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Abstract: In this paper we outline how the argument of perigee can be used to determine the
crossings of a geosynchronous orbit through the geostationary orbit without any extensive
computational efforts. The peculiarity of this geometry is that the semi-major axis of any
geosynchronous orbit equals the geostationary distance and by definition any geosynchronous
spacecraft crossing the geostationary orbit is either at the ascending or the descending node.
Using standard equations of satellite motion we show that the eccentric anomaly is 90 degrees at
that moment, and the true anomaly is only defined by the eccentricity of the geostationary orbit.
We illustrate, that for any given eccentricity there are four values for the argument of perigee at
which the spacecraft crosses the equatorial plane at geostationary distance.
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1. Introduction

Since February 2007 NASA’'s multi-spacecraft Timesthiiy of Events and Macroscale
Interactions during Substorm¥HEMIS ) mission has been successfully collecting highetim
resolution data of plasma particles and electroragiiields in the Earth’s magnetosphere [1].
At the center of the scientific research are thgmatospheric processes leading up to substorm
onsets that are visible to us through the dynamibreaks of bright polar lights. During the two
year nominal mission the five identical probes wiept on synchronized, highly elliptical, and
nearly equatorial orbits with periods of 4, 2, 1ahd 1 days to form large scale conjunctions in
the magnetospheric tail every 4 days. Since 2B89%ission has been split into two extended
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Figure 1. Logo of the extended mission, an artistsendering of the magnetospheric tail
configuration with Moon, THEMIS, and ARTEMIS satell ites opposing the Sun’s direction



missions. The two outer probes have been brougbtlumar orbits and have been renamed as
Acceleration, Reconnection, Turbulence and Elegimachics of the Moon’s Interaction with the
Sun ARTEMIS). After a challenging journey through lunar libost orbits lunar science orbits
started in summer 2011 [2]. At the start of 20b@, temaining three near-Earth THEMIS probes
have been brought into a smaller formation on loarthe geosynchronous orbits to address
different questions about magnetospheric procemsesnaller scales. Figure 1 illustrates, not to
scale, the magnetospheric tail configuration witt Moon, THEMIS and ARTEMIS satellites.
The topography of the Earth’s magnetosphere, shadétue, is visualized by magnetic field
lines. The ARTEMIS probes are captured on theiatwrbits at the moment when one probe is
entering the Moon’s plasma wake, while the THEMIShes are placed near 11 Earth radii to
monitor the disruption of the dipole field structar Thanks to sufficient fuel reserves and our
ability to actively alter the orbits we are abledignificantly vary orbit shape and orientation
with regards to the equatorial plane twice per yddrese orbit redesigns are guided by the
feedback from the most recent findings from ouesce data.

THEMIS and its extended missions are managed irBdle by U.C. Berkeley. Mission
operations and science data processing are higidyrated allowing our relatively small multi-
mission operations team to handle all flight andugd systems operations such as S/C
commanding, data retrieval, and processing, as a&limission design and navigation very
efficiently [3]. With the THEMIS satellites in obhow for over 5 years we gained a lot of
experience in navigating and operating satellitesighly elliptical orbits in the Earth and lunar
environment [4, 5, 6]. In this paper we focus om anmalysis of the low Earth geosynchronous
orbits and their intersections with the geostatigraabit.
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Figure 2. Distribution of geostationary satellitesby inclination.

In the first year of the extended mission phasetinee THEMIS satellites were reaching very
low inclinations having dropped from 7 to 1 degmagsing concerns about close encounters with
objects in geostationary orbits. Figure 2 shows distribution of the ~800 publicly known
geostationary satellites as a function of inclioatand underlines that low inclination orbits are
the most populated ones. As we were facing an @sang probability of close encounters with
geostationary objects we were interested in rolytipeedicting these equatorial crossings and



furthermore investigating the effect of our frequerbit refinements on the number and timing
of such crossings. As the number of space objgejcularly in the geostationary orbit, is
growing at a high rate we believe that this stuslyof general interest to the space flight
community.

