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Abstract: Application of Volterra multi-dimensional convolution theory to the nonlinear J2
perturbed circular relative motion problem is considered in this paper. A complete analytic
second order solution for the three-dimensional time dependent relative motion positions in the
unperturbed case is generated. Deputy closed-form response expressions are in terms of linear,
quadratic, and bilinear combinations of the initial conditions and the chief orbital elements. The
Clohessy-Wiltshire linear solution is found to be embedded within the broader nonlinear
solution, and the additional nonlinear terms are used to examine and reveal characteristics of
the nonlinear relative motion, including amplification, attenuation, and/or reversal of the in-
track drift rate. For the investigated example, accuracy of the second order solution improves
significantly on that for the linear solution.
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1. Introduction

Movement between one or more space objects, when separation distances are a small fraction of
positions to the primary gravitational body, is an important branch of orbital mechanics and
astrodynamics, and is denoted as relative motion. The reference object, or reference point in
space-time, is typically referred to as the "chief", while other objects are referred to as
"deputies". Relative motion between a chief and deputy has been utilized significantly since the
beginning of human spaceflight in 1961 for rendezvous and docking in the context of mission
staging, supply and maintenance, stereoscopic sensing, and synthetic aperture transceiving. The
subject continues to receive high attention focused on precision, autonomous, multi-vehicle
formation flight and close proximity operations.

Hill was the first analyst to give serious mathematics based study to this subject in the context of
three-body lunar-geo relative motion [1]. A state transition matrix analytic solution to the linear
circular chief relative motion problem based on rectangular coordinates was offered by Clohessy
and Wiltshire [2] to solve the rendezvous boundary value problem. This work has been the
foundation for a large majority of relative motion research and in-flight applications. Lawden [3]
and Tschauner and Hempel [4] extended this analysis and derived analytic solutions to the linear
elliptic chief case. Additional solutions have been presented by Carter [5,6] and Yamanaka and
Ankersen [7]. Part of the motivation for these authors' solutions has been the presence of
singularities in the Tschauner-Hempel solution and the search for more convenient, compact
forms for the solution. Inalhan, Tillerson, and How [8] explored the elliptic case state transition
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solution for periodic formation flight constellations. Hablani, Tapper, and Dana-Bashian [9]
studied a multi-pulse exponential glideslope strategy for circular relative motion operations, and
Okasha and Newman [10] extended this concept to the elliptic case. Nearly all of this work is
based on linear unperturbed model assumptions.

In recent years, efforts have been directed to higher fidelity modeling by incorporating nonlinear
and/or perturbation aspects. Schweighart and Sedwick [11] introduced an approximate linear J2
perturbed model for relative motion with circular chief. The oblate accelerative term is linearized
in an ad hoc manner, and is time averaged to obtain a constant coefficient model. Ross [12]
provides a more rigorous framework for model development but ignores perturbations to chief
mean motion and angular rate. Sengupta, Vadali, and Alfriend [13] offer a model including the
short period variations of the mean nonsingular orbital elements. Gim and Alfriend [14] have
developed an analytic state transition solution for the J2 perturbed elliptic chief case including
short period and long period effects. Vadali [15] also derived a model and analyzed its accuracy
for a mean circular chief accounting for secular drift rates and short period variations in the chief
element evolutions. Vaddi, Vadali, and Alfriend [16] used a direct perturbation technique to
derive two different analytic expressions for relative motion, first with an elliptic chief, and
second with quadratic gravitational acceleration terms, and combined the results for an overall
solution. All of these advancements provide engineering utility. Condurache and Martinusi
[17,18] have recently offered two exact closed-form solutions to the unperturbed but nonlinear
relative motion problem. One solution is based on tensor-vector regularization theory, while the
other uses quaternion algebra theory. Impact from these new results is unclear at this time.

In this paper, application of Volterra multi-dimensional convolution theory is applied to the
nonlinear J2 perturbed circular relative motion problem. Approximate analytic expressions for
the time dependent deputy positions in terms of initial conditions, chief elements, and gravity
parameters are obtained, although unperturbed results are emphasized here. The Clohessy-
Wiltshire (CW) linear solution is found to be embedded within the broader nonlinear solution,
and the additional nonlinear terms are used to examine characteristics of the associated motion.
Further, accuracy of the nonlinear solution improves significantly on that for the linear solution.
The work here greatly expands on that provided in the preliminary investigation of Ref. [19].
Section 2 presents the basic ideas behind Volterra theory and how the integral kernels can be
estimated by Carleman linearization theory. Section 3 covers the dynamic modeling of relative
orbital motion including expansion of the gravitational term through second order for a circular
chief and J2 perturbation. Section 4 maps the dynamic model to the proper Volterra-Carleman
form, and the nonlinear unperturbed analytic response expressions are generated. Section 5
demonstrates the fidelity of the new solution in a numeric example. Section 6 then uses the
analytic solution to reveal insights into nonlinear relative orbital motion.

