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Abstract: When Rosetta operates in the vicinity of its target comet 67P/Churyumov-
Gerasimenko, the drag force due to the coma gas is expected to be in the same order of 
magnitude as the gravity due to the comet nucleus. Hence the SC trajectory can only be 
predicted if the drag force on the SC can be predicted. The prediction of the drag force will be 
done empirically by scaling past measurements of the drag force to changed geometric 
conditions. The present paper aims at identifying methods that may be used to predict the drag 
force by incorporation of different available observables. The quality of each method is assessed 
by simulation in physically realistic coma. This is done under several idealistic assumptions of 
which the most important ones are: no time dependence of the coma, no gas compostion or dust-
to-gas ratio variation, a constant nucleus surface temperature and no errors in measurement of 
coma observables. For the considered example cases (fly-bys at 5 and 10 km distance from the 
comet) the best methods, which incorporate measurements from remote-sensing instruments, 
reach an accuracy of 10-20% of the dV due to drag. The availability of reliable predictions of 
the drag force will ultimately depend on the fulfillment of these idealistic assumptions, 
particularly that of a time-independent coma. 
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1. Introduction 
 
The Rosetta spacecraft (SC) was launched in 2004 and will reach its target comet 
67P/Churyumov-Gerasimenko (CG) in 2014. Currently in hibernation, it will not be reactivated 
until January 20th 2014. Thereafter, a number of manoeuvres will progressively reduce its 
relative velocity with respect to CG while the SC approaches the nucleus. Several intermediate 
phases have been devised so that the knowledge of the nucleus’ ephemeris, as well as its mass, 
shape, landmarks, kinematics and gravity potential will be gradually improved. 
 
In November 2014, when the comet heliocentric distance is 3 AU, the Philae lander will separate 
from the orbiter, following a non-propelled trajectory that will deliver the Surface Science 
Package to the landing site of choice on the nucleus surface. At this heliocentric distance, 
nucleus gas activity is still low (mass loss between 2 and 24 kg/s), and nucleus gravity is 
expected to dominate over the drag force due to the outflowing gas. 
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Subsequently, while the comet continues its excursion around the Sun, the orbiter will follow it 
undergoing a number of close fly-bys, during which it is foreseen that the SC will get as close as 
5 km from the nucleus centre with relative velocity in the order of 1 m/s. Propellant budget 
analyses estimate that there will be enough propellant to undertake about 15 close fly-bys before 
the mission comes to an end. The most severe conditions will be present at perihelion, in mid-
August 2015, when the distance between the sun and the comet reaches a minimum of 1.24 AU 
and the highest gas activity is expected (mass loss in the range 130 to 380 Kg/s). For these levels 
of activity, gas drag and nucleus gravity are expected to be in the same order of magnitude. The 
current analysis focuses on this mission phase (the so-called Extended Monitoring Phase) and 
analyses different methods to predict the drag force on the spacecraft during close fly-bys from 
data collected during previous fly-bys. 
 
Because it is only possible to perform a few close fly-bys, there will be weeks of separation 
between two consecutive fly-bys. Hence, coma conditions are expected to change considerably 
from one fly-by to the next, which suggests the need of incorporating measurements taken by on-
board remote sensing instruments into the prediction process. 
 
2. Properties of the Comet Nucleus and the Coma  
 
Comets are small bodies composed out of a mixture of ice and dust particles. When a comet 
approaches the Sun, its ice starts to sublimate and the sublimated gas drags the dust particles 
from the surface. This mix of sublimated gas and dust particles constitutes the comet atmosphere 
(coma) that escapes the vicinities of the comet’s nucleus, whose gravitational field is insufficient 
to retain the atmospheric particles (except for a few very big particles). 
 
The target of Rosetta is comet 67P/Churyumov-Gerasimenko. A shape model of the nucleus was 
derived by the Laboratoire d'Astrophysique de Marseille from ground-based observations. It 
consists of a polyhedron of 512 triangular faces and 258 vertices. The overall area of the 
polyhedron is 41 km2, equivalent to a sphere of radius 1806 m. As Rosetta approaches the 
nucleus, this preliminary shape model will be refined from much higher precision in-situ 
measurements. For our current studies, however, we assume that the nucleus is as described by 
this preliminary model. 
 
The coma is expected to be mainly composed out of H2O, CO and CO2. Minimum and maximum 
activities for different comet-Sun distances have been estimated from ground-based 
observations. In particular, at perihelion, a maximum gas activity of 380 kg/s (this includes 
molecules of H20, CO and CO2) with terminal velocity 800 m/s is expected. The dust particles 
released can cover all possible sizes. The size distribution of those particles has large 
uncertainties. However it is expected that the overall mass of particles released from the comet is 
in the same order as that of the gas and that the bulk of the mass of the dust particles is in large 
particles.  
 
In visual wavelength the spectrum of light emitted by the coma is dominated by light scattered 
by dust. It is expected that particles larger than 1µm dominate the scattered visual light.  
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3. Effects of the Coma on the Spacecraft and Coma Observables 
 
Rosetta is a spacecraft composed of a main body (the orbiter) and the Philae lander. The orbiter, 
stabilized on three-axes, has a roughly cubic shape, with an articulated High Gain Antenna 
(HGA) on the +xsc face and the solar arrays (SAs) on the ±ysc faces. The solar arrays can be 
rotated around the SC y-axis and are always sun pointing. Attitude control in normal mode is 
performed by means of four reaction wheels, while a system of eight thrusters is used during 
wheel off-loadings. Other instruments relevant to this study are the navigation cameras 
(NAVCAMs) with boresight along the SC z-axis and an inertial measurement package that is 
equipped with accelerometers, that are sensitive to accelerations along any SC axis.  
 
Over the comet dayside the solar arrays dominate the drag force on Rosetta due to their large 
area (64 m2). Close to perihelion and over the comet dayside, it is expected that the drag force on 
Rosetta can be detected directly with the accelerometers. Alternatively, the drag force can be 
detected by means of the torque exerted on Rosetta. The main contribution to this torque 
normally comes from the HGA, which has a cross-sectional area of about 4 m2 and a lever arm 
of up to 3.6 m (despite the large area of the SAs, they are usually of minor importance for the 
torque, because the SA centre of pressure is close to the SC centre of mass; note that this also 
requires that density gradients on the scale of the SC are of minor importance). It is expected that 
by means of the torque on the SC, the drag  can be detected during any phase in the mission. 
However, a sensitive measurement requires certain articulation angles of the HGA, and this may 
not be possible always during the mission. Because radiometric data are also affected by gravity, 
they are  not foreseen to be used to measure the drag force.  
 
