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Abstract: The objective of this paper is to analyze the stability of the rotational motion of a 

symmetrical spacecraft, in a circular orbit. The  equilibrium points and regions of stability 

are established when components of the gravity gradient torque acting on the spacecraft 

are included in the equations of rotational motion, which  are described by the Andoyer’s 

variables. The nonlinear stability of the equilibrium points of the rotational motion is 

analyzed here by the Kovalev-Savchenko theorem, which ensures that the motion is 

Liapunov stable. In this theorem it is necessary to reduce the Hamiltonian in its normal 

form up to the fourth order by means of canonical transformations around the equilibrium 

points. With the application of the Kovalev-Savchenko theorem, it is possible to verify if 

they remain stable under the influence of the terms of higher order of the normal 

Hamiltonian. In this paper, numerical simulation are made for two hypothetical groups of 

artificial satellites. Several stable equilibrium points were determined and regions around 

these points have been established by variations in the orbital inclination and in the 

spacecraft principal moment of inertia. The present analysis can directly contribute in the 

maintenance of the spacecraft’s attitude. 

 

Keywords: Rotational motion, nonlinear stability, canonical variables, gravity gradient 

torque, normal form of Hamiltonian. 

 

 1. Introduction 
 

This work aims at analyzing the stability of the rotational motion of artificial satellites in 

circular orbit with the influence of gravity gradient torque, using the Andoyer's canonical 

variables. This stability analysis is very important in maintaining the attitude to ensure the 

success of a space mission. 

 

In this paper, Kovalev-Savchenko theorem (KST) [1] is used for the study of the stability 

and it ensures that the motion is Liapunov stable if the following conditions are satisfied: 

i. The eigenvalues of the reduced linear system are pure imaginary       e      ;  
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ii.                                                                                                                     (1) 

 

is valid for all     and    integer satisfying the inequality             ;  
    

iii. The Arnold determinant 

 

         
                

                                         (2) 

 

where     are the coefficients of the normal 4
th

 order Hamiltonian. 
 

The KST [1] was used for the stability analyses by Cabette et al [2,3] and Formiga [5]. 

The study of the stability of the rotational motion of artificial satellites in an elliptic orbit 

was developed in [2,3] and used the procedure presented by [4] to determine a normal form 

of the Hamiltonian up to the 4
th

 order. The results of the analysis pointed out only few 

stables equilibrium points and the stability algorithm was very slow. 

 

In [5] is described a numerical-analytical method for normalization of Hamiltonian systems 

with 2 and 3 degrees of freedom. The most important role of this work is the results 

obtained analytically for the generating function of 3
rd

 order, necessary for determining the 

coefficients of the normal Hamiltonian of 4
th

 order. 

 

The objective of this paper is to optimize the stability analysis developed in [2,3] for the 

satellite in a circular orbit  by applying the analytical expressions obtained in [5] for the 

coefficients of the normal 4
th

 order Hamiltonian. The equilibrium points are established 

when terms associated with gravity gradient torque acting on the satellite are included in 

the equations of rotational motion. The stables regions around the equilibrium points are 

obtained by the variations in the orbital inclination and in the principal moment of inertia of 

the satellite. 

 

In order to simplify the application of methods of stability in this is study, the Andoyer’s 

variables [6] are used to describe the rotational motion of the satellite. These variables are 

represented by generalized moments             and by generalized coordinates 
           that are outlined in Fig. 1. The angular variables           are angles related 

to the satellite system Oxyz (with axes parallel of the spacecraft’s principal axes of inertia) 

and equatorial system OXYZ (with axes parallel to the axis of the Earth's equatorial 

system). Variables metrics          are defined as:    is the magnitude of the  angular 

momentum of rotation         ;    is the projection of         on the  z-axis of principal axis system 

of inertia (          , where    is the angle between the z-satellite axis and        ) and    

is the projection of         on the Z-equatorial axis (          , where    is the angle 

between Z-equatorial axis and        ). 
 

In this paper, numerical simulations are made for two hypothetical groups of artificial 

satellites, which have orbital data and physical characteristics similar to real satellites. The 

stables regions around the equilibrium points are obtained by the variations of the orbital 

inclination and variations in the principal moments of inertia of the satellite. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Equations of motion 

 

Andoyer’s variables                    , defined above, are used to characterize the 

rotational motion of a satellite around its center of mass [6] and the Delaunay’s variables 

describe the translational motion of the center of mass of the satellite around the Earth [8]. 

 

In this paper is assumed that the satellites are in a circular orbit, which differs from the 

study presented in [2]. This consideration was adopted to simplify the Hamiltonian of the 

problem, which is extensive [2] and to facilitate the stability analysis of the equilibrium 

points. 

