
REAL-TIME LANDING BASED ON OPTIMALITY PRINCIPLES AND VISION

de Croon, G.C.H.E(1) and Izzo, Dario(2)

(1)(2)Advanced Concepts Team, European Spage Agency

Abstract: The mainstream approach to landing spacecraft on planetary bodies makes use of a
guidance profile computed off-line and uploaded to the spacecraft, a navigation system relying on
sensors such as laser altimeters, and a control system able to close the loop and land the spacecraft
safely by keeping it as close as possible to the precomputed descent profile. In this paper, in contrast,
we propose and develop an alternative architecture where a state-feedback based on optimality
principles is computed on-board and sensor fusion between vision and accelerometers are used to
provide a state estimate fed into the state-feedback. Our architecture is suitable for “nano-landers”
not carrying expensive mass and power-hungry sensors as well as for emergency landing procedures
able to bring the spacecraft to touch down without any supervision.

Keywords: Onboard real-time optimal control, vision-based landing, spacecraft landing

1. Introduction

From a control theory point of view, spacecraft are fairly complex systems having many degrees
of freedom (including multiple rigid and flexible modes), thus the space of all possible controls
is rather large and finding an opimal control can be a rather time-consuming endeavour which
is typically not made by the on-board CPUs. While computers are continuously improving their
performance and new parallel computing paradigms and architectures are radically changing the
definition of what is and what is not feasible in terms of on-board computations and thus in terms
of autonomy, the need for fast algorithms able to allow spacecraft to take autonomous (possibly
optimal) decisions has not faded away.

With this respect a valuable lesson can be learnt from nature. Observables such as the ventral
optic flow and the time-to-contact (known to form the basis of the information processed by some
insects [1, 2, 3, 4] but also humans [5, 6]), have been proposed and studied in the context of
spacecraft landing scenarios and mass optimality [7, 8, 9]. Tracking an exponentially decreasing
time-to-contact was shown to result in a rather low mass consumption, while being computationally
efficient and requiring only estimates of the ventral optic flow and of the time-to-contact (obtained
from on-board cameras) [9]. While these studies led to interesting algorithms from the point of
view of computational efficiency, the propellant mass penalty associated (estimated to be around
15% in [9]) can be of concern for applications where it is not affordable to mis-use such a precious
resource.

Some inspiration to improve on those results could come from recent ideas put forward in neu-
roscience on optimal feedback control as a theory of motor coordination [10, 11]. Humans (and
so should robots) plan their actions optimally using a simplified model of their body and of the
environment, key to allow fast neural computations of optimal actions. The difference between
reality and the models used to plan optimally is then accounted for (and almost cancelled) by the
continuous updates coming from sensing the world and re-evaluating the optimal course of action.

1

In this paper we take such a scheme and apply it to spacecraft landing where mass optimality is
seeked as a main objective. In Section 2. we introduce the simplified internal model the spacecraft
uses to plan its descent and estimate the numerical effort needed by the spacecarft to compute
its actions based on optimality principles. In Section 3. we introduce the spacecraft navigation
system used to estimate the state. We make use of a rather basic navigation platform made of a
downward pointing camera and three accelerometers. In the following sections we perform a few
landing experiments showing the method’s robustness and its reduced propellant mass consumption
(only 3% away from the optimal value). The choice of the particular basic navigation platform is
motivated by our interest in spacecraft such as “nano-landers” where the overall mass budget forbids
the use of heavy sensors, but our results and the proposed control architecture is more general and
we infact use an Apollo-like scenario and spacecraft throughout the paper to simulate the proposed
scheme.