The comet is expected to release as much gas as dust in terms of mass. However, the bulk of dust 
mass is expected to be concentrated on large particles, that only reach small velocities relative to 
the comet. Therefore, the dynamic pressure on the SC is expected to be dominated by the drag 
exerted by gas. At perihelion, the dominating gas molecule is H2O. The navigation camera is 
sensitive to visual wavelength that are dominated by light scattered by dust. Because the 
NAVCAM can only be used to detect dust remotely, it is being investigated whether the 
submillimeter channels of Miro [2], that are specifically tuned to detect H2O remotely, can be 
used to supplement the NAVCAM measurements.  
 
The aim of this work is to identify different methods for predicting the effect of the coma using 
the different available measurements. Because it is beyond its scope to analyze the effect of 
measurement errors, this study uses idealized measurements. Hence it is assumed that for past 
fly-bys it was possible to measure the acceleration without any error (regardless of which method 
was used to obtain the measurement). Furthermore, it is assumed that NAVCAM measurements 
can be reduced to a column density of dust along the line of sight. Analysis has shown that the 
Miro measurements can be reduced with good accuracy (in the order %) to the gas density at the 
point of CA along the Miro line of sight. So far no simple method was identified that is able to 
deduce the column density from Miro with reasonable accuracy. 
  
4. Physical Model of the Coma 
 
Because no measurements of the coma will be available until Rosetta approaches the comet, 
physical models are used to simulate both the effect of the coma on the SC and the intensities 
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measured by remote sensing instruments. However, these physical models will not be used for 
operations. Instead, the approach for prediction will be empirical, i.e. past measurements of the 
drag force, as well as remote sensing measurements, will be used for predictions under changed 
geometries and levels of comet activity. 
 
The purpose of this section is to briefly describe the physical models implemented to simulate 
both the gas and the dust distributions. Because the effect of the dust particles on the dynamics of 
the gas is negligible, the problem can be decoupled. First, the gas state is determined irrespective 
of the dust distribution. Only then, the dust distribution can be simulated from the gas state. 
 
4.1. Physical model of the gas 
 
The mix of H2O, CO and CO2 is assumed to be in thermal equilibrium and it is assumed that it 
can be modeled as a single gas species s with mass 2.99·10-26 Kg and specific heat ratio 1.33. For 
each nucleus’ triangle, the gas mass flow per unit of surface is set proportional to the scalar 
product between the triangle normal and the sun direction. A uniform activity is then added to 
this cosine distribution so that even the shaded portion of the nucleus surface emits some 
background activity. Only then, the resultant activity distribution is rescaled for consistency with 
the overall level of activity 380 Kg/s. 
 
For convenience, a coma reference frame relative to the sun is defined with origin at the nucleus 
centre of mass and basis },,{ ccc kji  such that ck  points in the direction from the Sun to the 
nucleus centre of mass, cj   towards the comet orbital north pole with respect to the Sun and ci   
completes the frame such that it is right-handed. Spherical coordinates  },,{ ϕθr  are used with 
the standard convention:  
 ϕθ cossinrxc =         ϕθ sinsinryc =       θcosrzc =  (1)

The Euler equation is solved using the Godunov method based on assumed physical parameters 
on the nucleus surface. The space in the vicinities of the nucleus is covered by a rectangular grid. 
Boundary conditions are defined on both cells containing a part of the nucleus’ surface (inside 
boundary) and those on the outer walls of the grid (outside boundary).  
 
For the present study, a grid of 56 x 56 x 56 cells of increasing size is defined. The edge size of 
the smaller cells in the vicinities of the nucleus is 160 m and the grid covers a distance of about 
100 km in each direction. The comet attitude and activity is kept constant and the Godunov 
solver is iterated until a steady state is obtained. For each cell an approximation of the gas state is 
obtained.  
 
The density and velocity distributions of the state generated with the physical model for the 
present studies are depicted in Fig. 1 and 3. A significant feature of the gas velocity field is that, 
after a few transitional kilometers, it converges to a uniform value (about 800 m/s in our model) 
irrespective of the angle with respect to the subsolar point. This is a consequence of the 
approximately constant surface temperature on the comet dayside, as will be explained below. 
Moreover, the gas velocity field is almost radial, with deviations below 5 degrees for distances to 
the nucleus surface higher than 5 km. 
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Figure 1.  Isodensity lines of physical gas state in coma reference frame. The Sun is located 
towards –zc, i.e. below the plot for the two first cut-offs and behind the plot for the last one 

 
4.2. Physical model of the dust 
 
The distribution of dust is calculated with a Monte-Carlo simulation. From each face of the 
nucleus’ polyhedron, a large number of dust particles are propagated. For this purpose, the grid 
defined for the Godunov method is reused. As explained in the previous section, the gas’ 
physical model provides a piece-wise constant estimation of the gas state, i.e. gas state has a 
constant value in each grid’s cell. This gas state is linearly interpolated at each position so that 
the drag force exerted by the gas on the dust particles can be estimated. Dust particles are 
assumed to be spherical with drag coefficient equal to 2 and density 1000 Kg/m3. Moreover, for 
the sake of simplicity, a single particle size of 10μm is chosen, as it is particles of this size that 
are thought to dominate the light scattered by the coma. For this particle size, the effect of the 
gravitational field is negligible and dust particles are propagated assuming that they are only 
subjected to the drag force of the sublimated gas. The numerical integration of the equation of 
linear momentum is performed on a cell-by-cell basis, i.e., dust particles’ trajectories are 
propagated inside of each cell until one of the six walls is reached. This way, the time spent by 
the particle in each cell is known. This cell-by-cell propagation ends when the dust particle 
reaches the end of the grid. 
 
Once a sufficient number of particles have been propagated from each nucleus’ face, the density 
and average velocity of dust particles in each grid’s cell can be estimated from the activity on the 
nucleus faces, the time spent by the particles in the cell, its average velocity, the volume of the 
cell and the number of simulated particles per real particle. For the present case, dust activity on 
the nucleus surface is defined such that the ratio between gas and dust mass flows is uniform and 
equal to one. 
 
The distribution of density generated with the physical model for dust is depicted in Fig. 2. The 
fact that there is more structure visible than for the gas is due to the fact that the dust only 
interacts with the gas in close vicinity, such that inhomogeneities in the density close to the 
nucleus remain visible at larger distances. Figure 3 highlights another difference between gas and 
dust states: that the terminal velocity of dust particles tends to be larger the smaller the angle 
with respect to the subsolar point, whereas it is constant for the gas.  
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Figure 2.  Isodensity lines of physical dust state in coma reference frame. The Sun is located 
towards –zc, i.e. below the plot for the two first cut-offs and behind the plot for the last one 

 

 
Figure 3. Radial component of gas and dust velocity as read from their physical state. Each 
line corresponds to a radial trajectory on the plane xc-zc. Angles are measured with respect 
to –zc (positive rotation about +yc), whereas the horizontal axis is the distance to the nucleus 

centre. 
 