 

Thus, assuming that the satellites have well-defined circular orbit, the goal is to study the  

stability of the rotational motion of the satellite. Then the Hamiltonian of the problem is 

expressed in terms of the Andoyer and Delaunay variables               [8,9] as follows: 
 

                                                                          ;                     
(3) 

where    is the unperturbed Hamiltonian and    is the term of the Hamiltonian associated 

with the disturbance due to the gravity gradient torque, both are described respectively by 

[5]: 
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Figure 1 - Andoyer' canonical variables. 

Plane perpendicular to 

the angular 

momentum vector 

 

Equatorial plane 

Y 

X 

O 

z 

y 

x 

zm 

ym 

xm 

   

   

   

   

   

      

   

   

   



   
    

  
 
      

 
          

   

 
           ;             (5) 

where       and        ;     and   are the principal moments of inertia of the 

satellite on x-axis, y-axis and z-axis respectively ;    and    are functions of the variables 
       , where    and    appear in the arguments of cosines. The complete analytical 
expression for perturbed Hamiltonian F1  is presented in [2] for eccentric orbit.  

 

The equations of motion associated with the Hamiltonian F, Eq. 1, are given by: 
 

 

   

  
 

  

   
 

   

  
  

  

   
 

                    (6) 

 

These equations are used to find the possible equilibrium points of the rotational motion 

when will be considered two of its principal moments of inertia equal,     (symmetrical 

satellite). With this relationship, the variable    will not be present in the Hamiltonian, 
reducing the dynamic system to two degrees of freedom, a necessary condition for applying 

the stability theorem chosen for analysis of equilibrium points. The complete analytical 

expression for perturbed Hamiltonian F1 for circular orbit and symmetrical satellite is 

presented in [9]. 

 

3.  The Algorithm for Stability Analysis 

 

To use the KST is necessary the normal Hamiltonian of the problem. It was discussed in 

[3,9] and the normal Hamiltonian    is an analytic function of generalized coordinates 

(  ) and moments (  ) to a fixed point  , expressed by [3,9]: 

    
  

 
 
         

    

 
 
             ;                     (7) 

where     represents higher order terms;     is the imaginary part of eigenvalues associated 
with the matrix defined by the product of a 4

th
 order matrix symplectic with the Hessian of 

the Hamiltonian expanded in Taylor series up to 2
nd

 order around the equilibrium point;  

     depend on the eigenvalues    and the coefficients of the Hamiltonian expanded in 

Taylor series of 3
rd

 and 4
th

 order around the equilibrium point, which are presented 

analytically in Formiga [5]; and 

     
    

   with         .                   (8) 

The KST says that a Hamiltonian reduced in its normal form up to 4
th

 order, in the absence 

of the resonance condition of the eigenvalues associated and if the condition given by Eq. 2 

is satisfied, it is guaranteed the existence of tori invariant in a neighborhood small enough 

of equilibrium position [10]. The associated process with the determination of the normal 

form of the Hamiltonian and the process of analyzing the stability of equilibrium points by 

the KST [6], are synthesized in a logical sequence of the algorithm and presented in Fig. 2. 
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Figure 2 - Flowchart representative of the stability analysis of equilibrium points. 
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4. Numerical simulations 

 

In order to do the numerical simulations, in this paper were considered two types of 

satellites: medium sized (MS), which has similar orbital characteristics with the American 

satellite PEGASUS [17] and small sized (SS), which has similar orbital characteristics of 

the First Brazilian Data Collection Satellite SCD-1 [2]. All the numerical simulations were 

developed using the software MATHEMATICA. 

 

4.1. Results for the MS satellite 

 

The initial data for the MS satellite are: 

 

Orbital inclination: I = 0.5533rad; 

Eccentricity: e = 0; 

Orbital radius: r = 6959. 64km; 

Principal moments of inertia on: x – axis,  A = 0.39499 kg km
2
; 

                                                     y – axis,  B = 0.39499 kg km
2
; 

                                                     z – axis,  C = 0.10307 kg km
2
; 

Delaunay’ variables:     l = 0rad;     g = 0rad;     h = 0.5235rad; 

                                      L = 608336932. 2kg km
2
/s; 

                                      G = 608336932. 2kg km
2
/s; 

                                      H = 517570028. 7kg km
2
/s. 

 

There was found 60 equilibrium points, but only 2 were stables by the application of KST. 