2. On-board computation of the optimal state-feedback

Consider the optimal control problem of a landing spacecraft written in the form of Eq.(1).

find: t f ,u ∈U
to maximize: m(t f)

subject to: ẋ = f(x,u)
x(t f) = x f
x(0) = x

(1)

where U is the space of admissible controls and x is a “slice” of the state x. Let us indicate with
u∗(t) the solution to this problem. Such an optimal control solution depends on the spacecraft state
x: we may thus write u∗(t,x) and define the state feedback u(x) = u∗(0,x). Under the assumption
to be able to find u∗(t,x), this trick allows us to have a numerical procedure to compute an optimal
state-feedback. Such a procedure is not very appealing from the computational point of view as
the complexity of the spacecraft dynamic f(x,u) makes the cost of computing u(x), following the
above scheme, quite significant. This conclusion is however radically different if we substitute the
dynamic f with a much-simplified version f. The computation of u∗(t,x) can be done numerically
using direct, indirect or pseudospectral methods. In this paper we use the direct method described
in Izzo et al.[8] which considers the trajectory as divided into n segments and places an impulsive
∆V change in the middle of each segment. The thrust may then be derived by assuming it constant
along a segment and equal to u∗ = ∆Vδ t, where δ t = t f /n is the segment duration. In order to
obtain the solution u∗(t,x) with the highest possible frequency, when solving the optimal control
problem we use the simplified dynamic f detailed in Eq.(2).

ẋ = vx, v̇x = ux/m
ẏ = vy, v̇y = uy/m
ż = vz, v̇z = uz/m−g
ṁ =−

√
(u2

x +u2
y +u2

z)/Ispg0

(2)

The spacecraft, in reality, has a far more complex dynamic, but it is convenient to plan its actions
using a simpler model as to be able to plan actions using a state-feedback as explained above. In

2

Figure 1. Performance of the optimal control solver with respect to the number of segments used.
CPU time is shown in millisecond (left), while the optimal value found for the propellant mass is
shown in Kg (right)

this paper we thus define the state-feedback u(x) as u∗(0,x), where u∗(t,x) is the solution to the
optimal control problem in Eq.(1) computed using the impulsive direct method developed in [8]
and the simplified dynamics f defined by Eq.(2). The computed state-feedback will thus only be an
approximation to the real optimal state-feedback: it employs a simplified model of the spacecraft
and its environment (Eq.(2)) and it employs a simplified model of the thrusting action (impulsive)
over a finite number of segments n. We now discuss how much this last approximation impacts on
the resulting planned descent. We introduce an Apollo-like scenario [12]. The scenario involves
the following high-gate conditions: Tmax = 45760 [N], Isp = 311 [s], m0 = 9472.06 [kg], vx0 = 150
[m/s], vz0 =−44 [m/s], z0 = 2300 [m], and g = 1.623 [m/s2]. At low-gate we set: vxt f

= 0 [m/s],
vz0 ∈ [−2.5,0] [m/s], z0 <= 10 [m].

Using our scheme, we solve the optimal control problem with varying number of segments n and
we report the results in terms of propellant mass and CPU-time employed in Figure 11. Looking
to such a figure, it is immediately apparent how, already using 5 to 10 segments, one obtains a
satisfactory approximation to the optimal descent (in terms of used propellant), while having a
rather small CPU-load. The result in Figure 1 has been obtained using SNOPT [13] as a solver for
the non linear programming problem resulting from the impulsive direct method. Other solvers
were also tested, notably the open source interior point optimization method IPOPT [14] was also
found to be able to achieve similar performances but its convergence starts to be troublesome for
n > 10 when propellant mass optimization is seeked.

Starting from a state x̂ estimated by the navigation system (described later) we may then compute
the optimal thruster action u(x̂) using the techniques described above. With n = 10 nodes in
the impulsive approximation, we are able to compute this at frequencies as high as 10Hz-20Hz,
compatible with an on-board implementation of the whole system.

1Our experiments were done in a single Intel(R) Xeon(R) CPU - X5355 @ 2.66GHz.

3

3. Vision-based state estimation

In this section, it is first explained what visual measurements are used for state estimation and how
they are combined with the accelerations. Subsequently, the computer vision algorithm that performs
the visual measurements is discussed. Finally, the data fusion involved in the state estimates is
explained.