2. Volterra Multi-Dimensional Convolution Theory

Many physical systems can be described by a set of nonlinear differential and algebraic
equations involving state, input, and output variables. A common representation is the nonlinear
state space form, or

x(t) = f{x(t),u(t)}
y(t) = g{x(t),u(t)}

(1)
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where x∈Rn denotes the state vector, u∈Rq the input vector, and y∈Rp the output vector. Vectors
f∈Rn and g∈Rp denote the system nonlinearities and t∈R1 is time. Some nonlinear systems are
exactly solvable; many others, which are not analytically tractable, can be solved by numerical
integration. Although numerical techniques provide high accuracy results, analytic solutions are
still sought in order to interpret the physical meaning underneath a solution. The Volterra series
[20,21] is one such approach, which can represent a wide range of nonlinear system behavior.
The theory represents the input-output relation of a nonlinear system as an infinite sum of multi-
dimensional convolution integrals. Thus, the solution of Eq. (1) is represented as

y(t) = h 0(t) +
0

∞

0

∞
...
0

∞
h k(τ1,τ2,...,τk) u(t - τ i)dτ iΠ

i=1

k
Σ
k=1

∞
(2)

In Eq. (2), hk(τ1,τ2,…,τk) denotes the kth order Volterra kernel. Volterra kernels are causal
symmetric functions with respect to their argument. Kernel h0(t) represents the response of the
output due to the initial system state, but which also depends indirectly on the input. If the
system motion is started at an equilibrium condition (both state and input values) and the
equilibrium input is maintained, the h0(t) kernel equals zero. On the other hand, if the state value
is mismatched to the equilibrium input, or vice versa, the h0(t) kernel is nonzero and can be
interpreted as motion of the system from the initial state to the equilibrium state (stable), or the
state reacting to the input. All other kernels represent the behavior of the system in response to
arbitrary input. These Volterra kernels are combined with the inputs in a multi-dimensional
convolution integration. Kernels are a signature of the system characteristics and are unique for a
given system. For weak nonlinearities, all higher-order kernels are seen to quickly tend to
negligible values, and for a completely linear system, only h0(t) and h1(τ1,τ2) remain.

Since kernels are the backbone of Volterra theory, they must be constructed by some means.
Several methodologies are available to estimate the Volterra kernels. Carleman linearization or
bilinearization is a useful technique for this purpose and has the ability to deliver an approximate
but general analytical solution for the kernels. This method is considered for the relative motion
problem. The general outline of the method for a scalar input is first presented to show the
mechanism by which the analytical kernels can be constructed.

The single-input multiple-output state space representation of the nonlinear affine system is
defined as

x(t) = F{x(t)} + G{x(t)} u(t)
y(t) = H{x(t)}

(3)

where x∈Rn , u∈R1 , y∈Rp , F∈Rn , G∈Rn , H∈Rp , t∈R1. Carleman linearization is applied to
F{x(t)}, G{x(t)}, H{x(t)} as

F{x(t)} = A 1(t)x(1)(t) + A 2(t)x(2)(t) + ... + A i(t)x (i)(t) + ...
G{x(t)} = B0(t) + B1(t)x (1)(t) + B2(t)x (2)(t) + ... + Bi(t)x(i)(t) + ...
H{x(t)} = C1(t)x(1)(t) + C2(t)x(2)(t) + ... + Ci(t)x (i)(t) + ...

(4)

where

x(0) = 1 , x(1) = x , x(2) = x⊗ x , x(3) = x⊗ x ⊗ x , ... , x (i) = x Π
k=1
i-1
⊗ x (5)



4

In Eq. (5), ⊗ is the Kronecker product defined in Refs. [19,21]. After retaining only N terms, the
approximation to Eq. (3) is

x(t) ≈ Σ
k=1
N
A k(t)x(k)(t) + Σ

k=0
N-1

Bk(t)x(k)(t)u(t)

y(t) ≈ Σ
k=1
N
Ck(t)x(k)(t)

(6)

The system in Eq. (6) can be formulated as a bilinear system by deriving the differential equation
of  x(i)(t) as

x(i)(t) = Σ
k=i
N
A ik(t)x

(k)(t) + Σ
k=i-1
N-1

Bik(t)x
(k)(t)u(t)

y(t) = Σ
k=1
N
Ck(t)x

(k)(t)
(7)

where the coefficient matrices are Kronecker combinations of the original expansion matrices.
 