The others 58 equilibrium points failed in the first condition of the KST. It could be 

observed that, when the first condition was not satisfied, the eigenvalues associated with  

the matrix    were real or were not pure imaginary. This equilibrium point is not linearly 
stable. Table 1 shows two equilibrium points found in the simulations for MS satellite, one 

Lyapunov stable and other unstable. For this  stable  equilibrium  point, the following 

values were found to the inclinations angles    = 2.20566rad,     = 0.86245rad, the spin 

velocity   = 0.003735rad/s  and the rotation period   =1680.4s. These values characterize 

the non-existence of singularities on the Andoyer’ variables in this point, it means that the 

angles    and    are not null or close to zero. When these angles    and    are null or close 

to zero, the Andoyer’ variables        and    are undeterminate (by Fig. 1, it is possible to 

observe that is difficult to determine the intersection between the involved planes in the 

definitions of these variables). This analysis was performed for all equilibrium points found 

in the simulations.  

 

Table 1. MS Satellite: A=B = 3.9499*10
-1

 kgkm
2
, C = 1.0307*10

-1
 kgkm

2
 

Equilibium points Lyapunov stable Unstable 

        
      2.50725*10

-4
 - 1.34202*10

-11
 

        
     3.85388*10

-4
 - 4.19645*10

-10
 

        
     - 2.28562*10

-4
 - 3.53991*10

-10
 

        - 1.6*10
-7

 0.0934286 

        0.5235 0.41354 



4.1.1 Stables region around the equilibrium points 

 

The behavior around the Liapunov stable equilibrium points were obtained by the 

variations in the orbital inclination (I) and in the principal moments of inertia of the satellite 

on x – axis (A) and on z - axis (C). For this procedure was used the algorithm developed by 

Silva [11], in which  the Hamiltonian F is a function of (A, C, I) with the others parameters 

given by the others parameters of the equilibrium point. By this algorithm the analytical 

eigenvalues   , i = 1,2, of the characteristic equation associated with the linear system of 

the rotational motion are given by: 

 

                   (9) 

 

                         (10) 
 

with          and          are presented in Silva [11]. By this algorithm, with the 
variation of A, C and I , it is verified  if the values of the a(A, C, I) and b(A, C, I) are 

smaller than zero. In this situation the eigenvalues are pure imaginary. The variations were 

arbitrarily chosen between 0 and 0.8 kgkm
2
 for the principal moment of inertia and between 

0 and 1rad for the orbital inclination. 

 

Figure 3 show the result for the linear stability (eigenvalues are pure imaginary) when the 

orbital inclination is fixed ( I0 = 0.5533rad). There are two regions, one for the eigenvalue 

   and other for     In the Region 1 the blue color points out  a(A;C; I0) < 0 and in the 

Region 2 the blue color points out  b(A;C; I0) < 0, it means, by Eq. 9 and Eq.10, that the 

eigenvalues are pure imaginary.  The results also show that in the linear stability there is a 

separation between the stable and unstable region when the spacecraft principal moments of 

inertia are equals. 

 

 
Region 1- a(A,C, I0)                                                                 Region 2- b(A;C; I0) 

 

Figure 3 – Stable regions around the equilibrium point for MS satellite,  

with I0 =0.5533rad. 

 



Figure 4 shows the analysis of the second condition for the KST, in the case that principal 

moment of inertia on the x –axis and the orbital inclination are fixed ( A0 = 0.39499kg km
2 

and I0 = 0.5533rad). It is possible to observe that the second condition (    
      

   ,                                                                                                  

   and    integer satisfying the inequality             ) is satisfied for C< 0.39499 

kgkm
2
 and C > 0.6028kgkm

2
. The results conformed with the results show in Fig. 3, 

because the fixed values A0 and I0 in the Regions 1 and 2 of the Fig. 3, it can be observed 

that the eigenvalues are real or non-pure imaginary when  

 

A=0.39499 kgkm
2
 < C < 0.6028kgkm

2
.

 

Figure 4 – Second condition for k1 ≥0 e k2 ≥ 0,  

considering A0 =0.39499 kg km
2 
and I0 =0.5533rad.  

 
 

Figure 5, 6 and 7 show the analysis for the third condition associated with the Arnold 

determinant D
o
, given by Eq. 2. By Fig. 5, when the I0  and A0 are fixed, it is possible to see 

the unstable region for values of the principal moment of inertia on the z-axis  (C),  

A0<C<0.6028kgkm
2
, it means that the rotational motion is nonlinear unstable (D

o≠0). 