3.1. Combining visual measurables and accelerations

The combination of an Inertial Measurement Unit (IMU) with vision is referred to as vision-aided
inertial navigation and it is known to considerably improve the accuracy of the state estimates.
Previous studies in this area [15, 16, 17, 18] assume an accurate initial estimate, typically relying
on additional sensors such as laser altimeters. Instead, in the current approach also the initial state
is obtained purely on the basis of vision and proprioception. In particular, the state estimation relies
on the ventral optic flow and the time-to-contact. These bio-inspired visual observables can be
measured with extremely light-weight and energy efficient neuromorphic sensors [19] or with an
uncalibrated linear camera.

Formally, the ventral flow is defined as (ωx,ωy) = (vx
z ,

vy
z). It provides information on the lateral

velocities relative to the height. The time-to-contact is defined as τ =− z
vz

, and captures the vertical
velocity relative to the height.

The ventral flow and time-to-contact can be used directly for control [20, 7, 21], and one can even
obtain an acceptable mass efficiency by having the time-to-contact decrease exponentially [9, 22].
However, additional access to accelerometer readings allows one to retrieve the actual height and
velocities of the spacecraft. The necessary equations are derived as follows. It starts with the
equation for the time-to-contact:

vzτ =−z (3)

Taking the time derivative, we get:
azτ + vzτ̇ =−vz (4)

(1+ τ̇)vz =−azτ (5)

vz =−
azτ

1+ τ̇
(6)

A similar approach can be applied to the ventral flow. Below, we derive the equation for ωx:

ωxz = vx (7)

Taking the time derivative gives:
ω̇xz+ωxvz = ax (8)

vz =
ax− ω̇xz

ωx
(9)

4

Substituting z with the equivalent −vzτ gives:

vz =
ax + vzω̇xτ

ωx
→ vz =

ax

ωx− ω̇xτ
. (10)

Given the three accelerations (ax,ay,az) and the visual observables (τ,ωx,ωy), there are three
different estimates of vz. The vz measurements can be very different from each other, depending
on the context. In particular, Eqq. 6 and 10 both become ill-conditioned when the accelerations
approach zero (τ̇ then approaches −1 and ω̇xτ approaches ωx). Another factor of influence on the
accuracy of the vz estimates is the accuracy of the τ-estimate (figuring in both equations), which is
worse at higher τ . The way in which the three vz estimates are fused into one estimate is discussed
further below.

Given a single estimate of vz the other relevant state variables can be estimated as follows:

z =−vzτ (11)

vx = ωxz (12)

vy = ωyz (13)

3.2. Vision algorithm

The vision algorithm to estimate τ and ω is introduced and explained in detail in [22]. The
algorithm’s main components are briefly discussed in this subsection. The vision processing
is illustrated in Figure 2. The processing consists of two interconnected parts, illustrated with
the dashed boxes (‘A’ and ‘B’). The first part tracks visual features F over time, estimating the
corresponding optic flow vectors. The second part processes the optic flow vectors in order to
estimate the parameters of the optic flow field pU,pV, and consequently the time-to-contact τ and
ventral flow ωx. The estimates are fed back to improve the efficiency and performance of the first
part.

3.2.1. Feature Tracking

The tracking of visual features over time is performed as follows. New features are detected in
the image with the well-known algorithm of Shi and Tomasi [23]. The features are tracked to the
next image with the Lucas-Kanade algorithm [24, 25]. Two methods are used to obtain accurate
estimates: (1) unreliable optic flow vectors are discarded, and (2) features are followed over time
with a Kalman Filter. For the first step the optic flow algorithm is applied ‘backward’. If the
backward flow brings the points in the second image close to their original positions in the first
image, the flow vector is considered as reliable. If the backward flow results in an image coordinate
that is too far from the original position, it is regarded as unreliable and removed. In the experiments,
the maximal accepted distance is 2 pixels. The second step is to track features over multiple frames,
while improving the estimate of their ‘state’ with a Kalman filter. A feature’s state is a vector:
s = (X ,Y,U,V)T, with (X ,Y) the feature’s image coordinate, and (U,V) the feature’s optic flow.