It is not the paper’'s purpose to present a detaitsdssment of conjunctions with geostationary
objects. Nor would we have knowledge of a comprsivenlist of all such objects. Our intent is
to determine the driving orbital parameters andléwelop a method to predict crossings of
geostationary orbits from THEMIS orbit data thaih de integrated into our mission design and
operational routines [7]. First we will analyticahow that the argument of perigee can be used
to determine the crossings of a geosynchronous throiugh the geostationary orbit without any
extensive computational efforts and evaluate tifiecebf small changes of the geosynchronous
orbit. For long-term predictions of crossings wdl demonstrate the need of a high fidelity orbit
propagator especially at low inclinations. Secome, will empirically analyze crossings of
THEMIS orbits through a small belt of geostationarlits. Third, we will illustrate the effect of
inclination on those crossings. Finally and lase, will summarize our findings and outline the
operational benefits. Though this analysis has bdmme with THEMIS data and within a
parameter range confined by the THEMIS orbits théireed method and trends are of general
nature and the parameter space can easily be extend
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Figure 3. Intersection of a geosynchronous orbit (e) and the geostationary orbit (red),
not to scale. Keplerian elements are indicated fax spacecraft in the geosynchronous orbit
at the descending node.

2. The Argument of Perigee as a Parameter to Ideryi Crossings of Geosynchronous
Orbits through the Equatorial Geostationary Orbit

2.1. Analytical Approach

At first we reduce the multiple trajectory problemto one of two orbits by replacing individual
orbits of geostationary objects by the equatorbsgationary orbit and the highly elliptical
THEMIS orbits which differ slightly in altitudes drinclination by an equatorial geosynchronous
orbit. The extracted geometry between geostatioaadygeosynchronous orbits in the equatorial



plane is shown in Fig. 3 and we can easily ap@pddrd equations of satellite motion [8]. When
in the same plane both orbits always interseatvatgoints. At either intersection the distance to
the primary focusr is the same for both orbits and equals the geostaly distance. By
definition the semi-major axi of the geosynchronous orbit equals the geostatyatiatance. If
we apply a=r to the definition of the distancehe primary focus ( Eq. 1), we get the eccentric
anomaly E=90 degrees and according to Eq. 2 the true anomady only defined by the
eccentricitye, as Eq. 3 shows, whergis the geocentric perigee altitude.

r=a(l—e=xcos(E)) (1)

cos(E) —e
1—excos(E)

cos(v) =

(2)
cos(v)=—e (3)

e=1—g (4)

Applying the symmetry of the cosine function, Eqp®vides the true anomaly for the two
intersections as:
vi = |v|  (5a)

v, =—=[v[  (5b)

From Kepler's equation, Eq. 6, we obtain the meaonaaly M. Knowing the eccentricity we
can define the true and mean anomalies of thesité&ons.

M =E —e xsin(E) (6)

If the inclination of the geosynchronous orbit snrzero both orbits in Fig. 3 intersect at the
distant node where r=a. Since the true anomatieimed from perigee in the direction of the
S/C and the argument of perigeds defined from the ascending node in the directibthe S/C
we can determine the argument of perigee at thendstgy nodav, and descendin@p node by
Equations 7a and 7b.

wy=360—v (7a)

Since both angles, true anomaly and argument ofgexrare defined in the orbital plane, the
results of Eq. 7a and 7b are independent fromribknation. Hence, for any given eccentricity
of the geosynchronous orbit we get four valueglierargument of perigee, one per quadrant, at
which the S/C cross the equatorial plane at gaostaty distance. Just knowing in what
guadrant the argument of perigee falls we can cheniae the crossing, whether it is ascending
or descending and inbound, E=-90 deg, or outbodr@0 deg, using Tab. 1.



Table 1. Critical Argument of periges and their location

Quadrant I [l 11 v

Location | outbound | inbound| outbound inbound

Node | descending ascending ascending descending
o [deg] 40 140 220 320

On geosynchronous orbits, where the semi-majoriaxasnstant, we determine the argument of
perigee from perigee altitude alone using Eq. gufd 4 shows the arguments of perigee at the
crossings for perigee altitudes between 600 an@® 48% Over this wide range the argument of
perigee changes only by 5 degrees, and we carhaselues for in Tab. 1 as representative
mean values to make long term predictions.
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Figure 4: Argument of perigee in degrees of a geasghronous orbit at crossings through
the geostationary orbit as function of perigee altude in km. Green refers to inbound, blue
to outbound, stars mark ascending nodes, squares mkadescending nodes.