A ik(t) = A k-i+1(t) Π
j=1
i-1
⊗ In + In ⊗ A k-i+1(t) Π

j=1
i-2
⊗ I n + ... + Π

j=1
i-1

I n ⊗ A k-i+1(t)

for k = i, i+1, i+2, ... , N and i ≥ 2 where Eqs. (6)-(7) define the i = 1 case

Bik(t) = Bk-i+1(t) Π
j=1
i-1
⊗ In + In ⊗ Bk-i+1(t) Π

j=1
i-2
⊗ I n + ... + Π

j=1
i-1

I n ⊗ Bk-i+1(t)

for k = i-1, i, i+1, ... , N-1 and i ≥ 2 where Eqs. (6)-(7) define the i = 1 case

(8)

The derivation of Eq. (8) is a sequential one. For example, derivation of x(2)(t) is shown below.
d
dt [x

(2)(t)] = d
dt [x

(1)(t) ⊗ x(1)(t)] = x(1)(t) ⊗ x(1)(t) + x(1)(t) ⊗ x(1)(t)

d
dt [x

(2)(t)] = { Σ
k=1
N-1

A k(t)x
(k)(t) + Σ

k=0
N-2

Bk(t)x
(k)(t)u(t)} ⊗ x(1)(t)

+ x(1)(t) ⊗ { Σ
k=1
N-1

A k(t)x
(k)(t) + Σ

k=0
N-2

Bk(t)x
(k)(t)u(t)}

d
dt [x

(2)(t)] = Σ
k=1
N-1
[A k(t) ⊗ In + In ⊗ Ak(t)]x

(k+1)(t)

+ Σ
k=0
N-2
[Bk(t) ⊗ In + In ⊗ Bk(t)]x

(k+1)(t)u(t)

d
dt [x

(2)(t)] ≈ Σ
k=2

N
A2k(t)x

(k)(t) + Σ
k=1

N-1
B2k(t)x

(k)(t)u(t) where k = k + 1

(9)

Differential equations for x(i)(t) for i = 1,2,…,N form the overall bilinear state space model as
x⊗(t) = A(t)x⊗(t) + B0(t)u(t) + B1(t)x⊗(t)u(t)
y(t) = C(t)x⊗(t) (10)

with

x⊗(t) =

x(1)(t)
x (2)(t)
x (3)(t)
. . .

x (N)(t)

, A(t) =

A 11(t) A 12(t) . . . A 1N(t)
0 A 22(t) . . . A 2N(t)
0 0 . . . A 3N(t). . .
0 0 . . . ANN(t)

(11)
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B0(t) =

B10(t)
0
0
. . .
0

, B1(t) =

B11(t) B12(t) . . . B1(N-1)(t) 0
B21(t) B22(t) . . . B2(N-1)(t) 0
0 B32(t) . . . B3(N-1)(t) 0
. . .
0 0 . . . BN(N-1)(t) 0

C(t) = C1(t) C2(t) . . . CN(t)

Finally, closed-form expressions for the Volterra kernels are defined as
 

h 0(t1) = C(t1)Φ(t1,0)x0
⊗

h 1(t1,t 2) = C(t 1)Φ(t 1,t2) {B0(t 2) + B1(t 2)Φ(t 2,0)x0
⊗}

h 2(t1,t 2,t3) = C(t1)Φ(t1,t 2)B1(t2)Φ(t 2,t3) {B0(t 3) + B1(t3)Φ(t 3,0)x0
⊗}

. . .

where Φ(t,0) = e ∫0
t A(τ)dτ

(12)

3. Relative Motion Dynamics

Figure 1 describes the relative motion of a deputy satellite with respect to a chief satellite. Two
reference frames are shown. The first frame is the standard XYZ Earth-centered inertial (ECI)
frame. The second frame is the xyz local-vertical local-horizontal (LVLH) frame with origin
located on the chief, x axis in the radial direction, y axis in the transverse (in-track) direction, and
z axis in the normal (cross-track) direction. Chief and deputy absolute position vectors in
algebraic form are denoted by Rc and Rd while the relative position vector of deputy with respect
to chief is r. Position vector components expressed in the LVLH frame are

 

Rc = [Rc 0 0]
T

Rd = Rc + r = [(Rc+x) y z]
T (13)