5. Physical Scaling Laws  for  the coma 
 
5.1 Velocity of Gas 
 
In the range where Rosetta is operating the gas state is well described by homogenous Euler 
equations, i.e. external forces, heating and particle dissociations can be neglected. Furthermore, 
usually the assumption that the gas only interacts along the radial direction relative to some fixed 
reference point (the centre of the nucleus, in our studies) is a good approximation. Under this 
condition, the Euler equations for a gas species s can be written (see e.g. [1]) as 
 

0)(  2 =
∂
∂

ssvr
r

ρ  
(2)

 
0)(  2 =

∂
∂ ηρ ssvr
r  

(3)



7 

 

( ) ( ) [ ]2)1(
1

2  2
2

2
2 +−

−
=

∂
∂

s
s

s

n
s

n
M

M
M

rr
M

rr
γ  (4)

where nr  is the local nucleus radius [m], sρ  is the gas density [kg/m3], sv  is the radial velocity 
[m/s], r  is the distance from the reference point [m], sM  is the Mach number and η  is the gas 
specific enthalpy [J/Kg]. Mach number and enthalpy are given by 
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with sT  being the gas temperature [K], sm  the mass of a gas molecule [Kg] and k  the 
Boltzmann constant [J/K]. 
 
It is important to note that differential equation Eq. 4 does not depend on the level of activity. 
Close to the nucleus the Machnumber has a value of 1 and increases strictly monotonically 
beyond all bounds with increasing distance from the nucleus (which is a direct consequence of 
the outer boundary condition (expansion into vacuum see [1])). Therefore, assuming that the 
adiabatic heat ratio is the same everywhere around the comet, the function ( )nrrsM  is also the 
same to a good approximation. 
 
Because both ssvr ρ2  and η  are constant (Eq. 2 and 3), the density and velocity of the gas can be 
calculated with help of sM : 
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Since the Machnumber is approximately one close to the surface it follows that the velocity at 
the surface is constant for constant enthalpy. Furthermore, from enthalpy conservation it follows 
that, far away from the nucleus surface, as the gas gets colder, it approaches a terminal velocity 

∞,sv  given by 
 η2, =∞sv  (8)

 
An implication of this equation is that, if the surface temperature is constant , so is the terminal 
gas velocity (see Fig.3). 
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5.2 Velocity of Dust 
 
Dust particles are released from the nucleus surface with null velocity and accelerated by the 
action of the drag exerted by the gas molecules. The gravitional attraction is only of relevance 
for the largest particles released from the comet, which are irrelevant to this study. From energy 
conservation applied to a dust particle: 
 

∫ ⋅=
r

r
dragdd

n

rdFrvm 2)(
2
1

 (9)

with dm  being the mass of the dust particle [Kg] and dv  its velocity [m/s]. The drag force 
exerted by the gas  is  
 

( )dsdssdDdrag vvvvAcF −−= ρ
2
1

 
(10)

where Dc  is the drag coefficient, dA  its cross-section area [m2] and dv , its velocity vector [m/s]. 
For ds vv >>  and assuming that sv  goes along the radial direction the drag force is also radial 
and with norm 
 2

2
1

ssdDdrag vAcF ρ=  
(11)

Now, if gm is the local gas activity on the nucleus surface [Kg/m2/s], we can write 
 22

nsss rmrv =ρ  (12)

so that 
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The dependency of the gas velocity on the radial distance is known from Eq. 7, so that the 
integral on the equation above can be solved and the velocity profile of the dust particles 
computed. Dust particles reach their terminal velocity ∞,dv  within a few nucleus radii (let ∞,dr  
denote this terminal distance). Thereafter, uniform linear motion sets in. 
 
The integral on the equation above can be computed from the nucleus surface to a point far away 
from the surface, resulting in 
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Where 4.1≈γG  for values of γ  between 1.33 and 1.4. Finally, the terminal velocity of dust 
particles released at a given point of the nucleus surface can be computed by 
 

)(
2

, nss
d

ndD
d rvm

m
rAC

Gv γ=∞  (15)

Assuming that nr  is constant at different points on the surface (spherical nucleus), and so is the 
gas velocity (an implication of temperature being approximately constant on the nucleus 
surface), Eq. 15 implies that the variation of terminal dust velocities over different points of the 
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nucleus surface is proportional to the square root of the gas activity, that is, for  θ  and ϕ  being 
the coordinates defining a point on the nucleus surface, the dependency of the terminal dust 
velocity on the gas state is simply given by 
 ),(),(, ϕθϕθ sd mv ∝∞  

(16)

This theoretical analysis explains the velocity field depicted in Fig. 3. Indeed, the larger the angle 
with respect to the sun direction, the lower the level of gas activity and thus the terminal velocity 
of dust particles. 
 
On a different matter, similar to the case of gas, the radial evolution of dust density can be 
estimated from mass conservation 
 

02
0

2
0

d
d

d
d vr

vr ρρ =  
(17)

Once particles are a few radii away from the nucleus ( ∞> ,drr ) and ∞≈ ,dd vv , this relation 
simplifies to 
 

02

2
0

dd r
r ρρ ≈  

(18)

 
5.3. Physical Scaling Laws for Density and Velocity  
 
As indicated before, both gas and dust particles reach certain terminal velocities after separating 
a distance of a few kilometers from the nucleus surface. The existence of such a terminal 
distance ∞r  is also apparent from Fig. 3. Hence, the state of the gas beyond the terminal distance 
can be described by 
 

),,(),,( 2

2

ϕθρϕθρ ∞
∞= r
r
rr ss  

∞= ,),,( ss vrv ϕθ  

(19)

 
Similarly, the state of the dust is given by 
 

2

2

),,(),,(
r
rrr dd
∞

∞= ϕθρϕθρ  

),(),(),,( , ϕθϕθϕθ sdd mvrv ∝= ∞  

(20)

 
From Eq. 19 and 20, we can also write (Fig. 4 shows how well this proportionality holds for the 
numerical model) 
 ),,(),(, ϕθρϕθ ∞∞ ∝ rv sd  (21)
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Furthermore, we introduce the assumption that the ratio χ  between dust and gas mass flow is 
the same everywhere on the nucleus surface, that is 
 ),(),( ϕθχϕθ sd mm =  (22)

which leads to 
 ∞∞∞∞ = ,, ),,(),(),,( ssdd vrvr ϕθρχϕθϕθρ  (23)

These interrelations between gas and dust states will be extremely useful in our analysis, as they 
allow us to indirectly derive the effect of the gas drag on the S/C from measurements of the dust. 
In particular, the following relation can be worked out from the equations above for the gas 
dynamic pressure at a given position 
 

),,(),,(),,(),,(
2
1 2 ϕθρϕθρϕθϕθρ ∞∝ rrrvr sdss  (24)

 

 
Figure 4. Profile of dust velocity (left) and a factor of the square root of the gas density 

(right) for different values of α and distance to the nucleus centre 5 km 
 
 
6. Methods for prediction of coma drag force on Rosetta during a fly-by 
 
For this study, it is assumed that during a fly-by, the SC follows a uniform linear motion with 
relative velocity to the nucleus SCv  of norm 1 m/s and direction vu . Let d  denote the vector 
from the nucleus centre to the point of closest-approach (CA), with norm d  and direction du . 
Also, for convenience, let us define a Cartesian fly-by reference frame with the basis },,{ dvn uuu , 
with dvn uuu ×= , and origin in the nucleus centre. The SC position is given by 
 

vd ududr )tan()( αα +=  (25)

where α  is the angle of the SC from closest-approach and ds /tan =α  (see Fig. 5) with s  the 
distance of the SC from CA, i.e. vurs ⋅= . A last parameter defined now for convenience is η : 
the angle between d  and the sun direction relative to the nucleus, sunu . 
 