5

Figure 2. Overview of the vision processing. The vision processing can be subdivided in two parts.
The first part tracks visual features over time, leading to a set of reliable optic flow vectors. The
second part processes these vectors in order to estimate parameters of a planar optic flow field pU ,
pV (see the text for further details). These parameters allow the calculation of τ and ωx over time.
The parameters pU and pV are fed back to improve the efficiency and performance of the first part.

3.2.2. Estimation of τ and ωx

The vision algorithm used in the experiments estimates the TTC by determining the divergence of
the optic flow field. The algorithm assumes (1) a downward looking camera, (2) that the part of the
landing surface in sight is predominantly planar, and (3) that camera rotations are either not present
(as with a gimballed camera) or are accounted for by means of proprioception (viz. derotation with
the help of gyrometers).

The algorithm is based on the findings in [26]. As in that study, an image plane model for the
camera will be assumed. The following notation will be used. Image coordinates of an imaged
point p are denoted as P = (X ,Y), optic flow as (U,V), and the spatial derivatives of optic flow as
UX , UY , VX , and VY . Translational velocity is expressed as v = (vx,vy,vz). Furthermore, point pC
is the point on the landing surface that is located in the image center PC = (0,0). The distance to
pC is h. The camera only provides information on the normalized velocity: ϑ = (ϑx,ϑy,ϑz) = v/h.
Finally, the inclination of the surface around pC is represented by zx,zy.

Assuming no camera rotation, the above setting leads to the following formulas for the optic flow
(from [26]):

U =U(C)+UX X +UYY (14)

V =V (C)+VX X +VYY (15)

, with:
U(C) =−ϑx, V (C) =−ϑy (16)

UX =−ϑz +ϑxzx, VY =−ϑz +ϑyzy (17)

UY = ϑxzy, VX = ϑyzx (18)

The divergence at pC can then be written as:

div(pC) =UX +VY =−2ϑz +ϑxzx +ϑyzy. (19)

6

Figure 3. Left: Measured optic flow vectors. Center: Estimated horizontal optic flow field. The
circle indicates the horizontal ventral flow ωx. Right: Estimated vertical optic flow field. The circle
indicates the vertical ventral flow ωy.

The divergence is reciprocally related to the TTC (denoted as τ). For example, in the case of
zx = zy = 0:

τ =
1
−ϑz

=
2

div(pC)
=

2
UX +VY

, (20)

with τ the time at which the camera center will touch the surface if the velocity vz stays the same.
With nonzero ϑxzx or ϑyzy, the divergence can still be regarded reciprocal to a time-to-contact, if the
surface around PC is assumed to extend to the point in which it intersects the direction of motion.

As stated before, the algorithm introduced here to estimate the TTC assumes the landing surface
in sight to be predominantly planar. It uses the features Fi = (Xi,Yi,Ui,Vi) to approximate the
horizontal and vertical optic flow with two planar equations. Figure 3 illustrates this process.
The left image contains a set of observed optic flow vectors at different locations (τ = 2s). The
spacecraft is moving to the top left, while descending toward the surface. The center image in
Figure 3 shows the planar approximation of the horizontal optic flow field, while the right image
shows the approximation for the vertical optic flow field.

More formally, the algorithm estimates the parameters pU, pV of the equations:

U =U(C)+UX X +UYY = (1,X ,Y)pU
T, (21)

V =V (C)+VX X +VYY = (1,X ,Y)pV
T. (22)

Having the parameter vectors pU, pV permits the calculation of the divergence and therefore the
estimation of the TTC:

τ̂ =
2

FPS(UX +VY)
(23)

, with FPS the number of frames per second. The horizontal and vertical ventral optic flow are
determined with the help of U(C) and V (C), i.e., the optic flow in pixels at the center of the image.
In Figure 3 a circle indicates the ventral optic flow vectors. The estimate of the horizontal ventral
flow ω̂x can then be determined as:

ω̂x = FPS
2U(C)

w
tan(FOV/2) (24)

7

, with w the width of the image in pixels, and FOV the horizontal field of view of the camera in
degrees.