•

•

X Y

Z

x

y
z

Chief

Deputy

LVLH

ECI

i

Ω θ

r

Rc

Rd

Rc

Rd

Figure 1.  Relative Motion Geometry
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Using a relative motion description, and assuming an ideal two-body (J0) plus oblate (J2)
gravitational field,  the governing nonlinear motion equation in algebraic form is

r = - Ωr - 2Ωr - ΩΩr + ∇ΦJ0 + ∇ΦJ2

where ω = [ωx ωyωz]
T , Ω =

0 -ωz ωy
ωz 0 -ωx
-ωy ωx 0

(14)

where ω is the LVLH frame angular velocity with respect to the ECI frame. The first three
kinematic acceleration terms, which are linear in r and r , can be represented by vector aK where

aK = AKr AKr r
r

where AKr =

ωy
2+ωz

2 ωz-ωxωy -ωy-ωxωz
-ωz-ωyωx ωz

2+ωx
2 ωx-ωyωz

ωy-ωzωx -ωx-ωzωy ωx
2+ωy

2
, AKr = 2

0 ωz -ωy
-ωz 0 ωx
ωy -ωx 0

(15)

A new model for LVLH frame angular velocity [15] with circular chief and J2 perturbation is

ωx = 2ΩoS ioSθo
ωy = 0

ωz = ΩoCio + θo +
1
4J2no(

RE
Ro
)2C2θoSio

2
(16)

where

Ωo = -32J2no(
RE
Ro
)2Cio , θo = θo0 + θot

θo = no -
3
2J2no(

RE
Ro
)2(1 - 4Cio

2 ) , no = (
µ

Ro
3)
1/2 (17)

This approximation includes both secular and short period (2θ) effects on the chief elements
including radius R = Rc, inclination i, argument latitude θ, and ascending node right ascension
Ω. Bar and subscript notation refers to mean osculating elements [15] and S" = sin("), C" =
cos("). Additional variables in Eq. (17) include gravitational parameter µ, Earth radius RE, and
mean motion no. After substitution of this model assumption, Eq. (15) can be rearranged as

aK = AKr AKr r
r + BKr BKr r

r J2 + . . .

where AKr = no
2 1 0 00 1 0
0 0 0

, AKr = 2no
0 1 0
-1 0 0
0 0 0

BKr = 12no
2(RE
Ro
)2
-a -b 3c
b -a -3d
3c 3d 0

, BKr = 12no(
RE
Ro
)2
0 -a 0
a 0 -6c
0 6c 0

a = 6(1 - 3Cio
2 ) - S io

2 C2θo , b = Sio
2 S2θo , c = S2ioSθo , d = S2ioCθo

(18)
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Note the bilinear structure of  Eq. (18), with J2 interpreted as an input, is similar to Eq. (7).

The last two terms from Eq. (14) are gradients of the two-body and oblate gravitational potential
functions. These terms are nonlinear in r and are represented by vectors aJ0 and aJ2 where

aJ0 = -
µ

Rd
3

Rc+x
y
z

+ µ

Rc
3

Rc
0
0

aJ2 = 32
µ

Rd
3J2(

RE
Rd
)2
(5f 2-1)(Rc+x) - 2fS iSθRd
(5f 2-1)y - 2fS iCθRd
(5f 2-1)z - 2fCiRd

- 32
µ

Rc
3J2(

RE
Rc
)2
(5Si

2Sθ
2-1)Rc - 2Si

2Sθ
2Rc

- 2Si
2SθCθRc

- 2SiCiSθRc

where Rd = {(Rc+x)
2+y2+z2}1/2 , f = SiSθ

Rc+x
Rd

+ SiCθ
y
Rd

+ Ci zRd

(19)

The gravitational nonlinearity in Eq. (19) is approximated through second order using Taylor's
expansion about the chief's position with the mean osculating elements.

aJ0 =
∇aJ0x
∇aJ0y
∇aJ0z r = 0

r + 1
2

rT 01×3 01×3
01×3 rT 01×3
01×3 01×3 r

T

∇(∇aJ0x)
T

∇(∇aJ0y)
T

∇(∇aJ0z)
T
r = 0 , R = Ro
i = io , θ = θo

r + . . .

aJ2 =
∇aJ2x
∇aJ2y
∇aJ2z r = 0

r + 1
2

rT 01×3 01×3
01×3 rT 01×3
01×3 01×3 r

T

∇(∇aJ2x)
T

∇(∇aJ2y)
T

∇(∇aJ2z)
T
r = 0 , R = Ro
i = io , θ = θo

r + . . .