 

Figure 6 shows the values for the Arnold determinant when C0 = 0.10307 kg km
2
 and 

I0=0.5533rad. In the region with A < 0.10307 kgkm
2
 = C there is linear instability and the 

Arnold determinant doesn’t assume any values because the eigenvalues are real or non-pure 

imaginary. When  A = C there isn’t the non-linear instability, because D
0
 = 0.  

 

By Fig. 7, when A0 and C0 are fixed, there are two values for the orbital inclination in 

which the Arnold determinant is equal to zero: I = 0.159rad and I = 0.2353rad. These cases 

are associated with the tumbling of the satellite.  

 



 
 

 
Figure 5 – Arnold determinant for A0 = 0.39499kg km

2 
and I0 =0.5533rad.  

 

 

 
Figure 6 – Arnold determinant for C0 = 0.10307 kg km

2
 and I0 =0.5533rad.  

 
 

 
 

Figure  7 - Arnold determinant for C0 = 0.1.0307 kg km
2
 and A0 = 3. 9499 *10

-1
kg km

2
.  



4.2. Results for the PP satellite 

 

The initial data for the SS satellite are: 

 

Orbital inclination: I = 0.4364rad; 

Eccentricity: e = 0; 

Orbital radius: r = 7139. 61585km  

 

Principal moments of inertia on: x – axis,  A = 9.855*10
-6

kg km
2
; 

                                                     y – axis,  B = 9. 855* 10
-6

kg km
2
; 

                                                     z – axis,  C = 13.000 *10
-6

kg km
2
; 

 

Delaunay Variables:     l = 0rad;     g = 4.5420rad;     h = 4.542rad; 

                                      L = G = 5334653.709kg km
2
/s; 

                                      H = 4834685.585kg km
2
/s. 

 

There were 50 equilibrium points and only 7 were stables, the others 43 equilibrium points 

had also failed in the first condition of the KST and were not linearly stable. Table 2 shows 

two equilibrium points found in the simulations, one Lyapunov stable and other unstable to  

PP satellite. The same way for the MS satellite, there aren’t singularities on the Andover’s 

variables in  this  point  due  to  the values of  the  inclinations  angles          

   =1.03788rad,      = 1.55784rad, 

the spin velocity   = 1.59939rad/s and the rotation period   =3.92848s. 

 

Table 2.  SS Satellite: A=B = 9.20*10
-6

 kgkm
2
, C = 13*10

-6
 kgkm

2
 

Equilibrium points Lyapunov stable Unstable 

       
      2.69365*10

-7
 7.13725*10

-11
 

       
     2.07921*10

-5
 2.14416*10

-10
 

       
     1.05633*10

-5
 1.07843*10

-10
 

        0.066560 - 0.090962 

        0.4 0.07 

 

 

4.2.1 Stable regions around the equilibrium points 

 

The same procedure developed for MS satellite is now applied for the SS satellite, in order 

to observe the stability behavior around the equilibrium point. The variations of  the 

principal moment of inertia on x-axis were arbitrarily chosen between 0 and 18*10
-6

kg km
2
, 

variations of the principal momentum of inertia on z-axis(C) between 0 and 16*10
-6

kg km
2
  

and the variations in orbital inclination between  0 and 1rad. 

 

Figure 8 shows the linear stabilization when the principal moment of inertia on the x-axis is 

fixed (A0 = 9. 855* 10
-6

kg km
2
). The blue color in  the region 3 represents a(A0;C; I) < 0  

and the blue color in  region 4 represents b(A0;C; I) < 0 , it means the  eigenvalues are pure 

imaginary. By the results it is possible to note that there is non linear stabilization regions 

when C = A0 or for low orbital inclination and there is linear stabilization regions for C< A0 



e C > A0. In Fig. 9 the orbital inclination is fixed (I0 = 0.4364rad). The blue color in region 

5 represents a(A;C; I0) < 0  and the blue color in  region 6 represents b(A;C; I0) < 0. 

Through the results it is possible to observe that there isn’t linear stabilization for A = C, 

which was observed for the MS satellite. 

 

Figure 10 shows the analysis of the second condition for the KST, for the case when the 

principal moment of inertia on x –axis and the orbital inclination are fixed: 

A0 = 9.855*10
-6

kg km
2
  and  C0 = 13 *10

-6
kg km

2
. 

Then the second condition (    
      

   ,) is satisfied   for I > 0.1651rad, in according 

with the results presented in the Fig. 8.                                                                                               

 
                Region 3- a(A,C, I0)                                   Region 4- b(A;C; I0) 

 

Figure 8 – Linear stability region when A0 = 9. 855* 10
-6

kgkm
2
. 

 

             

 
                             Region 5- a(A,C, I0)                         Region 6- b(A;C; I0) 

 

Figure 9 – Linear stability region when I0 = 0.4364rad. 