Were it not for orbit perturbations such as the-naiform mass distribution of Earth, and the
presence of the Sun and Moon the orbits would otdte and we could avoid any critical
orientation of our line of nodes. But if we stapdpenough in orbit we will pass over each one of
the four critical arguments of perigee multiple ésnand become interested in long term
predictions based on the change rate of the arguofgmerigee. The main contribution to the
change rate of the argument of perigee comes fhanttrth’s oblateness (J2-term) making it a
function of inclination and eccentricity, for whicke have well defined analytical expressions
[8]. Whereas solar-lunar effects on the inclinataingeostationary distances and on the even
higher geosynchronous orbits are much smaller dusignificant. Figure 5 shows how
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Figure 5: Comparing the evolution of the argument b perigee (thick) and inclination*10
(thin) in degrees from April 2008 to December 2014ased on Earth oblateness only (red)
and with solar-lunar perturbations included (blue). Initial perigee altitude is 2818 km.
Time is in days.

it can be to solely rely on Earth’s contributionaidit perturbations for long term predictions. In
Fig. 5 we compare the evolution of the argumenparigee for a THEMIS orbit over nearly 7
years based on J2-perturbation only, with thosehhae solar and lunar perturbation included.
We see that deviations of the times the orbit reachcritical argument of perigee for crossings
increase rapidly. Once the orbital plane is beinlled down the change rate of the argument of
perigee increases and is not a monotone functiotintd any more. Table 2 compares the
duration from one critical argument of perigeehte hext for the two perturbation models in Fig.
5. The shift in crossing times between the two ngdshown in the last column grows quickly
from a few days to almost two years in the courk®re node revolution. Since the orbits
actually rotate faster, the crossings happen eamvkich can lead to unwelcome surprises.
Hence, for reliable long term prediction of crogsitimes it is important to use a high fidelity
orbit propagator such the Goddard Trajectory Deimaition System, GTDS [9].

Table 2: Critical argument of perigee and change ries according to Fig.5

o [deg] |40 140 220 320 40 140
Inc. [deg] | 5.5 4.0 1.3 1.5 7.0 8.0
Ao [deg] |- 100 80 100 80 100

Ataq[d] -6 -83 -170 -637 -676 -550




The implication of Eq. 3 is that as long as we arer near the geosynchronous orbital period
there is no way of avoiding crossings of the gdastary orbit. Varying the perigee altitude of
the geosynchronous orbit will only shift the ines8on along the orbit which may help
temporarily. For short missions and given flexiilin choosing the initial argument of perigee
one can place the mission into the longer peri@ti&den crossings.

2.2. Empirical Approach

In our empirical approach we go back to the mudtiplajectory problem and extend the
geostationary orbit by a belt that is centerechatdquatorial geostationary distance and defined
by a range in the radial distante and in the geocentric equatorial Z-componentin selecting

Ar and particularlyAz we wanted to take into account the inclinationgea of geostationary
orbits as shown in Fig. 2 In a second, more rdstticurvey of geostationary objects as a
function of inclination with SatTrack [10], confimy inclination to less than 1 degree,
eccentricity within 0-0.05, and period within 14801450 min, we found 90% of those objects
to be within .1 degrees of inclination. Based agsthresults, listed in Tab. 3, we chase+150

km andAz=+100 km and determined the intersecting arcshef THEMIS orbits, using high
fidelity ephemeris at high time resolution. As @iog time per orbit we take the time of the
minima of Ar andAz along each arc inside the window. The resultssesngalized as time series
of argument of perigee and inclination in Fig. §,veell as orbit tracks in th&r - Az window in

Fig 7. In Fig. 6 the vertical lines mark the tinfecoossings and intersect the argument of perigee
curve around the predicted critical values for angat of perigee as in Tab. 1. The thicker these
lines appear the more crossings we find aroundtecpkar argument of perigee, which we call a
crossing season. The length of a season is driyghebchange rate of the argument of perigee.
Figure 7 shows not only how the consecutive orpigs season step through the range
according to the inclination but also characterizew the probe approaches the geostationary
orbit.

Table 3: Geostationary object counts for very lownclination ranges and corresponding dz
in km at geostationary distance.

Inc. [deg] .025 0.05 0.1 0.5 0.8
|[dz| [km] 18 37 74 368 589
object count | 109 186 250 267 278

With Fig. 6 and Tab. 1 we can easily interpret Figvhere inbound legs move from right to left.
In 2011, the 7 crossings (blue) happen at the destg node on the inbound leg which means
an approach from above and outside the geostayidredt. Due to an inclination of only 3.5
degrees, orbits occupy only the center part oiAtheange. In 2012, 16 crossings (cyan) happen
at the descending node on the outbound leg anatadn 9.5 degrees. In 2014, the 11 (green)
crossings happen at the ascending node at anatiolinof 11 degrees. Knowing this information
may be helpful in guiding what action should beetakn case of a close encounter.
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Figure 6: Argument of perigee of a THEMIS probe (bhck) and inclination (red) , enhanced
by a factor 10 in degree, August 2010 to DecembeOP4, based on high fidelity orbit
propagation without maneuvers. Vertical lines are mssings of probe through the belt
centered at geostationary orbit. Initial perigee ditude is 3794 km.
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Figure 7: Orbit tracks of same data as in Fig. 6 rative to equatorial geostationary orbit.
Colors refer to vertical lines in Fig. 6 as blue: @11, cyan: 2012, green: 2014.

