating a solution X̂ when given a random input
ξ, i.e., it describes the response of X(tf ) to the realizations ξi. In this way, the PCE yields a
solution to a stochastic system, as opposed to propagating the a priori state pdf. Information on the
a posteriori pdf may then be inferred from the stochastic solution. Given sufficient accuracy of cα,
the polynomial surrogates also provide a means for bypassing an ODE solver and approximating
the Monte Carlo results using the computationally inexpensive polynomial evaluation. This latter
property allows for conjunction assessment using PC, which is described further in Section 3.

2.1. PCE Solution Methods

This study only considers non-intrusive methods to generate a global PCE approximating the
stochastic solution of the propagated orbit at time tf . Such methods treat already existing ODE
solvers as a black box, and require no alterations to existing orbit propagation software. This allows
us to wrap current software to propagate the state uncertainty and perform CA. The algorithm
behind the non-intrusive methods may be summarized by:

1. Generate MPC realizations ξi. For the current paper, these samples are based on a random
sampling of the distribution N (0, Id).

2. For each of the MPC random vectors, use the initial uncertainty in X(t0, ξi) to generate a
realization based on the random input ξi. For example, a Cholesky decomposition may be
used with the covariance matrix P and initial mean X̄ .

3. PropagateX(t0, ξi) to tf using the existing ODE solver, and perform this process for each of
the MPC realizations.

4. Solve for the PC coefficients cα(tf ) based onX(tf , ξi) and the method of choice. This yields
a PCE X̂(tf , ξ).

Several things should be noted about this procedure. First, solutions at intermediate steps, e.g. inte-
gration time steps, may be easily generated using the same samples at those times. More samples are
only required if p increases at the intermediate time ti. Hence, cα(t) may be generated at multiple
times using the same samples. Second, there are many methods of generating a non-intrusive PCE
solution, including, but not limited to: regression, pseudo-spectral collocation, and compressive
sampling [24, 25, 27]. Each of these methods have several advantages and disadvantages which will
not be discussed here. The current study considers solutions based on regression. Ongoing studies
at CCAR consider other methods, but those either do not apply to the current cases or are not yet
fully developed. The next section provides a brief overview of the regression methods.

2.1.1. PCE Solutions via Regression

The method to solve for cα based on regression uses random samples ξi from the density function
ρ(ξ). Given the MPC propagated states, one solution for the coefficients cα minimizes the cost
function

J(cα) =
1

2

MPC∑
i=1

εTi εi (6)

4



where
εi = X̂(t, ξi; cα)−X(t, ξi). (7)

Eq. (6) is simply the cost function of the least squares estimator. Upon inspection of Eq. (2), we
may represent the PCE as a linear system

ψα1(ξ1) ψα2(ξ1) · · · ψαP
(ξ1)

ψα1(ξ2) ψα2(ξ2) · · · ψαP
(ξ2)

...
... . . . ...

ψα1(ξMPC) ψα2(ξMPC) · · · ψαP
(ξMPC)



cTα1

cTα2
...
cTαP

 =


XT (t, ξ1)
XT (t, ξ2)

...
XT (t, ξMPC)

 . (8)

Instead, one may write
HC = Y (9)

whereH is the MPC×P sensitivity matrix on the left hand side of Eq. (8), C is the matrix of PCE
coefficients, and Y is comprised of the propagated states at tf . Given this formulation,

C = (HTH)−1HTX, (10)

which is the normal equation solution to the least squares estimator. This method of solving for the
PCE coefficients requires MPC ≥ P measurements. Also, assuming the same samples are used at all
times,H does not change as a function of t. Hence, (HTH)−1HT remains constant, and solving
for cα(ti) at different ti only requires assembling Y and evaluating a single matrix multiplication.
Such operations may be parallelized to minimize computation time.

2.2. PCE Coordinate System Selection Considerations

As demonstrated in the literature, orbit elements provide a better coordinate system for propagating
orbit uncertainty since the pdf remains Gaussian for longer time periods [4–6, 9]. Hence, to reduce
d, the PCEs used here represent the orbit state as an element set, e.g., the equinoctial elements. This
reduces the number of samples required to generate a PCE.