(20)

Equation (20) can be written more conveniently using the Kronecker product.
 

aJ0 = A J0r + A J0
(2,r)r(2) + . . .

aJ2 = BJ2rJ2 + BJ2
(2,r)r (2)J2 + . . .

where r(2) = [xx xy xz yx yy yz zx zy zz]T

A J0 = no
2 2 0 0

0 -1 0
0 0 -1

, A J0
(2,r) = 3

2
no

2

Ro

-2 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0

BJ2 = 3
2no

2(RE
Ro

)2
-4e 4b 4c
4b f -d
4c -d g

, BJ2
(2,r) = 15

4
no

2

Ro
(RE
Ro

)2
4e -4b -4c -4b -f d -4c d -g
-4b -f d -f 3b c d c b
-4c d -g d c b -g b 3c

e = 3Sio
2 Sθo

2 - 1 , f = 5Sio
2 Sθo

2 - 1 - 2S io
2 Cθo

2 , g = 5Sio
2 Sθo

2 - 1 - 2Cio
2

(21)
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After collecting all acceleration components, Eq. (14) yields

r = aK + aJ0 + aJ2
= (AKr+A J0) A Kr r

r + A J0
(2,r)r(2) + . . .

+ (BKr+BJ2) BKr r
r J2 + BJ2

(2,r)r(2)J2 + . . .

(22)

Equation (22) is a specific case of the general bilinear model expression in Eq. (7).

4. Second Order Analytic Solution

Coordinates in Eq. (22) require expansion to the full order Kronecker state vector to be
consistent with the Carleman linearization process used to obtain the kernels associated with the
Volterra multi-dimensional convolution theory. The expansion process is outlined in Eq. (23).

  

r
r → x(1)

r (2) → x(2) where
x(1) = x y z x y z T

x(2) = xx xy xz xx xy xz yx yy yz yx yy yz ... zz
T

(23)

With this step, the motion equation in Eq. (22) becomes

x(1) = A 1x
(1) + A 2x

(2) + B1x
(1)J2 + B2x

(2)J2

A 1 =
03 I3

AKr+A J0 AKr
, A 2 =

03×36
A J0
(2) , B1 =

03 03
BKr+BJ2 BKr

, B2 =
03×36
BJ2
(2)

(24)

After generating the second order governing equation, the overall Carleman bilinear model is

x(1)

x (2)
=

A 11 A 12
036×6 A 22

x(1)

x (2)
+
B11 06×36
B21 036

x(1)

x (2)
J2 (25)

or in compact form the model becomes

x⊗(t) = A(t)x⊗(t) + B0(t)u(t) + B1(t)x
⊗(t)u(t)

y(t) = C(t)x⊗(t)
(26)

The dynamical model in Eq. (25) can be utilized for generating closed-form Volterra kernel
expressions, which are suitable for the multi-dimensional convolution based analytic solution to
the nonlinear J2 perturbed circular relative motion problem, in terms of initial conditions, chief
elements, and gravity parameters. However, the remaining portion of this paper emphasizes only
the unperturbed solution. In this case, the bilinear state space model becomes unforced, being
excited only by initial conditions. After neglecting the oblate gravitational terms (u = J2 = 0),
matrix A is the only matrix of significance in the system. Matrix C  consists of identity and zero
matrices to yield deputy x, y, z relative positions as system outputs. Matrix A, which has
dimension 42×42, is defined below.
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A = A11 A 12
036×6 A 22

=

A1 M1 M2 M3 06 06 06
06 A 1 06 06 I6 06 06
06 06 A 1 06 06 I6 06
06 06 06 A 1 06 06 I6
06 3no

2I6 06 06 A 1 2noI6 06
06 06 06 06 -2noI6 A 1 06
06 06 06 -no

2I6 06 06 A 1

where A 1 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3no
2
0 0 0 2no 0

0 0 0 -2no 0 0
0 0 -no

2
0 0 0

, Mi = 32
no
2

Ro
03 03
Mi
' 03

,

M1
' =

-2 0 0
0 10
0 01

M2
' =

0 10
1 00
0 00

M3
' =

0 01
0 00
1 00

(27)

Position response due to initial condition excitation is given by the expression

y(t) = h 0(t) = C(t)Φ(t,0)x0
⊗

where Φ(t,0) = e ∫0
tA(τ)dτ , y = [x y z]T

(28)

Computation of the state transition matrix 
 

Φ is required. The approach taken is based on Laplace
transform inversion of the resolvent matrix, which requires analytical inversion of matrix (sI-A)
where "s" denotes complex frequency. This task is the most computationally intensive step of the
entire solution. Typically, a complete symbolic state transition solution is not feasible when
dynamic order is larger than four, since symbolic polynomial factoring is not possible beyond the
quartic degree. However, recall the CW model has dynamic order six with two roots at 0 and
four roots at ±ino and allows a complete solution due to matrix sparseness and polynomial
symmetry. The quadratic Volterra (QV) model is similarly sparse and symmetric, and has
numerically obtained roots 0 (fourteen), ±ino (twenty), ±i2no (eight). With these observations,
complete solution existence was postulated. Using both symbolic computational software and
manual calculations, a successful completion to the calculation was achieved. Ample use of the
partitioned matrix inverse formula was made [22]. After transforming back to the time domain,
pre-multiplying by the output matrix, and post-multiplying by the initial condition vector,
expressions for the initial condition response of deputy relative position, which is identical to the
0th order Volterra kernel under the stated assumptions, are available. These expressions, which
are accurate to second order, are given in Eq. (29). In these equations, subscript "0" denotes the
value of a quantity at the initial time, and "t" represents time elapsed since the initial time.
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x(t) | y(t)
= {4-3Cnot}x0 | = {6(Snot-not)}x0 + {1}y0
+ { 1no

