

Rosetta Navigation for the Fly-by of Asteroid (21) Lutetia

T. Morley, F. Budnik, M. Croon & B. Godard, ESA/ESOC

23rd International Symposium on Space Flight Dynamics Pasadena, U.S.A., 29th October - 2nd November 2012

Purpose: In situ scientific observations of 67P/Churyumov-Gerasimenko (Comet C-G is easier to pronounce)

Event	Date	
Launch	2 nd March 2004	
1st Earth Swing-by	4 th March 2005	
Mars Swing-by	25 th February 2007	
2nd Earth Swing-by	13 th November 2007	
(2867) Šteins Fly-by [#]	5 th September 2008	
3rd Earth Swing-by	13 th November 2009	
(21) Lutetia Fly-by	10 th July 2010	
Hibernation	8 th June 2011	
Reactivation	20 th January 2014	
Arrival at Comet	4 th August 2014	

Navigation for (2867) Šteins Fly-by was presented at the 21st ISSFD

Parameter	(2867) Šteins	(21) Lutetia
Size	~6 km diameter	124 x 101 x 93 km
Fly-by Speed	8.6 km/s	15.0 km/s
Planned Miss-distance	800 km	3160 km
Solar Phase Angle (SPA) at Far Approach	38 °	11°
Planned Minimum SPA	0 °	0 °
Time of Minimum SPA before Fly-by	2 minutes	18 minutes

- **Until end May 2010 separate orbit determinations (OD).**
- **Rosetta OD used coherent 2-way Doppler and range data:**
 - ESA New Norcia (NNO) 35 m antenna was primary station;
 - Tracking data arc started on 4th February 2010;
 - From 25th May up to fly-by, 35 passes from NASA/DSN stations.
- Lutetia OD used astrometric data from 31 observatories:
 - 1630 R.A. and declination measurements, 1866-2010;
 - Post 1990 rms of 1 arcsec, pre 1990 rms of 2-5 arcsec;
 - Initially, no differential weighting between observatories;
 - Prediction at fly-by time, 77 km different from JPL Horizons.

- □ Starting 31st May acquired optical data from 3 on-board cameras:
 - 2 identical navigation cameras (NAVCAMs) 1 pixel = 5 mdeg;
 - OSIRIS Narrow Angle Camera (NAC) 1 pixel = 1.1 mdeg.
- □ Imaging sessions twice per week, then daily from 28th June 2010.
- □ Images processed on ground to give Rosetta-to-Lutetia directions.
- **Rosetta and Lutetia states then determined simultaneously:**
 - state and error estimates from separate ODs used as *a priori* info.
- **First relative OD results were inconsistent with previous ones:**
 - unreliable asteroid OD result suspected
 - known biases in popularly used star catalogues (Chesley et al. 2010);
 - revised Lutetia OD, differential weighting data between observatories
 - highest weighting given to data reduced with UCAC-2 and Tycho-2.

B-plane Estimates using Data up to 9th July 2010

23rd International Symposium on Space Flight Dynamics

(21) Lutetia's Gravity Signature

Pasadena 29/10-02/11/2012 Slide 12 / 16

- Processed additionally radiometric data up to 16th July plus pointing directions during early part of the fly-by:
 - pointing was close to photometric centre not centre of gravity;
 - used 44 minutes of data up to 15 min before closest approach;
 - Solar phase angle reduced from 7.7° to ~0° then rose to 2° ;
 - Two schemes (1) raw data,
 - (2) Correction using Lambertian reflection from 50 km radius sphere.

Parameter	1	2
UTC of closest approach (on 10 th July)	15:44:54.75	15:44:55.93
Miss-distance (km)	3168.2	3171.7
Minimum solar phase angle (degrees)	0.15	0.15
UTC of minimum solar phase angle	15:26:59.53	15:26:59.52

Final Fly-by Estimates

esa

NAC data biases up to -0.3 mdeg when asteroid size was 3 mdeg

23rd International Symposium on Space Flight Dynamics

- □ Final GM estimate = $0.1081 \text{ km}^3 \text{s}^{-2} \pm 1.7\%$ (1 σ)
- Radio Science Team estimate was 4.9% higher* their analysis was simpler and based on fewer data.
- More scientifically interesting result is the density its uncertainty is predominantly due to the volume uncertainty.
- □ From ground-based observations using adaptive optics plus OSIRIS images from the asteroid fly-by: volume estimate[#] = $(5.0 \pm 0.4) \times 10^5 \text{ km}^3$.
- **Bulk density estimate = 3.2 \pm 0.3 gcm⁻³.**
- * Pätzold, M. *et al.*, Science, Vol. 334, 491-492, 2011. [#] Sierks, H. *et al.*, Science, Vol. 334, 487-490, 2011.

(21) Lutetia 40 Min. before Closest Approach

Rosetta Separation distance: From Lutetia: 36000 km From Saturn: 6.5 AU

23rd International Symposium on Space Flight Dynamics