However, element sets pose a difficulty in performing CA: the mapping from elements to Cartesian
position is not injective. Specifically, two distinct element set may describe a satellite state at
the same position but with different velocities. This results from the fact that all six elements are
required to represent a point in R3, while the Cartesian representation only requires three. Hence,
there is an inherent ambiguity in the representation of position. For this reason, when generating
the PC-based realizations using Eq. (2), the output is then converted to Cartesian coordinates for
calculation of the probability of collision, Pc.

3. Collision Assessment Using PC

3.1. Estimation of Pc

The methods employed for estimating the probability of collision Pc using PC are similar to Monte
Carlo techniques, but rely on the polynomial surrogates to reduce the overall computation time. The
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following discussion begins with a description of Monte Carlo methods, which then serves as a
framework for presenting the PC-based methods.

For the state vector

Xl(t0) =

[
r(t0)
ṙ(t0)

]
(11)

let X̄l(t0) be the mean at time t0 for satellite l with covariance matrix Pl. In a Monte Carlo test,
MMC trials are generated using, for example,

Xl(t0, ξi) = X̄l(t0) +Llξi (12)

whereLl is the lower-triangular Cholesky decomposition ofPl, i = 1, . . . ,MMC, and ξi ∼ N (0, Id).
Each trial Xl(t0, ξi) is then propagated to some time tk to yield Xl(tk, ξi). This procedure is
conducted for any number of satellites, each with unique ξi. Given two satellites, denoted by
subscripts 1 and 2, their separation at time tk is

s(tk, ξi, ξ
′
i) =

√
∆r12(tk, ξi, ξ′i) ·∆r12(tk, ξi, ξ′i) (13)

where
∆r12(tk, ξi, ξ

′
i) = r1(tk, ξi)− r2(tk, ξ

′
i), (14)

and the prime on ξ′i is only meant to indicate a different set of samples from ξi. The empirical
probability of collision is then

Pc =
count(s(tk, ξi, ξ′i) ≤ R)

MMC
(15)

where R is a given collision cross-section radius, and the count() operator indicates the number
of true results of the argument over i = 1, . . . ,MMC. Given MMC samples for each satellite, there
are up to M2

MC possible combinations available for evaluating Eqs. (13)-(15). However, not every
comparison will be independent.

Estimating Pc via PC differs slightly from the above procedure in that using a polynomial surrogate
requires the propagation of significantly fewer samples. Instead, when using regression methods
to solve for the coefficients cα, MPC training samples are generated using Eq. (12). Each of these
samples are propagated, and the coefficient cα(tk) are then generated using Eq. (10). As mentioned
earlier, this yields a response surface to generate solutions at tk when given ξi. Hence, MMC

evaluations of Eq. (2) with each PCE generates the needed Monte Carlo trials. Eqs. (13)-(15) are
then used with the PCE output to estimate Pc. In other words, evaluations of the orbit propagator
are substituted with the more computationally efficient evaluation of a set of polynomials, thereby
greatly reducing the computation time of computing Pc. In general, orbit propagation may take
seconds of computer processing time per evaluation, but these polynomial evaluations are on the
scale of thousands of evaluations per second.

Of course, the accuracy of Pc is then limited by the accuracy of the PCE. Methods exist to account
for errors in the PCE when calculating a rare failure probability, e.g., satellite collision, by combining
PCE evaluations with additional Monte Carlo orbit propagations [28, 29]. However, we do not yet
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add these techniques to the current method. Additionally, this work assumes the propagation tool is
accurate, and does not account for modeling errors, etc. These elements have been identified as
future work.

3.2. Probability of Collision Confidence Interval

Several techniques exist for generating a 1σ confidence interval σPc . When using Monte Carlo
methods, the most accurate, but computationally expensive, method requires repeating a Monte
Carlo test N times. To clarify, a single Monte Carlo test consists of MMC trials. Each test yields
a single Pc, and the empirical standard deviation of these N estimates provides σPc . Specifically,
given N tests,

σ2
Pc

=
N∑
j=1

(
P(j)
c − P̄c

)2

N − 1
(16)

where the superscript (j) indicates a value produced via Monte Carlo test j and P̄c is the mean of all
tests. Of course, this is more computationally expensive and requires MMC×N orbit propagations.
Other methods exist to lower the computation cost while computing a confidence interval, but
reduce the accuracy of the solution statistics. For example, bootstrap methods use a number of
samples, e.g., 2MMC, and then randomly select MMC trials (with replacement) to serve as a Monte
Carlo test. This process is conducted N times to estimate σPc while reducing the computation cost,
but may yield optimistic confidence intervals. Additionally, assuming Pc is small, i.e., it represents
a rare failure probability, then

σPc ≈
Pc(1− Pc)
MMC

(17)

The studies of [12, 13] use this final method to approximate σPc .

