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Abstract: In this paper we outline how the argument of perigee can be used to determine the 
crossings of a geosynchronous orbit through the geostationary orbit without any extensive 
computational efforts. The peculiarity of this geometry is that the semi-major axis of any 
geosynchronous orbit equals the geostationary distance and by definition any geosynchronous 
spacecraft crossing the geostationary orbit is either at the ascending or the descending node. 
Using standard equations of satellite motion we show that the eccentric anomaly is 90 degrees at 
that moment, and the true anomaly is only defined by the eccentricity of the geostationary orbit. 
We illustrate, that for any given eccentricity there are four values for the argument of perigee at 
which the spacecraft crosses the equatorial plane at geostationary distance.  
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1. Introduction 
Since February 2007 NASA’s multi-spacecraft Time History of Events and Macroscale 
Interactions during Substorms (THEMIS ) mission has been successfully collecting high time 
resolution data of plasma particles and electromagnetic fields in the Earth’s magnetosphere [1]. 
At the center of the scientific research are the magnetospheric processes leading up to substorm 
onsets that are visible to us through the dynamic outbreaks of bright polar lights. During the two 
year nominal mission the five identical probes were kept on synchronized, highly elliptical, and 
nearly equatorial orbits with periods of 4, 2, 1, 1, and 1 days to form large scale conjunctions in 
the magnetospheric tail every 4 days.  Since 2009 the mission has been split into two extended  
 

 

Figure 1. Logo of the extended mission, an artist’s rendering of the magnetospheric tail 
configuration with Moon, THEMIS, and ARTEMIS satell ites opposing the Sun’s direction 
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missions. The two outer probes have been brought into lunar orbits and have been renamed as 
Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the 
Sun (ARTEMIS ). After a challenging journey through lunar libration orbits lunar science orbits 
started in summer 2011 [2]. At the start of 2010, the remaining three near-Earth THEMIS probes 
have been brought into a smaller formation on low Earth geosynchronous orbits to address 
different questions about magnetospheric processes on smaller scales. Figure 1 illustrates, not to 
scale, the magnetospheric tail configuration with the Moon, THEMIS and ARTEMIS satellites. 
The topography of the Earth’s magnetosphere, shaded in blue, is visualized by magnetic field 
lines. The ARTEMIS probes are captured on their lunar orbits at the moment when one probe is 
entering the Moon’s plasma wake, while the THEMIS probes are placed near 11 Earth radii to 
monitor the disruption of the dipole field structures. Thanks to sufficient fuel reserves and our 
ability to actively alter the orbits we are able to significantly vary orbit shape and orientation 
with regards to the equatorial plane twice per year. These orbit redesigns are guided by the 
feedback from the most recent findings from our science data.  
 
THEMIS and its extended missions are managed in PI mode by U.C. Berkeley. Mission 
operations and science data processing are highly automated allowing our relatively small multi-
mission operations team to handle all flight and ground systems operations such as S/C 
commanding, data retrieval, and processing, as well as mission design and navigation very 
efficiently [3]. With the THEMIS satellites in orbit now for over 5 years we gained a lot of 
experience in navigating and operating satellites in highly elliptical orbits in the Earth and lunar 
environment [4, 5, 6]. In this paper we focus on our analysis of the low Earth geosynchronous 
orbits and their intersections with the geostationary orbit.  
  

 
 

Figure 2. Distribution of geostationary satellites by inclination. 
 

In the first year of the extended mission phase the three THEMIS satellites were reaching very 
low inclinations having dropped from 7 to 1 degree, raising concerns about close encounters with 
objects in geostationary orbits. Figure 2 shows the distribution of the ~800 publicly known 
geostationary satellites as a function of inclination and underlines that low inclination orbits are 
the most populated ones. As we were facing an increasing probability of close encounters with 
geostationary objects we were interested in routinely predicting these equatorial crossings and 
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furthermore investigating the effect of our frequent orbit refinements on the number and timing 
of such crossings. As the number of space objects, particularly in the geostationary orbit, is 
growing at a high rate we believe that this study is of general interest to the space flight 
community.  
 
It is not the paper’s purpose to present a detailed assessment of conjunctions with geostationary 
objects. Nor would we have knowledge of a comprehensive list of all such objects. Our intent is 
to determine the driving orbital parameters and to develop a method to predict crossings of 
geostationary orbits from THEMIS orbit data that can be integrated into our mission design and 
operational routines [7]. First we will analytically show that the argument of perigee can be used 
to determine the crossings of a geosynchronous orbit through the geostationary orbit without any 
extensive computational efforts and evaluate the effect of small changes of the geosynchronous 
orbit. For long-term predictions of crossings we will demonstrate the need of a high fidelity orbit 
propagator especially at low inclinations. Second, we will empirically analyze crossings of 
THEMIS orbits through a small belt of geostationary orbits. Third, we will illustrate the effect of 
inclination on those crossings. Finally and last, we will summarize our findings and outline the 
operational benefits. Though this analysis has been done with THEMIS data and within a 
parameter range confined by the THEMIS orbits the outlined method and trends are of general 
nature and the parameter space can easily be extended.  
 