 



 
Figure 10 – Second condition for k1 ≥0 e k2 ≥ 0,  

considering A0 = 9.855*10
-6

kg km
2
 and  C0 = 13*10

-6
kgkm

2
. 

 

Figure 11, 12 and 13 show the analysis for the third condition associated with the Arnold 

determinant D
o
 for SS satellite. By Fig. 11, when the I0  and A0 are fixed, it is possible to 

see that the Arnold determinant is zero for values of  the principal moment of inertia on z-

axis  (C ),  9.5*10
-6

kgkm
2
 < C <A0, than the third conditions are not satisfied and the 

rotational motion is nonlinear unstable . 

 

Figure 12 shows the values for the Arnold determinant in terms of the principal moment of 

inertia on x-axis, when C0 = 13*10
-6

kg km
2
 and I0=0.4364rad. The third condition is not 

satisfied for A = C0 and for C0 < A < 13.268*10
-6

kgkm
2
. 

 

By Fig. 13 , when A0 and C0 are fixed, the third condition is not satisfied for I< 0.1651rad, 

and there is nonlinear stabilization only for I > 0.1651rad. 



 
Figure 11 – Arnold determinant in terms of principal moment of inertia, 

for A0 = 9.855*10
-6

kgkm
2 
and I = 0.4364rad. 

. 

 
 

Figure 12 – Arnold determinant in terms of principal moment of inertia on x-axis, 

C0 = 13 *10
-6

kg km
2
 and I0=0.4364rad. 

. 

 
 

Figure 13 – Arnold determinant in terms of orbital inclination, 

C0 = 13 *10
-6

kg km
2
 and A0 = 9.855*10

-6
kg km

2
. 



5. Conclusions 

 

In this paper it was presented a semi-analytical stability of the rotational motion of artificial 

satellites, considering the influence of gravity gradient torque for symmetric satellite in a 

circular orbit. Applications were made for two types of satellites: medium (MS) and small 

(SS). 

 

Initially the points of equilibrium were determined using the physical, orbital and attitude 

characteristics of each satellite. Then the algorithm for stability analysis was applied and it 

was obtained 2 stable equilibrium points for the MS satellite and 7 stable points for the SS 

satellite. 

 

Several stable equilibrium points were determined and regions around these points have 

been established by variations in the orbital inclination and in the spacecraft principal 

moment of inertia. There were found 50 equilibrium points for the small size satellite (with 

some data similar to First Brazilian Data Collecting Satellite) with 10 Liapunov stable 

points. For the medium size satellite (with some data similar to the American satellite 

PEGASUS) there were found 60 equilibrium points, but only with 2 Liapunov stable 

points. In both cases the fail was in the first condition of the Kovalev-Savchenko theorem 

(KST).  

 

For the MS satellite it was gotten only two equilibrium point because this satellite has 

similar characteristics to the satellite PEGASUS, which is tumbling [11]. For SS satellite 

were obtained many others equilibrium points, but most of them were discarded, because it 

lead to the Andoyer’s variables a condition of uniqueness (it means that the angles    and    

are null or close to zero, and the Andoyer’ variables       and    are indeterminate ). In 

comparison with previous works, the results show a greater number of equilibrium points 

and an optimization in the algorithm to determine the normal form and stability analysis. 

 

The results for the stable regions show that in the linear stability there is a separation 

between the stable and unstable region when the spacecraft principal moments of inertia are 

equals. It is also possible to observe that the rotational motion for the small satellite is 

linearly unstable in a low orbital inclination. For considered equilibrium points, the second 

condition is valid for all values of k1 and k2 for any orbital inclination for the medium 

satellite but for the small satellite it is necessary an orbital  inclination bigger than 0.1651 

rad. In the nonlinear analysis it was possible to verify that the linear stability doesn’t 

guaranty the non-linear stability and the stable regions are bigger for the small satellite. For 

the medium satellite there are two values for the orbital inclination in which the Arnold 

determinant is equal to zero when principal moments of inertia on x-axis and z-axis are 

fixed  it means that the rotational motion is nonlinear unstable.  For the small satellite there 

is nonlinear stability for orbital inclination bigger than 0.1651 rad. 

 

Then the present analysis can directly contribute in the maintenance of the spacecraft’s 

attitude. Once the regions of stability are known for the rotational motion, a smaller number 

of maneuvers to maintain the desired attitude can be accomplished. In this case, a fuel 

economy can be generated to the satellite with propulsion systems control, increasing the 

spacecraft ‘lifetime. 
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