In the following sections, the PC-based σPc relies on bootstrap techniques to generate N PCE-based
estimates of Pc. In this process, a collection of training points are propagated forward in time to
the point of interest. These propagated realizations serve as a bank of samples, from which MPC

trials are randomly selected with replacement. This process is repeated N times to yield a collection
of PCEs. Each of these PCEs are individually sampled to generate P(j)

c , and then the confidence
interval is approximated using Eq. (16).

4. Simulation Methods

4.1. Test Descriptions

The following sections describe tests for two principle scenarios: (A) two satellites in formation with
correlated initial uncertainty, and (B) a potential collision between two satellites in low-Earth orbit
(LEO) with a non-Gaussian posteriori pdf. The first case, based on the Magnetospheric Multiscale
(MMS) mission [30], considers two satellites in a highly eccentric orbit with a relatively small
initial uncertainty. Case B demonstrates the application of PC to a scenario more commensurate
with current collision avoidance. Initial conditions for these two cases are described in Tab. 1, and
the a priori uncertainties are discussed further in the following sections.
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Table 1. Initial Conditions in Classical Orbital Elements

Orbit Element Case A Case B
Sat 1 Sat 2 Molniya LEO

a (km) 41545.517 41545.487 26462.0 7441.128
e 0.82043 0.82043 0.741 0.06

ι (deg) 27.60 27.61 63.4 119.34
Ω (deg) 10.182 10.181 90.0 265.20
ω(deg) 81.17 81.18 -90.0 204.79
ν (deg) 147.901 147.902 0.0 86.94

4.1.1. Case A: Correlated Satellites with Long Dwell Time

This case considers two satellites flying in formation with a correlated a priori covariance matrix.
This correlation violates the assumption that the uncertainties in the two colliding satellites are
independent. A histogram of the correlation coefficients for the 12×12 covariance matrix may be
found in Fig. 1. The mean correlation coefficient is 0.19 with a maximum value of approximately
0.85. The position and velocity uncertainties in each Cartesian direction are approximately 1 m and
10−4 m/s, respectively, at t0. These are commensurate with the expected navigation uncertainties
for the MSS mission at a similar point in the orbit1. For this case,R is 20 m, which differs from the
120 m used for MMS [31]. The current study considers a smaller collision radius to reduce Pc to
approximately 10−4, i.e., the maneuver decision threshold for MMS.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Correlation Coefficients

0

2

4

6

8

10

12

14

16

18

Figure 1. Histogram of correlation coefficients for the Case A satellites.

4.1.2. Case B: Non-Gaussian Conjunction Assessment

This case considers the possible collision of a Molniya and a low-Earth orbit (LEO) satellite. For
the Molniya, the case considered in [4] is duplicated. As demonstrated in that work, after a 10-day
propagation, the orbit uncertainty in both the Cartesian and Poincaré elements is non-Gaussian.
To generate a test case using the already available data, the velocity of the mean Molniya orbit at
its perigee at the ten-day mark is rotated about the velocity vector by 180◦. This is intended to

1Personal correspondence with Dan Mattern, a.i. solutions

8



simulate a nearly head-on collision between satellites represented by the mean states. To constrain
the second satellite to LEO, the velocity vector is rescaled to approximately 7.5 km/s (average
velocity of a LEO satellite). The position and velocity vector are propagated backwards in time to
TCA−36 hours, which yields the initial mean state. A Gaussian distribution with a RSS 1σ position
uncertainty ellipsoid radius of 20 m is then selected for the initial state uncertainty, and matches
that of the Molniya orbit [4]. With the mean and covariance now defined for the LEO satellite, the
uncertainty is propagated using the PCE methods discussed previously.

4.2. Orbit Propagation Methods

The CU-TurboProp [32] orbit propagation suite serves as the principle orbit simulation tool for
this study. It provides a suite of orbit propagation capabilities using both a collection of high- and
low-fidelity models of the forces acting on a satellites. Both cases consider the same forces, although
with potentially different fidelities appropriate for the given orbit. A description of the force models
used may be found in Tab. 2. For Case A, a low-fidelity gravity field is allowed given the high
altitude and eccentricity of the orbit. Conversely, the LEO orbit requires a higher degree and order
gravity expansion due to the lower altitude. All propagations employ the Dormand-Prince 8(7) [33]
integration method implemented in CU-TurboProp with a relative tolerance of 10−13. For all
satellites, A/m is 0.01 m2/kg.