Figure below depicts all parameters described so far. 
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Figure 5.  Parameters of a generic fly-by trajectory in fly-by frame 

 
Assuming that the interaction between the coma gas molecules and the SC’s surface is perfectly 
inelastic, the drag acceleration of the SC at a given time can be written as 
 

( )SCsSCs
SC

sSCD
drag vvvv

m
Aca −−=

ρ
2
1

 (26)

with scA  being the cross-sectional area of the SC towards the flow [m2] (function of the flow 
direction, the SC attitude and the articulation angles of both SAs and HGA), SCv , the velocity of 
the SC relative to the nucleus [m/s], SCm , the SC mass [Kg] and Dc , the SC’s coefficient of drag, 
equal to 2 (free molecular regime). 
 
Because the gas reaches supersonic velocities, much larger than the SC velocity, sSCs vvv ≈− . 
Furthermore, assuming gas interaction is constrained to the radial direction, the drag force acts 
along the radial direction rrur /=   and the acceleration due to drag can be predicted by 
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m
Ac

a ≈  
(27)

Now, given two fly-bys: one during which the acceleration is measured (denoted by subscript 
m ) and another for which the acceleration is predicted (subscript p ), and assuming once again 
that the gas only interacts along the radial direction, the equation above leads to the acceleration 
prediction 
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)(  ,,2

2

ααα
α
α

α
α

αρ
αρ

α prmrm
m

p

m

p

m

p
p uua

A
A

v
v

a ⋅=  
(28)

 
where, for each fly-by, the angle α  is defined with respect to the closest-approach direction of 
each of the fly-bys, i.e. )(αpa , )(αρ p , )(αpv , )(αpA  and )(, αpru  are given at the point of fly-
by p  where the S/C relative position forms an angle α with respect the CA direction of fly-by 
p , whereas )(αma , )(αρm , )(αmv , )(αmA  and )(, αmru  are given at the point of fly-by m  

where the SC relative position forms an angle of α  with respect to the closest-approach 
direction of fly-by m . 
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Note that the errors on the acceleration prediction )(αpa  come for three different sources: 
1. Errors in the measurement of )(αma . 
2. Errors in the assumptions done to derive Eq. 28: negligible dust drag force, gas only acts 

along the radial direction relative to the nucleus centre, inelastic collision of the gas 
molecules with the SC, etc. 

3. Errors in the estimation of each of the three ratios of Eq. 28.  
 
In addition to the assumption of error-free availability of both )(αma  and remote measurements, 
in order to further focus our analysis, at this point we assume: 
1. Null drag force due to dust. 
2. Perfectly inelastic collisions between the gas molecules and the SC. 
3. Perfect knowledge of the SC geometry, attitude, and HGA and SAs angles, i.e. no error in 

the estimation of )(αA . 
 
This means that the errors committed in our analysis will be solely due to: 
1. Errors in the estimation of the ratios )(/)( αραρ mp  and )(/)( αα mp vv . 
2. Error derived from the assumption that the gas velocity is radial with respect to the nucleus 

centre. For the physical gas state, at distances from the nucleus centre larger than 5 km, gas 
deflection is always below 5 degrees, which translates into negligible errors below 0.4%.  

 
In the following, we present a number of methods developed to predict the ratios )(/)( αραρ mp  
and )(/)( αα mp vv  for different sets of available input measurements. Later, we will assess the 
accuracy of these methods by predicting, from measurements derived from the physical models 
of gas and dust, the drag that the coma would exert on the SC, was the gas state identical to that 
of the physical model. We will do this for a number of simple fly-by geometries in order to 
assess the strengths and flaws of each method. Furthermore, in order to simplify the expressions 
of the prediction methods, both the SC attitude and the SAs and HGA rotation angles will be 
identical at equivalent points of different fly-bys, so that 1)(/)( =αα mp AA  in Eq. 28 (the 
accuracy of the shape model of Rosetta is out of the scope of this paper). 

 
6.1 R-squared scaling 
 
The first scenario is: provided the acceleration profile )(αma  during an initial fly-by, estimate 
the acceleration profile )(αpa  during a second fly-by in the absence of remote measurements. 
Because there is no information about possible changes in comet activity between one fly-by and 
the other, all we can do is to use the analytical expressions for the gas dynamics. Since using Eq. 
7 to scale down gas velocities from an outer fly-by to an inner one may lead to very large errors 
(because of the shape of the curve in Figure 3), it is preferable to assume that 1)(/)( =αα mp vv . 

This results in simple r-square scaling 22 )(/)()(/)( αααραρ pmmp rr=  so that the acceleration of 
fly-by p  can be predicted by: 
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Although the predictions from the R-squared scaling will be very poor when either fly-bys have 
very different angles η  or changes in nucleus activity from one fly-by to the other are 
significant, this is the best possible scaling in the absence of remote-sensing measurements. 
 
6.2 CA-density scaling 
 
Now we assume that not only )(αma , but also gas densities at the closest-approach positions of 
fly-bys m  and p  are known (expected to be available from Miro, see section 3). They are 
respectively denoted by )(, mms dρ  and )(, pps dρ . We can now replace the R-squared scaling of 
the preceding method by the ratio of densities actually measured at CA 
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This method should represent an improvement over the simple R-square scaling when either 
angle η  or the activity profile changes significantly from one fly-by to the other. 
 
6.3 Gas column density scaling 
 
This time, we assume that in addition to )(αma  , there is at our disposal a measurement I  
proportional to the gas column density along the fly-by trajectory for both fly-bys m  and p ( mI  
and pI , respectively). Assuming, for the sake of simplicity, that I  is not only proportional to, 
but actually equal to the column density, its value is given by 
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with units Kg/m2. We can re-write 
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But from Eq. 6 we know that for two fly-bys with same η  and gas distribution, 

)()()( 2 αααρ ss vr  is approximately the same for all α . Thus, for msv ,  and psv , being some 
average gas velocity during fly-bys m  and p , we can write 
 msmmpspp vdIvdI ,, ≈  (33)

If we further assume once more a velocity ratio of one, the equation above simplifies to 
 mmpp dIdI ≈  (34)

On what follows, we will refer to the magnitude dII c =  as corrected gas column density.  
 