As mentioned above, estimation of the parameters in Eqq. 21 and 22 is done with the help of
the set of features F = {(U1,V1,X1,Y1), (U2,V2,X2,Y2), . . .(UN ,VN ,XN ,YN)}. The algorithm finds
least-squares solutions to the systems:

U = A pU, V = A pV, (25)

where U is an N×1 vector consisting of all Ui, V a N×1 vector consisting of all Vi, A is an N×3
matrix with rows (Xi,Yi,1), and pU,pV are 3×1 plane parameter vectors. In order to be robust to
both noise and deviations from the planar assumption, a RANSAC procedure [27] is used for both
fits. The RANSAC settings are to use 5 flow vectors for a fit and to perform 20 iterations. The
parameters with lowest error on all features F are selected. If there are too few points or if all the
points are colinear, the estimates ω̂x and τ̂ are considered to be erroneous. Both estimates τ̂ and ω̂x
are filtered over time.

Finally, ˆ̇τ and ˆ̇ω are computed by making a linear least-squares error fit through FPS previous
estimates of the TTC. The linear fit introduces additional delay, but is necessary to obtain less noisy
estimates of τ̇ and ω̇x.

3.3. Data fusion

As mentioned before, no initial estimate of the spacecraft state is employed. Instead, the spacecraft
uses a period of 2 seconds to (i) initialize the visual measurements (1s), and (ii) initialize the
state estimate (2s). The second phase of the initialization requires acceleration of the spacecraft.
Therefore, the control during the initialization period can involve a free fall (in case of a planetary
landing) or a specific thrust maneuver (in case of an asteroid landing).

After initializing the filters on τ and ω , the state is estimated on the basis of equations 6 and 10.
The current implementation of the initial estimate assumes the three different estimates v̂z1:3 to be
statistically independent and distributed according a normal distribution: p(v̂zi|vz)∼N (µ,σ). The
parameters of the normal distribution are assumed to be µ = vz and σ a function of the relevant
accelerometer reading a:

σ(a) =

100−22.5a2 if |a| ≤ 2
16−3a if 2 < |a| ≤ 5
1 if |a|> 5,

(26)

a formula tuned on the basis of preliminary experiments. Then the maximal log likelihood estimate
is used as vz:

v̂z =

1
σ2

1
vz1 +

1
σ2

2
vz2 +

1
σ2

3
vz3

1
σ2

1
+ 1

σ2
2
+ 1

σ2
3

(27)

At the end of initialization, the median of the state estimates during the initialization is used as
initial estimate for a Kalman filter.

8

The Kalman filter involves a state vector of the form: s = 〈x,vx,ax,y,vy,ay,z,vz,az〉. The measure-
ment vector is o = 〈z,vx,vy,vz,ax,ay,az〉. The measurement variances of the velocities are set to
Rv = 1/(1

σ2
1
+ 1

σ2
2
+ 1

σ2
3
), while the measurement variance of the height is set to Rz = 100Rv. The

variance on the accelerometer measurements is assumed to be Ra = 0.1. The process variance for
the height is set to Qz = 2.5, while the variance for the speeds is Qv = 0.5 and for the accelerations
is Qa = 0.01. A new v̂z-measurement is considered an outlier if it is more than 50m/s away from
the current filtered estimate. In that case, the Kalman innovation and update steps are not performed,
but the uncertainty is propagated to the next time step.

4. Experimental setup

In order to test the concepts introduced in the previous sections, experiments are performed in
simulation. The simulator involves a simple dynamics model of the equations of motion for the
spacecraft (Eq. 2).

The generation of camera images is handled by creating views of a large base-image representing
a flat ground surface. In order to employ visually realistic texture, the publicly accessible large
image stitch from the Lunar Reconnaissance Orbiter Camera (LROC) is used for the base-image2.
From the image stitch the center area of 15000× 15000 pixels is selected, since it has limited
perspective effects. The image of the center area has been resized to 5000×5000 pixels for use in
the experiments. The settings for the virtual camera are rather conservative, with a low number of
frames per second (FPS = 10), relatively small image size (256×256 pixels), and a field of view
(FOV = 50◦) that leads to a relatively small ratio of pixels / degree.