 

Figure 3. Intersection of a geosynchronous orbit (blue) and the geostationary orbit (red), 
not to scale. Keplerian elements are indicated for a spacecraft in the geosynchronous orbit 

at the descending node. 

 
2. The Argument of Perigee as a Parameter to Identify Crossings of Geosynchronous 
Orbits through the Equatorial Geostationary Orbit 
 
2.1. Analytical Approach 
 
At first we reduce the multiple trajectory problem into one of two orbits by replacing individual 
orbits of geostationary objects by the equatorial geostationary orbit and the highly elliptical 
THEMIS orbits which differ slightly in altitudes and inclination by an equatorial geosynchronous 
orbit. The extracted geometry between geostationary and geosynchronous orbits in the equatorial 
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plane is shown in Fig. 3 and we can easily apply standard equations of satellite motion [8]. When 
in the same plane both orbits always intersect at two points. At either intersection the distance to 
the primary focus r  is the same for both orbits and equals the geostationary distance. By 
definition the semi-major axis a of the geosynchronous orbit equals the geostationary distance. If 
we apply a=r to the definition of the distance to the primary focus ( Eq. 1), we get the eccentric 
anomaly E=90 degrees and according to Eq. 2 the true anomaly ν is only defined by the 
eccentricity e, as Eq. 3 shows, where rp is the geocentric perigee altitude. 
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Applying the symmetry of the cosine function, Eq. 3 provides the true anomaly for the two 
intersections as: 

ν� = |ν|    (5a) 
 

									ν� = −|ν|								(5b) 
 

From Kepler’s equation, Eq. 6, we obtain the mean anomaly M . Knowing the eccentricity we 
can define the true and mean anomalies of the intersections.  
 

� = � − � ∗ sin	��)			 (6) 
 
If the inclination of the geosynchronous orbit is non-zero both orbits in Fig. 3 intersect at the 
distant node where  r=a. Since the true anomaly is defined from perigee in the direction of the 
S/C and the argument of perigee � is defined from the ascending node in the direction of the S/C 
we can determine the argument of perigee at the ascending node  ! and descending  " node by 
Equations 7a and 7b. 
 

#$ = 360 − '							�7�) 
 

#) = #$ − 180			�7+) 
 
Since both angles, true anomaly and argument of perigee, are defined in the orbital plane, the 
results of Eq. 7a and 7b are independent from the inclination. Hence, for any given eccentricity 
of the geosynchronous orbit we get four values for the argument of perigee, one per quadrant, at 
which the S/C cross the equatorial plane at geostationary distance. Just knowing in what 
quadrant the argument of perigee falls we can characterize the crossing, whether it is ascending 
or descending and inbound, E=-90 deg, or outbound, E=90 deg, using Tab. 1. 
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               Table 1. Critical Argument of perigees and their location 

Quadrant I II III IV 
Location outbound inbound outbound inbound 

Node descending ascending ascending descending 
ω [deg] 40 140 220 320 

 
On geosynchronous orbits, where the semi-major axis is constant, we determine the argument of 
perigee from perigee altitude alone using Eq. 4. Figure 4 shows the arguments of perigee at the 
crossings for perigee altitudes between 600 and 4350 km. Over this wide range the argument of 
perigee changes only by 5 degrees, and we can use the values for ω in Tab. 1 as representative 
mean values to make long term predictions.  
 

 
 

Figure 4: Argument of perigee in degrees of a geosynchronous orbit at crossings through 
the geostationary orbit as function of perigee altitude in km. Green refers to inbound, blue 

to outbound, stars mark ascending nodes, squares mark descending nodes. 

 
Were it not for orbit perturbations such as the non-uniform mass distribution of Earth, and the 
presence of the Sun and Moon the orbits would not rotate and we could avoid any critical 
orientation of our line of nodes. But if we stay long enough in orbit we will pass over each one of 
the four critical arguments of perigee multiple times and become interested in long term 
predictions based on the change rate of the argument of perigee. The main contribution to the 
change rate of the argument of perigee comes from the Earth’s oblateness (J2-term) making it a 
function of inclination and eccentricity, for which we have well defined analytical expressions 
[8]. Whereas solar-lunar effects on the inclination at geostationary distances and on the even 
higher geosynchronous orbits are much smaller but yet significant. Figure 5 shows how  
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Figure 5: Comparing the evolution of the argument of perigee (thick) and inclination*10 
(thin) in degrees from April 2008 to December 2014, based on Earth oblateness only (red) 
and with solar-lunar perturbations included (blue). Initial perigee altitude is 2818 km. 
Time is in days. 