Finally, the acceleration of fly-by p  can be predicted by: 
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This prediction method can be understood as an enhancement of the R-squared scaling that will 
return better estimates whenever either η  or the gas state changes significantly from one fly-by 
to the other, but only at the expense of a method-intrinsic error of magnitude  
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for 0=η  and unchanged gas activity, mainly derived from the fact that the gas velocity does not 
remain constant, but in fact increases as the gas expands, as predicted by Eq. 7 and depicted in 
Fig. 3. 
 
6.4 Dust column density scaling 
 
The inputs for this method are similar to those for the gas-column-density-scaling, just that this 
time the available column density along the fly-by direction is not that of a gas species, but of 
dust particles. (from  NAVCAM, see section 3). Thus, dust column density along the fly-by 
direction is given by  
 ∫

∞
=

0

)(
s d dssJ ρ  (37)

with units Kg/m2. The same computations that were done for the gas column density can now be 
done for the dust arriving at 
 mdmmpdpp vdJvdJ ,, ≈  (38)

and again this expression can be further simplified by assuming mdpd vv ,, ≈  so that  
 mmpp dJdJ ≈  (39)

From now, we will refer to the magnitude dJJ c =  as corrected dust column density. 
 
Nevertheless, because the drag force on the SC is provoked not by the dust, but by the gas 
molecules, this is a more indirect method that can only be expected to work under the additional 
assumption that the ratio χ  between dust and gas mass flow is always and everywhere the same, 
that is 
 ttmtm sd ),2,0[],,0[),,(),,( πϕπθϕθχϕθ ∈∈∀=  (40)

All in all, the equation of the dust-column-density-scaling prediction method is 
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and similarly to Eq. 36, the method introduces an intrinsic error that in the case of 0=η  and 
unchanged gas distribution between the two fly-bys is given by 
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6.5 Dust column density scaling with correction for dust velocity 
 
Because after a few kilometers, dust particles have already been accelerated up to their terminal 
velocity, and this terminal velocity is a function of the gas activity at every point on the nucleus 
surface, the assumption mdpd vv ,, ≈  will lead to very poor predictions with the column-density-
scaling method whenever fly-bys m  and p  have very different η . However, some information 
about the gas activity can be inferred from the gas density at the point of closest-approach, which 
in theory will allow us to improve the predictions of the dust-column-density-scaling method by 
incorporating information on the difference of dust particles velocity between one fly-by and the 
other. 
 
Let us choose as typical dust velocities during the fly-bys mdv ,  and pdv ,  those at the CA point of 
each fly-by. At this distance from the nucleus surface, we assume that gas velocities have already 
converged to their terminal values, so that, from Eq. 12 and 16, the ratio of dust velocities is 
given by 
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where )(, mms dρ  and )(, pps dρ  denote the gas density at the point of CA for fly-bys m  and p , 
respectively. 
 
By scaling now with Eq. 38 instead of Eq. 39, we arrive at the final equation 
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Now the method-intrinsic error for unchanged η  and coma state is 
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This method is from now also referred to as corrected-dust-column-density-scaling. 
 
6.6 Local density scaling from LS fit from gas 
 
At this point we are going to assume that we have availability of not just a column density 
measurement along a certain direction, but a whole set of images of the gas from several points 
of view. For each of these images, the intensity at each point on the image plane is proportional 
to the gas column density along the direction of the line of sight. The approach now is to define a 
distribution of gas density with the whole set of spherical harmonics up to order one and a radial 
dependency inversely proportional to r2, that is 
 [ ]θϕθϕθϕθρ cossinsincossin1),,( 2 ssss

LS
s dcba

r
r +++=  (46)
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and fit the set of coefficients },,,{ ssss dcba  with the column density information contained on 
the images by means of the least-squares method (LS). The convention used for the spherical 
coordinates is as given by Eq. 1.  
 
Three features of this distribution function are worth a comment: 
1. The density distribution is an axial-symmetric cos-distribution wrt. direction },,{ sss dcb .  
2. The assumption of inverse dependency on r-squared comes again from the assumption that 

gas velocity remains constant for different radial distances, which will introduce some 
intrinsic errors. 

3. The quality of the fit depends on the point from which the images are taken. This is 
illustrated in Fig. 6, that displays the propagation of gas coming from two different 
directions with respect to the subsolar direction cz− . Assuming the dependency of the 
density on the distance to the nucleus centre is known (inverse r-squared), there is only a 
degree of freedom θ  left. Hence, it may be possible to derive the distribution of density 
from a single image. That is the case when the observer is located far away from the nucleus 
in a direction perpendicular to cz− . This can be easily understood in the two-cone-surfaces 
model of the picture: first, one can derive the density for the outer cone surface and only 
then subtract the contribution of the outer cone surface to the column density at a θ  equal to 
that of the inner cone surface so as to calculate the density on the inner cone surface. 
Contrariwise, an observer located at cz−  can not derive any information whatsoever as of 
the density distribution, as it is not possible for him to isolate the contribution of the 
different cone surfaces. 

 
Figure 6. Cone surfaces of gas coming from two different directions for an axial-symmetric 

coma 
 
Now, for a real-life 3-dimensional coma (albeit still assuming inverse r-square dependency), 
the number of degrees of freedom increases to two (θ  and ϕ ), which requires an infinite 
number of images in order to derive the distribution of density. In practice, this brings about 
the fundamental implication that the knowledge of the distribution of density will always be 
incomplete, not only because of real-life effects, but because of the very nature of the 
problem. But although incomplete, its degree of completeness will still depend on the 
adequacy of the selection of viewpoints for the images. One can understand intuitively that 
again an observer located along a direction perpendicular to cz−  will collect more valuable 
information than one located along cz− . For each image, it is possible to select different 
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regions of data to feed into the LS fit, and an adequate alignment between the selection of 
these regions and the space where the fit is going to be used is another critical determinant of 
the quality of the fit. In our studies, we will work with only two images taken from points 
perpendicular to cz− , and will select the semi-plane of the image towards the sun direction 
to feed the LS fit. Gas density will be taken as null whenever the resultant function 

),,( ϕθρ rLS
s  would have provided a negative value. 

 
Once the coefficients of ),,( ϕθρ rLS

s  are computed with the least-squares method, it is possible 
to predict the acceleration profile of fly-by p  from that of fly-by m  by 
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where ))(( p αρ rLS
s  and ))(( m αρ rLS

s  are the densities provided by the fit at the points of the 

trajectories that form an angle α  with respect to, respectively, pd  and md . 
 
This method is from now also referred to as local-gas-density-scaling. 
 