Snot}x0 + {
2
no
(1-Cnot)}y0 | + { 2no

(-1+Cnot)}x0 + {
1
no
(4Snot-3not)}y0

+ {32
1
Ro
(7-10Cnot+3C2not+12notSnot-12no

2t2)}x0
2 | + {34

1
Ro
(40Snot+3S2not-22not-24notCnot)}x0

2

+ {32
1
Ro
(1-Cnot)}y0

2 | + {3 1
Ro
(Snot-not)}y0

2

+ {14
1
Ro
(3-2Cnot-C2not)}z0

2 | + {14
1
Ro
(4Snot+S2not-6not)}z0

2

+ {12
1

no
2Ro

(-3+4Cnot-C2not)}x0
2 | + {14

1
no
2Ro

(8Snot-S2not-6not)}x0
2

+ {12
1

no
2Ro

(6-10Cnot+4C2not+12notSnot-9no
2t 2)}y0

2 | + { 1
no
2Ro

(10Snot+S2not-6not-6notCnot)}y0
2

+ {14
1

no
2Ro

(3-4Cnot+C2not)}z0
2 | + {14

1
no
2Ro

(8Snot-S2not-6not)}z0
2

+ 2{3 1
Ro
(-Snot+not)}x0y0 | + 2{32

1
Ro
(1-Cnot)}x0y0

+ 2{32
1

noRo
(4Snot-S2not-4not+2notCnot)}x0x0 | + 2{34

1
noRo

(-5+4Cnot+C2not+4notSnot)}x0x0

+ 2{32
1

noRo
(4-6Cnot+2C2not+7notSnot-6no

2t 2)}x0y0 | + 2{32
1

noRo
(12Snot+S2not-7not-7notCnot)}x0y0

+ 2{32
1

noRo
(-Snot+not)}y0y0 | + 2{32

1
noRo

(-Snot+not)}y0x0

+ 2{14
1

noRo
(2Snot-S2not)}z0z0 | + 2{14

1
noRo

(-3+4Cnot-C2not)}z0z0

+ 2{12
1

no
2Ro

(7Snot-2S2not-6not+3notCnot)}x0y0 | + 2{12
1

no
2Ro

(-3+2Cnot+C2not+3notSnot)}x0y0

(29)

z(t)
= {Cnot}z0 + {

1
no
Snot}z0

+ 2{34
1
Ro
(-3+2Cnot+C2not+4notSnot)}x0z0

+ 2{34
1

noRo
(2Snot+S2not-4notCnot)}x0z0

+ 2{14
1

noRo
(2Snot-S2not)}z0x0

+ 2{12
1

noRo
(-3+2Cnot+C2not+ 3notSnot)}z0y0

+ 2{14
1

no
2Ro

(3-4Cnot+C2not)}x0z0

+ 2{12
1

no
2Ro

(Snot+S2not-3notCnot)}y0z0
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Equation (29) indicates time dependent deputy positions are nonlinear functions of the initial
position and velocity; specifically linear, quadratic, and bilinear combinations of x0, y0, z0, x0 ,
y0 , z0 . All combinations of terms are present in at least one of the expressions except for terms
y0z0 and y0z0 , which are absent. Note the linear terms x 0, y0, z0, x0 , y0 , z0  are precisely the CW
solution. Modeling of quadratic gravitational nonlinearities have introduced new secular terms
not found in the linear CW solution including notcos(not), notsin(not), and (not)2. Secular terms in
x include not, notcos(not), notsin(not), (not)2, while secular terms in y include only not, notcos(not),
notsin(not), and secular terms in z are limited to just notcos(not), notsin(not). While the linear CW
solution experiences drift in only the transverse (y) axis, the nonlinear QV solution also captures
motion drift in the radial (x) and normal (z) axes. The new solution permits alteration of the in-
track drift rate through extra terms not present in the CW solution. While these secular terms
reflect the local three-dimensional departure of the deputy away from the chief over time, they
eventually will fail in predicting the true globally bounded relative motion, as they are a class of
perturbation solutions with a limited temporal window. Although the second order solution
might provide higher accuracy than the first order solution for a given separation distance
between chief and deputy, the second order solution may diverge more rapidly than the first
order solution as that separation gets larger. Quadratic gravitational nonlinearities have also
resulted in the possibility of bias offset in the cross-track z behavior, as well as a new frequency
at 2no in all axes. As a final observation, the QV solution allows bidirectional coupling between
the radial/in-track in-plane motion and the cross-track out-of-plane motion; a mechanism present
in the full nonlinear differential equations but absent in the CW linear differential equations and
solution.