it can be to solely rely on Earth’s contribution to orbit perturbations for long term predictions. In 
Fig. 5 we compare the evolution of the argument of perigee for a THEMIS orbit over nearly 7 
years based on J2-perturbation only, with those that have solar and lunar perturbation included. 
We see that deviations of the times the orbit reaches a critical argument of perigee for crossings 
increase rapidly. Once the orbital plane is being pulled down the change rate of the argument of 
perigee increases and is not a monotone function of time any more. Table 2 compares the 
duration from one critical argument of perigee to the next for the two perturbation models in Fig. 
5. The shift in crossing times between the two models, shown in the last column grows quickly 
from a few days to almost two years in the course of one node revolution. Since the orbits 
actually rotate faster, the crossings happen earlier, which can lead to unwelcome surprises. 
Hence, for reliable long term prediction of crossing times it is important to use a high fidelity 
orbit propagator such the Goddard Trajectory Determination System, GTDS [9].  
 

Table 2: Critical argument of perigee and change rates according to Fig.5 

ω    [deg] 40 140 220 320 40 140 
Inc.  [deg] 5.5 4.0 1.3 1.5 7.0 8.0 
∆ω  [deg] - 100 80 100 80 100 
∆t1  [d] - 565 460 565 460 565 
∆t2  [d] - 490 368 104 419 680 
∆t21[d] -6 -83 -170 -637 -676 -550 
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The implication of Eq. 3 is that as long as we are at or near the geosynchronous orbital period 
there is no way of avoiding crossings of the geostationary orbit. Varying the perigee altitude of 
the geosynchronous orbit will only shift the intersection along the orbit which may help 
temporarily. For short missions and given flexibility in choosing the initial argument of perigee 
one can place the mission into the longer periods between crossings. 
 
2.2. Empirical Approach 
 
In our empirical approach we go back to the multiple trajectory problem and extend the 
geostationary orbit by a belt that is centered at the equatorial geostationary distance and defined 
by a range in the radial distance ∆r  and in the geocentric equatorial Z-component ∆z. In selecting 
∆r and particularly ∆z we wanted to take into account the inclination range of geostationary 
orbits as shown in Fig. 2 In a second, more restricted survey of geostationary objects as a 
function of inclination with SatTrack [10], confining inclination to less than 1 degree, 
eccentricity within 0-0.05, and period within 1430 to 1450 min, we found 90% of those objects 
to be within .1 degrees of inclination. Based on these results, listed in Tab. 3, we chose ∆r=±150 
km and ∆z=±100 km and determined the intersecting arcs of the THEMIS orbits, using high 
fidelity ephemeris at high time resolution. As crossing time per orbit we take the time of the 
minima of ∆r and ∆z along each arc inside the window. The results are visualized as time series 
of argument of perigee and inclination in Fig. 6, as well as orbit tracks in the ∆r - ∆z window in 
Fig 7. In Fig. 6 the vertical lines mark the time of crossings and intersect the argument of perigee 
curve around the predicted critical values for argument of perigee as in Tab. 1. The thicker these 
lines appear the more crossings we find around a particular argument of perigee, which we call a 
crossing season. The length of a season is driven by the change rate of the argument of perigee. 
Figure 7 shows not only how the consecutive orbits per season step through the ∆z range 
according to the inclination but also characterizes how the probe approaches the geostationary 
orbit. 
 
Table 3: Geostationary object counts for very low inclination ranges and corresponding dz 

in km  at geostationary distance. 
Inc. [deg] .025 0.05 0.1 0.5 0.8 
|dz| [km] 18 37 74 368 589 
 object count 109 186 250 267 278 
 
With Fig. 6 and Tab. 1 we can easily interpret Fig. 7 where inbound legs move from right to left.  
In 2011, the 7 crossings (blue) happen at the descending node on the inbound leg which means 
an approach from above and outside the geostationary belt. Due to an inclination of only 3.5 
degrees, orbits occupy only the center part of the ∆z range. In 2012, 16 crossings (cyan) happen 
at the descending node on the outbound leg at inclination 9.5 degrees. In 2014, the 11 (green) 
crossings happen at the ascending node at an inclination of 11 degrees. Knowing this information 
may be helpful in guiding what action should be taken in case of a close encounter. 
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Figure 6: Argument of perigee of a THEMIS probe (black) and inclination (red) , enhanced 
by a factor 10 in degree, August 2010 to December 2014, based on high fidelity orbit 
propagation without maneuvers. Vertical lines are crossings of probe through the belt 
centered at geostationary orbit. Initial perigee altitude is 3794 km. 