6.7 Local density scaling from LS fit from dust 
 
This method is similar to that of the gas, but this time the coefficients of a function 
 [ ]θϕθϕθϕθρ cossinsincossin1),,( 2 dddd

LS
d dcba

r
r +++=  (48)

are fitted to approximate the density distribution of dust. Assuming again constant dust to gas 
ratio χ , the equation of prediction is now 
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This method is from now also referred to as local-dust-density-scaling.All remarks about coma 
observability and the quality of the least-squares fit done in the preceding section remain valid. 
 
6.8 Local density scaling from LS fit from gas with correction for actual density at CA 
 
When the LS fit of gas is done using a wide range of data from the images, the distribution of 
density ),,( ϕθρ rLS

s  can deviate substantially from the actual density at certain locations. 
Because most of the interaction between the coma and the SC takes place around the CA 
position, deviations in the fit from the actual density about the CA position will lead to poor 
estimations of the overall effect of the coma on the SC. There are two ways to improve the 
prediction: 
1. Reduce the range of data of the LS fit to a region around the CA position. 
2. Incorporate estimations of the gas densities at CA into the local-dust-density-scaling 

formula, resulting in 
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This method is from now also referred to as corrected-local-gas-density-scaling. 
 
6.9 Local density scaling from LS fit from dust with correction for dust velocity 
 
The prediction formula given by Eq. 49 assumes that gas dynamic pressure is proportional to 
dust density. However, according to Eq. 24, this is not the case at points with different gas 
activity. Hence, as it was done in the corrected-dust-column-density-scaling method, we can 
enhance the prediction by incorporating information on gas density at CA. Applying Eq. 24  at 
closest-approach positions (we cannot apply it everywhere along the trajectory as we only know 
gas density at the points of CA), we end up in the expression 
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This method is from now also referred to as corrected-local-dust-density-scaling. 
 
7. Simulation exercise 
 
The physical model for gas introduced in section 4.1 is used in order to generate actual 
acceleration profiles )(αma  to take as reference for later predictions and also to assess the 
accuracy of those later predictions )(p αa  with the scaling methods presented in the preceding 
section. Furthermore, the physical models of both gas and dust are used to derive the error-free 
measurements used as input by the different scaling methods. 
 
The accuracy of the drag predictions is established with reference to both plots of predicted 
versus actual acceleration and the relative error in the prediction of vΔ  (time in days, velocity in 
m/s), calculated as 
 ∫=Δ f

i

t

t
dttav )(86400  (52)

Note that vΔ  is simply a measure of the magnitude of the integral effect of the coma on the SC, 
as opposed to the actual delta-V, since the trajectory is maintained linear in spite of the drag 
force. 
 
We now first define the fly-by cases that will be used for our analyses, and then present and 
discuss the results. 
 
7.1 Description of cases 
 
Three fly-by linear trajectories with uniform motion contained on the plane perpendicular to nu  
are defined in the table below 
 

Table 1.  Description of fly-by cases 
 Case 1 Case 2 Case 3
Distance d 10 km 5 km 5 km
Angle η  0 deg 0 deg 45 deg
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Because the focus of the study is on the prediction of the gas dynamic pressure, as opposed to its 
interaction with the SC (dependence on its shape, mass and surface properties), a simple 
common profile has been selected for the three fly-by cases: 
• constant attitude with zsc pointing towards the nucleus centre at the closest-approach position 
• constant rotation angles of SAs, with solar cells pointing towards -zsc 
• constant rotation angles of HGA, with the boresight pointing towards zsc 

Although unrealistic (with this profile some SC constraints regarding sun illumination would not 
be fulfilled), this profile maximises the force exerted by the gas on the SC at CA, by maximizing 
the SC cross section area to a value of 72.619 m2 at the point where the distance to the nucleus 
surface is minimum. 
 
Fly-by case 1 will be used as reference case for predictions of both cases 2 and 3. Case 2 is also 
used as reference for predictions of case 3. While predictions of case 2 from case 1 are used to 
assess the behaviour of the different prediction methods in the face of changed CA distances, 
predictions of case 3 from case 2 isolate the effect of differences in the angle with respect to sun 
direction. In fact, case 3 can also be understood as a case with identical geometry to case 2 but in 
the presence of an instable coma that changes its activity profile from one fly-by to the other (in 
this case, the change is such that the point of maximum activity on the nucleus surface is tilted 
45 degrees). Finally, predictions of case 3 from case 1 account for differences on both distances 
and angles relative to the sun. 
 
For case 1, the fly-by trajectory starts 24 hours before perihelion time and ends after another 24 
hours, i.e. the fly-by lasts 48 hours during which the SC advances 172 km. For cases 2 and 3, the 
initial position and time are defined such that the initial angle α  is the same as for case 1 and 
again the SC reaches its CA position at perihelion time, i.e. fly-bys 2 and 3 last 24 hours during 
which the SC covers a distance of 86 km. 
 
The following table provides information about gas and dust state at the closest-approach 
positions of the three fly-bys. These numbers will be useful for understanding the errors derived 
from the different prediction methods. 
 

Table 2.  Gas and dust state at CA positions 
 Case 1 Case 2 Case 3 
Gas density at CA 1.26·10-9 Kg/m3 6.03·10-9 Kg/m3 2.66·10-9 Kg/m3 
Gas radial velocity at CA 824.94 m/s 740.07 m/s 761.44 m/s 
Dust density at CA 5.10·10-9 Kg/m3 1.18·10-8 Kg/m3 9.81·10-8 Kg/m3 
Dust radial velocity at CA 58.89 m/s 50.70 m/s 39.87 m/s 

 
At a first glance, it might seem surprising that dust density at CA is higher for case 3 than for 
case 2, but this peak of density can actually be observed in Fig. 2 and comes from the fact that 
the nucleus surface presents a concavity around that angular position. Because of the higher dust 
density, dust velocity is lower at the CA of case 3 than at the CA of case 2. This is consistent 
with the gas state, since gas density at the CA of case 2 is higher than gas density at the CA of 
case 3 (as we would expect from Eq. 21). From Fig. 2, note that on the semi-plane yc=0, xc>0 the 
dust state is much more regular. The closest-approach position of fly-by 3 is however on yc=0, 
xc<0, and the irregular dust state makes the prediction even more challenging. 
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Table 3 collects the values of the gas and dust corrected column density measurements used for 
the different fly-by cases: 
 

Table 3.  Gas and dust state at CA positions 
 Case 1 Case 2 Case 3 
Corrected gas column density ( cI ) 0.2415 Kg/m 0.2788 Kg/m 0.2069 Kg/m 

Corrected dust column density ( cJ ) 3.653 Kg/m 3.594 Kg/m 3.285 Kg/m 

 
7.2 Results and remarks 
 
In this section, we provide tables and figures with the results of the simulation exercise, and 
analyze those results. The tables bring together the prediction errors for all combinations of cases 
and methods in terms of vΔ . Column Δv contains the norm of vΔ , whereas column “Error Δv 
(%)” is defined as 100 times the norm of the vectorial difference between the predicted and the 
actual value divided by the norm of the actual value. In addition, one set of figures is provided 
for each fly-by case. Each figure shows the actual and predicted acceleration profiles (the former 
in black and the latter in blue color) in m/s2 with respect to time. Time is given in hours, relative 
to CA time. 
 