5. Numeric Example

To test and validate accuracy of the new relative motion solution, a numerical example with two
cases is offered. Conditions for the Case A example originally appeared in Ref. [15]. Case B is
obtained by uniform ten-fold scaling of the Case A deputy initial conditions. Circular chief
orbital elements and deputy relative initial conditions for both cases are specified in Eq. (30)
below. Three responses are generated for each case. The first response is nonlinear simulation
based on Eq. (14) using Runge-Kutta 4th order numerical integration. This result is taken as the
"exact" solution. The second response is the closed-form CW linear solution. The third response
is the new closed-form QV nonlinear solution given in Eq. (29). Simulation parameters include µ
= 398,600 km3/s2, RE = 6,378 km, and time step Δt = (2π/no)/3600 (0.1 deg latitude steps) with
rad/s units for no.

Chief:
Ro = 7100 km
Ωo = 45 deg
io = 70 deg
θo = 0 deg

 

Deputy - Case A:
x0 = - 0.000288947081 km , x0 = 0.000263388377 km/s
y0 = 0.50033326318 km , y0 = 0.000000272412 km/s
z0 = 0.000175666681 km , z0 = 0.000527371445 km/s
Deputy - Case B:
x0 = - 0.00288947081 km , x0 = 0.00263388377 km/s
y0 = 5.0033326318 km , y0 = 0.00000272412 km/s
z0 = 0.00175666681 km , z0 = 0.00527371445 km/s

(30)
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Figures 2-4 show the Case A CW and QV error relative to nonlinear simulation (NLS) for the x,
y, z axes; that is, at each time step the value of the quantity predicted by CW or QV is subtracted
from the predicted NLS solution. The QV solution is significantly more accurate than the CW
solution for this case. Although the CW solution error in the x and z axes is not very large for
this approximately 0.5 km relative orbit, the QV solution error is much less. The most significant
improvement occurs in the y axis. After 15 chief orbits, the error in the QV in-track solution is
several orders of magnitude less than the CW solution (0.0004 vs. 11.2 m). New terms in Eq.
(29), arising from inclusion of quadratic gravitational effects, facilitate better prediction of the
in-track drift, a common deficiency of the CW technique. Figure 5 shows the overlay plot of the
in-track responses near the maximum values on the 14th orbit. The CW propagated deputy
experiences a peak in-track departure of approximately 10 m from the  NLS  propagated  deputy,
while for the resolution shown in this plot, the QV propagated deputy appears to lie on top of the
NLS deputy at this same instant. Figures 6-7 show the orbital tracks over the 15 orbit prediction
where the deputy relative orbit is advancing further ahead of the chief. Progression of error
growth in the CW solution is clearly seen with each successive orbit, while the QV solution
maintains accuracy to the sub-meter level.

Figures 8-10 show the Case B CW and QV relative errors in all axes. The Volterra solution
response is again significantly more accurate than the CW solution for this approximately 5 km
relative orbit. In the x and z axes, the CW errors are on the order of 10 m while the QV error is
near 1 m. Improvement in the y axis is again the most significant. After 15 chief orbits, the
Volterra in-track solution maintains several orders of magnitude improvement (0.39 vs. 1,120
m). Figures 11-12 shows the overlay plots of the in-track responses overall and near the
maximum values on the 14th orbit. Observe in Fig. 11 the in-track drift for the CW and QV-NLS
solutions are in different directions. This feature is more easily observed in the orbital track plot
in Fig. 13. The CW deputy relative orbit is advancing ahead of the chief as in the first case, while
the QV and NLS orbits are retreating back towards the chief. The CW drift rate scales linearly
with the initial conditions, while the QV drift rate scales differently through the additional
nonlinear initial condition terms in Eq. (29). The second order analytic solution is sufficiently
versatile to reflect this nonlinear behavior.
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6. Nonlinear Revelation