Although the images are generated artificially and rotations are assumed to be taken care of by means
of gyro derotation, the vision problem is rather challenging. For example, the initial conditions in
the Apollo scenario imply a τ ≈ 52s, so the vision algorithm has to estimate the time-to-contact
in the order of τFPS = 520 frames. The divergence for this τ is 0.0038, which means that two
horizontal optic flow vectors that are 128 pixels apart have an optic flow difference of only 0.245
pixels. Such accurate readings can be difficult to extract from the images, as they are sometimes
only sparsely textured. In addition, the control is further complicated by the necessary filtering of
vision signals, which introduces a delay that can approximate one second [22].

The settings for the optimal control algorithm are as follows. The number of nodes is 10, and the
algorithm is executed at 10 Hz. The quantity optimized is the final mass of the spacecraft, under the
constraint that at z = 10 [m], vx = 0 [m/s] and vz ∈ [−2.5,0] [m/s].

5. Results

The spacecraft successfully lands in the lunar scenario. Here the results for a landing are shown with
a final mass of 8853.51 kg. The mass expenditure is 618.55 kg, which is only 23.15 kg more than
the optimal mass expenditure, 595.4 kg. In Section 2., it was shown that utilizing only 10 nodes
for control optimization leads to a relatively small mass loss of 0.4 kg. Therefore the difference

2http://lroc.sese.asu.edu/

9

http://lroc.sese.asu.edu/

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Time (s)

Z
 (

m
)

0 10 20 30 40 50 60
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time (s)
V

Z
 (

m
)

Figure 4. Left: ẑ (red solid line) and z (black dashed line) over time. Right: v̂z (red solid line) and
vz (black dashed line) over time.

between the optimal mass expenditure and the one obtained in the experiments, mostly lies in the
noise on the inertially aided, vision-based state estimates.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Time (s)

T
im

e−
to

−c
on

ta
ct

 (
s)

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

Time (s)

V
en

tr
al

 f
lo

w
 (

ra
d

/s
)

Figure 5. Left: Ground-truth time-to-contact (bold black dashed line), instantaneous τ̂ (grey dotted
line) and filtered τ̂ over time. Right: Ventral flow estimates ω̂x (green line) and ω̂y (orange line)
over time, with their corresponding ground-truths (black dashed lines).

Figure 4 shows the height (left) and vertical velocity (right) over time. Estimates are shown with

10

solid red lines, the ground-truth values with dashed black lines. The initial estimates using equation
27 are rather noisy, but they provide a sufficiently accurate state estimate for initialization of the
Kalman filter. Initial estimates are typically different from the ground-truth in the order of 10-20%.
The main observation from Figure 4 is that the state estimates (red lines) first are rather far from the
ground truth values (black dashed lines), in the order of 20%. The spacecraft underestimates both
the height and vertical velocity (although their relation is rather accurate). On the basis of these
estimates the optimal control decides not thrust. As soon as the spacecraft starts thrusting, at ∼ 22s,
the estimates drastically improve, differing only a few meters per second from the ground-truth.

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

Time (s)

T
h

ru
st

, u
x, u

z (
N

)

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

x (m)

z
(m

)

Figure 6. Left: the total thrust (bold solid line), uz (dashed line), and ux (dotted-dashed line) over
time. Right: (x,z)-trajectory of the spacecraft. The arrows indicate the thrust directions during the
trajectory (only for thrusts ≤ 1000 [N]).

Figure 5 shows the visual measurements (solid lines) and the respective ground-truths (dashed
lines) over time. The left plot shows the instantaneous τ-measurements (dotted line) and the filtered
estimates (dashed line) over time. The right plot shows the estimated ventral flow ω̂x (green line)
and ω̂y (orange line). All visual observables are close to their ground-truth values.

Finally, Figure 6 shows the thrust magnitudes over time (left) and the (x,z)-trajectory with thrust
directions (right). The main observation is the obvious (but noisy) bang-bang strategy to obtain an
optimal mass solution: the optimal control starts the landing with a free fall, and then thrusts fully.