 
 
Figure 7: Orbit tracks of same data as in Fig. 6 relative to equatorial geostationary orbit. 
Colors refer to vertical lines in Fig. 6 as blue: 2011, cyan: 2012, green: 2014. 

2.3. The Effect of Inclination  
 
While the argument of perigee defines the condition for crossings the inclination defines the 
geometry and thus density of crossings per season. The lower the inclination the more tangential 
the geosynchronous and geostationary orbits become narrowing the ∆z range but stretching the 
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critical along-track range. Orbits with higher inclinations are more separated in z which shortens 
the critical along-track range. Thus for our purposes in this analysis the perturbing interactions of 
Earth, Sun, and Moon on the nodes are best referenced by inclination although the change rate of 
the argument of perigee also depends on perigee altitude at a given apogee altitude. In order to 
analyze how inclination effects the crossings we repeated the high fidelity propagation of the 
THEMIS orbit from April 2008, as used in Fig. 5, at higher inclinations. In Figure 8 we compare 
the change of the rotation rates for the different initial inclinations.  
 

 
 
Figure 8: Argument of perigee  of a THEMIS probe (thick) and inclination (thin), 
enhanced by factor 10, between April 2008 and December 2014 based on high fidelity orbit 
simulations. Colors indicate different inclinations as blue 5.5 deg, green 10 deg, and yellow 
15 deg.  

For each orbit at very low inclinations the change rate of argument of perigee is higher causing 
fewer crossings per season but also leading into the next crossing season much faster. 
Furthermore, Fig. 8 shows that the most drastic change rate of argument of perigee and thus the 
timing of crossings, happens around the orbital minimum inclination. These minima always fall 
between the crossings at ω=220 deg and ω=320 deg for any inclination in the analyzed range. 
The lower the initial inclination the stronger this trend is. In a last step we repeated the analysis 
and reduced perigee altitudes from 2818 km by 1000km at the highest and lowest inclinations 
shown in Fig. 8. Not surprisingly by increasing inclination and/or perigee altitude we can delay 
crossings. However, since inclination and perigee altitude are also changing due to perturbations 
depending on argument of perigee changing perigee altitude can be more effective than changing 
inclination and vice versa as Fig. 9 illustrates. 
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Figure 9: Accumulated time offsets at reaching critical arguments of perigee due to change 
in inclination and/or perigee altitude. Black-increasing inclination and perigee altitude, 
green  hues-increase of perigee at low (dark) and high (light) inclination, blue hues-increase 
of inclination at low (light) and high (dark) perigee altitude. Low inclination 5.5, high 
inclination 15 degrees. Low perigee 1818 km, high perigee 2818 km. 

3. Conclusions 
3.1 Implications for THEMIS orbit design and operations 
 
A satellite in a geosynchronous orbit will always rotate through the four critical values of 
argument of perigee and cross the geostationary orbit. Once in orbit options to temporarily 
modify such crossings through orbit design are limited to changing the event times and the 
geographic longitudes by selecting perigee or/and inclination. Both modifications are costly in 
dV, alone changing perigee by 250 km takes about 18 m/s. For us this is too large a maneuver 
that may reduce a potential risk only temporarily. For short missions of one or two years, the 
choice of initial inclination and argument of perigee can be selected such as to avoid crossings 
during nominal mission lifetime, at least at very low inclinations if that does not interfere with 
primary mission requirements.  
 
For THEMIS the decision has been made to monitor crossing seasons routinely. Our frequent 
orbit redesigns alter perigee and respectively apogee altitudes in the order of a few tens to 
thousands of kilometers, which can quickly move an upcoming crossing season back or forth by 
days or weeks. In order to make this analysis suitable for our automated mission design and 
weekly checkups of updated ephemeris we first determine from long term high fidelity data at 
low time resolution the times of passing through the critical values of argument of perigee. If 
such instances are found high time resolution data are automatically generated around those 
events and analyzed as shown in Figures 6 and 7 and the center times of the crossings are listed 
in the report file.  
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3.2 Summary 
We have shown that for any given eccentricity there are four values for the argument of perigee 
at which the geosynchronous spacecraft cross the equatorial plane at geostationary distance.  
We have demonstrated that we can predict crossings of the geosynchronous orbit through a 
geostationary belt with very little computational effort and without the need of an extensive 
database. That enables us to integrate it in our routine mission operations and orbit designs.  
Having the long-term knowledge of potential encounters with geostationary objects has been 
proven to be very beneficial for our long term operations planning. It prevents surprises. We are 
well aware that there can be close conjunctions with objects in other orbits. However, knowing 
as much as possible about such events is part of our risk mitigation strategy. 
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