Table 2. Test Case Force Models

Force Case A Case B
Gravity Perturbations GGM02C, 4×4 GGM02C, 200×200
Sun/Moon Ephemeris DE405
Atmospheric Density U.S. Standard 1976, CD = 2.2

Solar Radiation Pressure Cannonball, CR = 1.8

5. Collision Assessment Results

5.1. Case A Results

This section describes the result for calculating Pc and σPc for Case A. As mentioned previously,
this test considers a scenario with two satellites in formation. Pc is computed via the algorithm
described in Section 3.1. To compute σPc , the bootstrap analysis described in Section 3.2 is
conducted to generate 100 PCEs from 300 training samples. To generate each PCE, 26 samples
are randomly selected from the training sample pool. The PCEs for this case are expressed in
Cartesian coordinates. As discussed below, an orbit element representation is not required for this
case. For comparison purposes, MMC = 106 Monte Carlo samples are also generated. Since the
initial uncertainties are coupled and ξi ∈ R12 is used to compute r for both spacecraft, we may not
analyze M2

MC combinations.

Figure 2 illustrates the position pdf for the two satellites at TCA. The realizations used to illustrate
the pdf are based on 105 Monte Carlo propagations. Given the relatively small standard deviations

9



1.0 1.2 1.4 1.6 1.8 2.0
Y (km) +1.6837e4

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Z
 (

k
m

)

−3.262e3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

N
u

m
b

e
r o

f R
e
a
liza

tio
n

s
 (1

0
x

)

Figure 2. Position and uncertainty for Case A at TCA in the Y -Z plane. The ellipsoids indicate the
state uncertainty propagated via the unscented transformation.
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Figure 3. cα terms for the second satellite in Case A and ordered by polynomial degree.

at t0, the propagated pdf at TCA is approximately Gaussian. For this reason, p = 1 for the PCEs
in Case A will likely be sufficient to calculated Pc. To confirm this, Fig. 3 demonstrates the rapid
decay of the cα terms for the second satellite. Terms of degree two are 11 orders of magnitude
smaller than the degree-zero coefficient. This indicates that they provide little contribution to the
stochastic solution. Given their small magnitude, they are likely within the noise of the propagator.
Although they are not provided in the interest of brevity, results are similar for the first satellite. For
these reasons, the PCEs in the remainder of this section only include terms of degree zero and one.
A PCE with p = 1 also indicates that the pdf describing the posteriori solution is Gaussian, which is
commensurate with Fig. 2.

Figure 4 describes the accuracy of the PCEs generated for Case A. These errors compare the
106 Monte Carlo realizations to the values generated using the polynomial surrogates with the
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Figure 4. Normalized histogram of evaluation errors for the PCEs of Case A.

same input values ξi. The errors are on the order of centimeters, which is almost three orders of
magnitude less thanR. The χ2 distribution is expected for range when the error for each component
is approximately Gaussian. Since these errors are small compared toR, they are not considered a
principle factor when assessing the accuracy of Pc for this case.

The values for Pc and σPc as a function of the number of PCE evaluations and the number of
PCE expansions N may be found in Fig. 5. For this test, the number of samples MMC provided
to the polynomial surrogates was varied from 105 to 108 by factors of 10. It is noted that MMC is
not the number of training samples for the PCE, but the number of evaluations of the polynomial
surrogate. The top left plot describes the convergence of Pc as a function ofN , with a corresponding
illustration of σPc in the bottom left plot. As described by the bottom left image, the confidence in
the solution is driven more by MMC, i.e., the number of evaluations of the PCE. The top right plot
compares the values determined via PC to those of 100,000 Monte Carlo trials (independent of the
MPC training samples), and provides the computed P̄c (solid black line) and 3σ error bars. The 3σ
Monte Carlo confidence intervals represent those determined by (a) 10,000 bootstrap samples of the
106 available trials, and (b) the low-failure probability approximation given by Eq. (17). Although
the performance of the Monte Carlo tests will improve with more samples, these results demonstrate
that the PCE-determined statistics lie within 3σ of the current Monte Carlo solution. With 108

samples, the PCE-determined value for Pc, is within the 3σ range [1.004×10−4, 1.064×10−4].
Given a requirement to maneuver if Pc > 10−4, this indicates a need for a collision avoidance
maneuver. The Monte Carlo solution still exhibits ambiguity in the decision, which is illustrated in
the top right image of Fig. 5.
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Figure 5. Probability of collision and confidence intervals for Case A.