7.2.1 Predictions of case 2 from case 1 
 
The simple R-squared method provides surprisingly good predictions with errors below 5%. This 
error originates in fact from two main different sources: 
- the fact that, for each α , gas velocity is higher for fly-by 1 than for fly-by 2 (we are 

assuming the ratio of velocities to be one) 
- the fact that, for each α , the ratio of gas densities between fly-bys 1 and 2 is not ¼, as the 

method assumes in this case 
Looking at the gas state, the R-squared method underestimates density by about 17% throughout 
the fly-by, but this error is counteracted by an overestimation of the squared-velocity by about 
20%, which results in the overall overestimation of less than 5%. Nonetheless, had the profile of 
nucleus activity been defined in a different way, the prediction would have been much less 
impressive, as errors would not have compensated one another. 
 
This is exactly what happens with the CA-density-scaling method, for which the overestimation 
of squared-velocity is not offset by a significant error in densities, resulting in an overall error 
over 20%. 

 
On the other hand, since both η  and the activity profiles are the same for fly-bys 1 and 2, the 
gas-column-density-scaling method does not contribute much, and instead adds up the intrinsic 
error given by Eq. 36, leading to an overall estimation error of over 18%. 
 
The intrinsic error of the dust-column-density-scaling, however, happens to be much smaller in 
this case (because cJ  is similar for cases 1 and 2) and thus, although it does not incorporate 
valuable information, it does not introduce a large intrinsic error either, amounting to an overall 
estimation error of about 4%.  
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For the least-square fit of the gas state, two images taken from 250 km away from the nucleus 
are used, one from +xc and another from +yc, so as to minimise observability issues. The fit 
generates the following coefficients for Eq. 46: },,,{ ssss dcba = {0.0227969, 0.0215850, 
0.0203263, 0.108314} Kg/m, which corresponds to an axial-symmetric fit with respect to axis 
{0.19221, 0.181002, 0.964517}, which happens to be tilted 15.31 degrees with respect to the sun 
direction. The figure below shows actual versus predicted densities with the LS fit. 
 

 
Figure 7. Actual gas density (black) vs gas density predicted by the LS fit (blue) along two 

circles at 5 and 10 km from the nucleus centre 
 
The same two points of view are used for the images of the dust state. This time, the fit generates 
the coefficients for Eq.48: },,,{ dddd dcba = {0.413844, 0.486841 , 0.0343628 , 1.57158} Kg/m, 
which corresponds to an axial-symmetric fit with respect to axis {0.295841, 0.0208814, 
0.955009}, which happens to be tilted 17.25 degrees with respect to the sun direction and 10.96 
degrees with respect to the symmetric axis of the gas fit. 
 
However, as both the gas function Eq. 46 and the dust function Eq. 48 assume inverse R-squared 
dependency and for each α , the value of θ  and ϕ  is the same for fly-by cases 1 and 2, it turns 
out that both the gas- and dust-local-density-scaling methods are equivalent to the R-squared-
scaling method for this particular case. Moreover, the corrected-gas-local-density-scaling is in 
this case equivalent to the CA-density-scaling. The corrected-dust-local-density-scaling, 
however, incorporates the factor 
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which increases the error to to 13%. 
 
Table 4 provides the actual value of Δv for fly-by case 1, and Tab. 2, both the actual and 
predicted values for fly-by case 2. 
 

Table 4.  Actual values for case 1 (reference case) 
 Δv [m/s] 
Actual values 0.56767 
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Table 5.  Estimations for case 2 from case 1 

Method Δv 
[m/s] 

Error Δv 
(%) Method Δv [m/s] Error Δv (%) 

Actual values 1.1192 - R-squared scaling 1.1442   4.68%   
CA-density 
scaling 1.3714 22.98% Gas column density 

scaling 1.3213 18.59% 

Dust column 
density scaling 1.1255 4.11% Corrected dust column 

density scaling 1.2322 10.96% 

Gas local density 
scaling 

Equivalent to 
R-squared scaling 

Corrected gas local 
density scaling 

Equivalent to CA-density 
scaling 

Dust local density 
scaling 

Equivalent to  
R-squared scaling 

Corrected dust local 
density scaling 1.2527 12.68% 

 
 

Actual (black) vs predicted acceleration (blue) for case 2 from data for case 1 

 
Figure 8. R-squared scaling 

 
Figure 9. Gas column density scaling  

 
Figure 10. Dust column density scaling  

 
Figure 11. Corrected dust column density scaling  

 
Figure 12. Corrected gas local density scaling  

 
Figure 13. Corrected dust local density scaling 
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Figure 14. CA-density scaling 

 

 
 
7.2.2 Predictions of case 3 from case 2 
 
Fly-by cases 2 and 3 have the same closest-approach distance but fly over a different path on the 
nucleus surface. Because of that, the R-squared method, which is a good starting point between 
cases with the same η , yields in this case a very bad prediction, with an error near 70%. 
 
A bit better, but still poor, are the results of the CA-density scaling. Although the method 
incorporates the actual value of the density at the CA position of both fly-bys, the density profile 
encountered by the SC during the fly-by is very different for both cases. Consequently, 
prediction errors are over 43%. Note from Fig. 20 how, although the error in the prediction of the 
maximum acceleration is quite small, the whole prediction curve is shifted, which results in a 
large overall error. Indeed, a similar shift will be present in the prediction of all methods but 
those based on a LS fit, provided that the value of η  differs significantly between both fly-bys.  
 
The gas-column-density-scaling represents in this case an improvement with respect to the 
simple R-squared scaling, because the change in fly-by geometry is partially accounted for with 
the factor c

m
c
p II / . Overall error is reduced below 40%. 

 
The dust-column-density-scaling also improves the results of the R-squared scaling, but this time 
the overall error remains at about 57%. The reason is that, as shown in Fig. 3, the terminal 
velocity of dust is not uniform over different points of the nucleus surface, and this results in a 
significant intrinsic error, because η  is very different between one fly-by and the other. The 
predictions from the gas-column-density scaling method are indeed better because the gas 
velocity is closer to uniform over different points on the nucleus surface. 
 