The advantages of having onboard real-time optimal control include the application of the approach
to any (feasible) initial condition and the adaptation of the guidance profile to possible large
disturbances. To illustrate such advantages, the simulated spacecraft has been applied to a lunar
landing with entirely different initial conditions: z0 = 800m, vz0 = −30m/s, vx0 = 80m/s. The
results of this experiment can be seen in Figure 7 and 8.

11

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Time (s)

Z
 (

m
)

0 5 10 15 20 25 30
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Time (s)

V
Z

 (
m

)

Figure 7. Left: ẑ (red solid line) and z (black dashed line) over time. Right: v̂z (red solid line) and
vz (black dashed line) over time.

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

Time (s)

T
h

ru
st

, u
x, u

z (
N

)

−200 0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

x (m)

z
(m

)

Figure 8. Left: the total thrust (bold solid line), uz (dashed line), and ux (dotted-dashed line) over
time. Right: (x,z)-trajectory of the spacecraft. The arrows indicate the thrust directions during the
trajectory (only for thrusts ≤ 1000 [N]).

12

6. Conclusions

The new proposed guidance and navigation architecture is able to successfully land in full autonomy
in our simulations. The estimated propellant penalty associated to its use (4% in the simulated
Apollo scenario) and its robustness, inherited from the property of the state-feedback used which is
based on optimality principles, makes it an interesting and viable alternative to modern guidance
and navigation methods. After a coarse initial estimate at the start of the trajectory, a Kalman filter
further refines the estimated state over time. In the simulation experiments, the state-feedback
successfully uses these state estimates to reach the end conditions with acceptable speeds and
close-to-optimal mass expenditure.

Future work will involve further validation of the inertially aided vision-based state estimates. For
example, it is interesting to investigate how the estimate accuracy depends on accelerations of the
spacecraft. This may obviously have implications for the method’s application to different gravity
conditions. Moreover, future work will concern further investigation in the use of the state feedback
proposed and on its performance in the presence (noisy) state estimates. Besides mass-optimal
trajectories, time-optimal tajectories and pinpoint landings are also of interest. These different
objectives can all be studied in the same framework.

7. References

[1] Preiss, R. “Motion parallax and figural properties of depth control flight speed in an insect.”
Biological Cybernetics, Vol. 57, No. 1–2, pp. 1–9, 1987.

[2] Srinivasan, M., Zhang, S., Lehrer, M., and Collett, T. “Honeybee Navigation en Route to the
Goal: Visual Flight Control and Odometry.” The Journal of Experimental Biology, Vol. 199,
pp. 237–244, 1996.

[3] Baird, E., Srinivasan, M., Zhang, S., and Cowling, A. “Visual control of flight speed in
honeybees.” The Journal of Experimental Biology, Vol. 208, No. 20, pp. 3895–3905, 2005.
doi:10.1242/jeb.01818.

[4] Baird, E., Srinivasan, M., Zhang, S., Lamont, R., and Cowling, A. “Visual control of flight
speed and height in the honeybee.” Lecture notes in computer science, pp. 40–51, 2006.

[5] Lee, D. “A theory of visual control of braking based on information about time-to-collision.”
Perception, Vol. 5, No. 4, pp. 437–459, 1976.

[6] Lee, D., Davies, M., Green, P., and Weel, F. v. “Visual control of velocity of approach by
pigeons when landing.” The Journal of Experimental Biology, Vol. 180, No. 1, pp. 85–104,
1993.

[7] Valette, F., Ruffier, F., Viollet, S., and Seidl, T. “Biomimetic optic flow sensing applied to a
lunar landing scenario.” “Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA),” pp. 2253 – 2260. 2010.

13

[8] Izzo, D., Weiss, N., and Seidl, T. “Constant-Optic-Flow Lunar Landing: Optimality and
Guidance.” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 5, pp. 1383–1395, 2011.
doi:10.2514/1.52553.

[9] Izzo, D. and de Croon, G. “Landing with time-to-contact and ventral optic flow estimates.”
Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, pp. 1362–1367, 2012.