Improved accuracy from the quadratic Volterra solution is one important aspect of the new
results. Another important aspect concerns the analytic nature of the solution, and what it can
reveal regarding physical mechanisms within nonlinear relative orbital motion. Consider
collecting all initial conditions multiplying secular term not in the in-track expression in Eq. (29),
or

y(t) = ... + {-6x0-
3
no
y0-

3
2
1
Ro
(11x0

2+2y0
2+z0

2)-32
1

no
2Ro

(x0
2+4y0

2+z0
2)+ 3

noRo
(-7x0y0+y0x0)}not + ... (31)

These initial conditions can be grouped according to whether they are linear in the states (cl),
quadratic in position (cqp), quadratic in rate (cqr), or bilinear in position and rate (cbpr). Table 1
summarizes these various groups, including the total group of terms as well (ct). Considerable
insight can be extracted from these expressions. The nonlinear terms are proportional to 1/Ro ,
1/(no

2Ro), and 1/( noRo). For small orbits (quantified by small initial positions and rates), the
linear terms will dominate the in-track drift rate. For larger orbits, the significance of the
nonlinear terms can increase to the point where they influence the in-track drift rate, or even
dominate it. For example, by equating the contribution from x0 and x0

2, the condition for which
one term dominates over the other can be assessed in a very simple way. The contributions of the
two terms are balanced when the initial radial position is four elevenths of the chief radius, or

6x0 = 32
1
Ro
11x0

2 → x0 = 4
11Ro (32)

The complete set of coefficient expressions not only reveal the different scalings between linear
and nonlinear terms, but also between the various types of nonlinear terms. For example, in
reference to the cqp term, the x0

2 contribution to drift rate is 5.5 times stronger than the y0
2

contribution and 11 times stronger than the z0
2 contribution.

Table 1.  Initial Condition Groups for y Axis Secular Term
Group Term
ct -6x0-

3
no
y0-

3
2
1
Ro
(11x0

2+2y0
2+z0

2)-32
1

no
2Ro

(x0
2+4y0

2+z0
2)+ 3

noRo
(-7x0y0+y0x0)

cl -6x0-
3
no
y0

cqp -32
1
Ro
(11x0

2+2y0
2+z0

2)

cqr -32
1

no
2Ro

(x0
2+4y0

2+z0
2)

cbpr + 3
noRo

(-7x0y0+y0x0)

Table 2 lists numeric values for these coefficient groups for the two cases. The ct group
representing all terms changes sign between the two cases (positive for Case A with advancing
drift, negative for Case B with retreating drift), while the cl group representing only the linear
terms is positive for both cases. After examining the other coefficients, note the quadratic rate
and bilinear position-rate terms approximately cancel one another leaving the quadratic position
terms as the primary cause of the in-track drift rate reversal. It would be very difficult, or tedious,
to uncover such insights from nonlinear simulation alone. Independent verification of these
conclusions can be achieved in this simple example from two-body motion theory. Table 3 lists
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the chief and deputy semi-major axis (a) and specific energy (E) for the two cases. For Case A,
the deputy has a smaller semi-major axis and lower energy level compared with the chief, while
in Case B, the deputy has a larger semi-major axis and higher energy level than for the chief.
This difference in semi-major axis or energy level is the root cause of the nonlinear in-track drift
reversal. For Case B, the deputy is orbiting Earth at a higher radius, and hence at a lower
velocity, when compared to the chief, and thus relative drift is retrograde. The opposite
conditions happen in Case A leading to direct relative drift.

Table 2.  Initial Condition Group Data
Group Case A Case B
ct (km) +0.0008404449877904054 -0.002290761101582208

cl (km) +0.0009592806653402528 +0.009592806653402529

cqp (km) -0.0001056480853754877 -0.01056480853754877

cqr (km) -0.00006592018856900161 -0.006592018856900161

cbpr  (km) +0.00005273259639464191 +0.005273259639464191

Table 3.  Vehicle Semi-Major Axis and Specific Energy Data
Vehicle a  (km) E  (km2/s2)
Chief 7100 -28.07042253521128

Deputy - Case A 7099.999439703345 -28.07042475038945

Deputy - Case B 7100.001527173064 -28.07041649741071

7. Conclusions

Application of Volterra series theory with support from Carleman linearization has been
successfully applied to space vehicle relative motion, under certain assumptions. A complete
second order framework from differential equation set to its closed-form response solution is
offered. The solution is a generalization of the widely used linear Clohessy-Wiltshire solution for
relative motion and significantly improves on the propagated motion accuracy. The analytic
nature of the solution offers a new insightful window besides nonlinear simulation for
investigating phenomena such as in-track drift strength and direction changes, radial and cross-
track drift mechanisms, cross-track bias offsets, higher harmonic motions, and in-plane/out-of-
plane coupling. This area of study appears to be rich for further investigative efforts. In addition,
future work in this area will include deriving a Volterra solution incorporating J2 gravity
perturbation.
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