We can, however, refine these results by incorporating information about these differences on 
dust velocity. This reduces the error below 34%, prediction error of the corrected-dust-column-
density method. We can at this point verify numerically what we already saw from Fig. 4, 
nominally that the square root of the ratio of gas densities at a given distance (5 km in this case) 
is a relatively good predictor of the ratio of dust velocities. From Tab. 2, the square root of the 
ratio of gas densities is 0.664, whereas the ratio of dust velocities is 0.787.  
 
Still more accurate are the predictions from the gas-local-density-scaling. The use of the gas 
density distribution given by Eq. 46 whose coefficients {as, bs, cs, ds} were fitted with the LS 
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method and provided in section 7.2.1, proves very adequate for this case, in which the 
acceleration during a fly-by is predicted from the acceleration during a significantly different 
geometrical scenario. Overall error drops to about 25% (Δv is overstated, as we could have 
anticipated from Fig. 7, for α = –45 degrees). This result can be further refined by incorporating 
the actual value of gas density at CA positions. This way, the corrected-gas-local-density scaling 
reduces the error below 17%. 
 
Considerably worse is the prediction of the dust-local-density-scaling, for reasons identical to 
those that justify the mediocrity of the results attained with dust-column-density-scaling, i.e. the 
assumption of uniform dust velocity is very unrealistic. As a consequence, prediction error is in 
the order of 44%. 
 
This prediction is however extraordinarily improved when differences on dust velocities are 
accounted for. This is what the corrected-dust-local-density-scaling method does, achieving a 
remarkably low error of around 10% for such a challenging scenario. Nevertheless, a look at Fig. 
22 makes it clear that under a different scenario the method would not have yield so accurate 
integral results. Acceleration is overstated by more than 10% at its peak, just that this higher Δv 
is partially compensated by an underestimation thereafter.  
 

Table 6.  Estimations for case 3 from case 2 

Method Δv 
[m/s] 

Error Δv 
(%) Method Δv 

[m/s] 
Error Δv 
(%) 

Actual values 0.71930 - R-squared scaling 1.1117 68.01% 

CA-density scaling 0.48959 43.06% Gas column density 
scaling 0.82568 39.13% 

Dust column 
density scaling 1.0161 56.96% Corrected dust column 

density scaling 0.67553 33.85% 

Gas local density 
scaling 0.90270 25.40% Corrected gas local 

density scaling 0.61221 16.62% 

Dust local density 
scaling 1.0356 44.12% Corrected dust local 

density scaling 0.68772 10.50% 

 
 

Actual (black) vs predicted acceleration (blue) for case 3 from data for case 2 

 
Figure 15. R-squared scaling 

 
Figure 16. Gas column density scaling  
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Figure 17. Dust column density scaling   

Figure 18. Corrected dust column density scaling  

 
Figure 19. Gas local density scaling  

 
Figure 20. Corrected gas local density scaling  

 
Figure 21. Dust local density scaling 

 
Figure 22. Corrected dust local density scaling 

 
Figure 23. CA-density scaling 

 

 
 
7.2.3 Predictions of case 3 from case 1 

 
Finally, we propose the case in which estimations of a fly-by with CA distance of 10 km and 

0=η  (case 1) are used to predict the effect of the coma on the SC for a fly-by with CA distance 
of 5 km and 45=η  (case 3). Because both d  and η  differ significantly between the measured 
and the predicted fly-bys, this is the most challenging scenario. In fact, the difficulties 
encountered in the two previous scenarios are compounded. 
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As expected, the R-squared scaling is too simple for this case (error close to 75%), and both the 
gas- and dust-column-density-scaling methods achieve modest improvements (errors of about 
55% and 60%, respectively). The CA-density-scaling seems more appropriate in this scenario, 
with an overall error below 38%. After all, the CA-density-scaling method incorporates the 
actual value of gas density at the CA position of both fly-bys, and this information proves to be 
more valuable than column-densities for this particular scenario. But again, the prediction from 
dust column density is drastically improved when predictions on variations on dust velocity are 
accounted for. This way, the corrected-dust-column-density method reduces the overall error to a 
meritorious 37%. 
 
Nevertheless, it is the methods that make use of the LS fits of gas and dust density that, once 
again, yield the best outcomes. While the gas-local-density scaling provides an estimation with 
overall error below 27%, the corrected-gas-local-density scaling reduces this error to about 9%. 
Similarly, while the dust-local-density scaling yields an error of about 46%, the prediction error 
drops to about 13% when estimations of dust velocity are incorporated in the corrected-dust-
local-density scaling. 
 

Table 7.  Estimations for case 3 from case 1 

Method Δv 
[m/s] 

Error Δv 
(%) Method Δv 

[m/s] 
Error Δv 
(%) 

Actual values 0.72576 - R-squared scaling 1.1450 74.10% 

CA-density scaling 0.60427 37.59% Gas column density 
scaling 0.97951 55.27% 

Dust column 
density scaling 1.0280 60.48% Corrected dust column 

density scaling 0.68259 37.51% 

Gas local density 
scaling 0.90325 26.48% Corrected gas local 

density scaling 0.73635 9.28% 

Dust local density 
scaling 1.0403 45.75% Corrected dust local 

density scaling 0.75633 13.19% 

 
 

Actual (black) vs predicted acceleration (blue) for case 3 from data for case 1 

 
Figure 24. R-squared scaling 

 
Figure 25. Gas column density scaling  
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Figure 26. Dust column density scaling  

 
Figure 27. Corrected dust column density scaling  

 
Figure 28. Gas local density scaling  

 
Figure 29. Corrected gas local density scaling  

 
Figure 30. Dust local density scaling 

 
Figure 31. Corrected dust local density scaling 

 
Figure 32. CA-density scaling 

 

 
 
8. Conclusions 
 
From the results of the simulation exercise, it is apparent that whenever the coma state changes 
significantly from one fly-by to the next or the effect of the coma drag on the SC needs to be 
predicted from data collected during previus fly-bys with significantly different geometries, 
measurements from remote-sensing instruments need to be incorporated into the scaling process.  
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For the fly-by cases of our study, both gas images taken from adequate points of view, and the 
combination of dust images taken from adequate points of view plus estimations of the gas 
density at CA, make it feasible to predict the dV due to drag with overall errors below 30%. On 
the other hand, if only estimations of the gas density at CA are available, prediction errors are in 
the order of 50%. For any scenario, best methods yield an accuracy of 10 - 20% of the dV due to 
drag. All these figures are under the assumption of availability of error-free measurements of the 
observables. 
 
Prediction errors are attributed to the fact that the available observables cannot separate relevant 
physical processes realiably (e.g. the increasing gas velocity with distance from the nucleus). The 
availability of reliable predictions of the drag force will ultimately depend on the fulfillment of 
the idealistic assumptions on which the prediction methods are based, principally steady-state 
coma, no gas compostion or dust-to-gas ratio variation, and constant nucleus surface 
temperature. However, it will not be until Rosetta reaches the vicinities of the comet that its 
actual behaviour will be known.  
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