[10] Todorov, E. and Jordan, M. “Optimal feedback control as a theory of motor coordination.”
Nature neuroscience, Vol. 5, No. 11, pp. 1226–1235, 2002.

[11] Todorov, E. “Optimality principles in sensorimotor control.” Nature neuroscience, Vol. 7,
No. 9, pp. 907–915, 2004.

[12] Cheatham, D. and Bennett, F. “Apollo Lunar Module Landing Strategy.” Tech. rep., Makerere
University, 1966.

[13] Gill, P., Murray, W., and Saunders, M. “SNOPT: An SQP Algorithm for Large-Scale Con-
strained Optimization.” SIAM Journal on Optimization, Vol. 12, No. 4, pp. 979–1006, 2002.

[14] Wächter, A. and Biegler, L. “On the Implementation of a Primal-Dual Interior Point Filter Line
Search Algorithm for Large-Scale Nonlinear Programming.” Mathematical Programming, Vol.
106, No. 1, pp. 25–57, 2006.

[15] Johnson, A., Willson, R., Cheng, Y., Goguen, J., Leger, C., Sanmartin, M., and Matthies, L.
“Design through operation of an image-based velocity estimation system for Mars landing.”
International Journal of Computer Vision, Vol. 74, No. 3, pp. 319–341, 2007.

[16] Shuang, L., Pingyuan, C., and Hutao, C. “Vision-aided inertial navigation for pinpoint
planetary landing.” Aerospace Science and Technology, Vol. 11, pp. 499–506.

[17] Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., Ansar, A., and Matthies, L. “Vision-
Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing.” IEEE Transactions on
Robotics, Vol. 25, No. 2, pp. 264–280, 2009.

[18] Sibley, G., Matthies, L., and Sukathme, G. “Sliding window filter with application to planetary
landing.” Journal of Field Robotics. Special Issue: Visual Mapping and Navigation Outdoors.,
Vol. 27, No. 5, pp. 587–608, 2010.

[19] Expert, F., Viollet, S., and Ruffier, F. “Outdoor field performances of insect-based visual
motion sensors.” Journal of Field Robotics, Vol. 28, No. 4, pp. 529–541, 2011.

[20] Ruffier, F. and Franceschini, N. “Aerial robot piloted in steep relief by optic flow sensors.”
“IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” pp. 1266–
1273. 2008.

[21] Hérissé, B., Hamel, T., Mahony, R., and Russotto, F.-X. “Landing a VTOL Unmanned Aerial
Vehicle on a moving platform using optical flow.” IEEE Transactions on Robotics, Vol. 28,
No. 1, pp. 77–89, 2012.

14

[22] de Croon, G., Alazard, D., and Izzo, D. “Guidance, navigation, and control of optic-flow
based spacecraft landing.” submitted.

[23] Shi, J. and Tomasi, C. “Good features to track.” “9th IEEE Conference on Computer Vision
and Pattern Recognition (CVPR),” pp. 593 – 600. 1994.

[24] Lucas, B. and Kanade, T. “An iterative image registration technique with an application to
stereo vision.” “Proceedings of Imaging understanding workshop,” pp. 121–130. 1981.

[25] Bouguet, J.-Y. “Pyramidal Implementation of the Lucas Kanade Feature Tracker. Description
of the algorithm.” Intel Corporation Microprocessor Research Labs, OpenCV Documents, Vol.
3, pp. 1–9, 2000.

[26] Longuet-Higgins, H. and Prazdny, K. “The interpretation of a moving retinal image.” Pro-
ceedings Royal Society London B, Biological Sciences, Vol. 208, No. 1173, pp. 385–397,
1980.

[27] Fischler, M. and Bolles, R. “Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography.” Communications of the ACM,
Vol. 24, No. 6, pp. 381–395, 1981.

15

	Introduction
	On-board computation of the optimal state-feedback
	Vision-based state estimation
	Combining visual measurables and accelerations
	Vision algorithm
	Feature Tracking
	Estimation of and x

	Data fusion

	Experimental setup
	Results
	Conclusions
	References