2.3. The Effect of Inclination

While the argument of perigee defines the condifimncrossings the inclination defines the
geometry and thus density of crossings per sedsmlower the inclination the more tangential
the geosynchronous and geostationary orbits bec@rrewing theAz range but stretching the



critical along-track range. Orbits with higher imetions are more separated in z which shortens
the critical along-track range. Thus for our pugms this analysis the perturbing interactions of
Earth, Sun, and Moon on the nodes are best refeddmnginclination although the change rate of
the argument of perigee also depends on perigiedaltat a given apogee altitude. In order to
analyze how inclination effects the crossings waeated the high fidelity propagation of the
THEMIS orbit from April 2008, as used in Fig. 5,lagher inclinations. In Figure 8 we compare
the change of the rotation rates for the differeitial inclinations.
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Figure 8: Argument of perigee of a THEMIS probe (thick) and inclination (thin),
enhanced by factor 10, between April 2008 and Decd@r 2014 based on high fidelity orbit
simulations. Colors indicate different inclinationsas blue 5.5 deg, green 10 deg, and yellow
15 deg.

For each orbit at very low inclinations the chamgee of argument of perigee is higher causing
fewer crossings per season but also leading in® rtxt crossing season much faster.
Furthermore, Fig. 8 shows that the most drastingbaate of argument of perigee and thus the
timing of crossings, happens around the orbitalimmimm inclination. These minima always fall
between the crossings @220 deg an@=320 deg for any inclination in the analyzed range.
The lower the initial inclination the stronger thiend is. In a last step we repeated the analysis
and reduced perigee altitudes from 2818 km by 1608k the highest and lowest inclinations
shown in Fig. 8. Not surprisingly by increasinglination and/or perigee altitude we can delay
crossings. However, since inclination and periggeide are also changing due to perturbations
depending on argument of perigee changing periljidede can be more effective than changing
inclination and vice versa as Fig. 9 illustrates.
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Figure 9: Accumulated time offsets at reaching crital arguments of perigee due to change
in inclination and/or perigee altitude. Black-increasing inclination and perigee altitude,
green hues-increase of perigee at low (dark) anddh (light) inclination, blue hues-increase
of inclination at low (light) and high (dark) perigee altitude. Low inclination 5.5, high
inclination 15 degrees. Low perigee 1818 km, highepigee 2818 km.

3. Conclusions
3.1 Implications for THEMIS orbit design and operations

A satellite in a geosynchronous orbit will alwaystate through the four critical values of
argument of perigee and cross the geostationary. dnce in orbit options to temporarily
modify such crossings through orbit design aretkahito changing the event times and the
geographic longitudes by selecting perigee or/amtination. Both modifications are costly in
dV, alone changing perigee by 250 km takes aboun/&3 For us this is too large a maneuver
that may reduce a potential risk only temporarigr short missions of one or two years, the
choice of initial inclination and argument of pexggcan be selected such as to avoid crossings
during nominal mission lifetime, at least at veoyvlinclinations if that does not interfere with
primary mission requirements.

For THEMIS the decision has been made to monitossing seasons routinely. Our frequent
orbit redesigns alter perigee and respectively epagjtitudes in the order of a few tens to
thousands of kilometers, which can quickly moveupnoming crossing season back or forth by
days or weeks. In order to make this analysis Blétéor our automated mission design and
weekly checkups of updated ephemeris we first detexr from long term high fidelity data at
low time resolution the times of passing througl thitical values of argument of perigee. If
such instances are found high time resolution @ataautomatically generated around those
events and analyzed as shown in Figures 6 and Thancenter times of the crossings are listed
in the report file.
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3.2 Summary

We have shown that for any given eccentricity tregeefour values for the argument of perigee
at which the geosynchronous spacecraft cross tha&t@ugal plane at geostationary distance.

We have demonstrated that we can predict crosahghe geosynchronous orbit through a
geostationary belt with very little computationdfoet and without the need of an extensive
database. That enables us to integrate it in auin® mission operations and orbit designs.
Having the long-term knowledge of potential enceumtwith geostationary objects has been
proven to be very beneficial for our long term @tems planning. It prevents surprises. We are
well aware that there can be close conjunctionk witjects in other orbits. However, knowing
as much as possible about such events is partrofsbumitigation strategy.
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