5.2. Case B Results

This section describes the approximation of Pc for the second case dealing with non-Gaussian
uncertainties. Analysis is not included for σPc . Figure 6 illustrates the state uncertainties at
TCA, with the ellipsoids depicting the propagation of the Gaussian uncertainty via the unscented
transformation. Again, the pdfs in this figure use 105 realizations of the Monte Carlo test. The
satellite with a larger uncertainty volume is the Molniya orbit, with the principle solution variation
in the true anomaly component, i.e., the along-track direction. The smaller pdf, which is still
non-Gaussian, is for the LEO satellite. The skewness in both solutions, and the poor approximation
of the total uncertainty given by the unscented transformation, demonstrates that the Gaussian
assumption is not valid for this conjunction.

Table 3. Case B PCE Description

Satellite p MPC MMC

Molniya 3 181 100,000
LEO 3 168 100,000

Monte Carlo N/A N/A 100,000 per satellite

Information on the generated PCEs for Case B may be found in Tab. 3. Each PCE requires less than
200 training samples, with 105 evaluations of each of the polynomial surrogates used to compute
Pc. The Monte Carlo analysis also uses 105 samples of each satellite, but requires that each one
be propagated using the ODE solver. Calculation of Pc below considers all M2

MC = 1010 possible
combinations of the given realizations.

The histograms in Fig. 7 describe the accuracy of the LEO and Molniya PCE evaluations. In both
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Figure 6. Position pdf for Case B satellites at TCA. The blue and black ellipsoids indicate the
propagated Gaussian distribution using the unscented transformation for the Molniya and LEO
satellites, respectively.

cases, the largest error may be found in the inertial Y direction. This results from the relatively
large coefficient of variation in this component. In such cases, information on the solution is split
more evenly among the coefficients cα, thereby requiring more test samples to generate an accurate
solution. When the coefficient of variation is small, then most of the information is contained in
the degree zero term, and the accuracy of the solution is primarily, but not solely, determined by
this single coefficient. Although not done here, more samples may be used in the generation of the
solution to improve accuracy.
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Figure 7. PCE evaluation errors for the Molniya orbit (top) and the LEO orbit (bottom).
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Figure 8. Pc (top) and agreement between PC and MC solutions (bottom) for Case B.

Figure 8 provides both the PCE- and Monte-Carlo-determined values of Pc as a function ofR. Even
though the Y coordinate error in the PCE is on the order of hundreds of meters, the PCE-based Pc
provides at least one digit of accuracy or better forR ≥ 10 m. However, more accurate PCEs may be
required to resolve the smaller values of Pc. Additionally, since 1/M2

MC = 10−10, the Monte Carlo
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solution for Pc ∼ O(10−10) is likely also inaccurate. The accuracy of the PCE may be improved by
using additional training samples. However, methods exist to improve the accuracy of rare failure
probability calculation using a hybrid of polynomial surrogates and additional evaluations of the
ODE solver [28, 29], and such techniques may be employed to limit the number of additional orbit
propagations required.

6. Conclusions

This paper demonstrated the use of polynomial chaos expansions (PCEs) for conjunction assessment.
The PCE provides a polynomial surrogate to map random inputs at the initial time to generate
a realized state at some future time. This allows for Monte-Carlo-like conjunction assessment
using polynomial evaluations instead of computationally expensive orbit propagations. This work
considered two test cases designed to demonstrate the use of PCEs in situations where semi-analytic
methods of estimating the probability of collision are not applicable. For both of these test cases,
the PCEs provided a probability of collision with enough accuracy to make an informed maneuver
avoidance decision. Additionally, each individual PCE required less than 300 evaluations of the
orbit propagation tool, which is at least a factor of 330 less than the Monte Carlo results presented.
The accuracy of the collision probability may be improved with a careful selection of additional
orbit propagations, with methods identified and designated as future work.
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