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Abstract: Formation flying along a halo orbit near the L2 point in the Sun-Earth circular re-
stricted three-body system is considered. The reference orbit is a periodic perturbation of the halo
orbit generated by an exosystem, and the output regulation theory is employed for the transition
and maintenance. The total velocity change required for the maintenance of the halo orbit is cal-
culated. Then the total velocity change for the maintenance of the perturbed reference orbits with
different size is calculated, and the size of the perturbation which does not require an additional
velocity change is determined. Reference orbits which are shifted halo orbits in the along-track and
cross-track directions are also considered. Varying the size of the shift, the total velocity change
is calculated, and the reasonable size of the shift for formaion flying is determined. Finally, for-
mation flying near the L2 point is considered, where the reference orbit is a periodic orbit whose
frequency is equal to that of the linearized equations of motion at the L2 point. The size of the orbit
is determined such that the total velocity change for the maintenance is comparable to that of the
maintenance of the halo orbit.

Keywords: Sun-Earth Three-Body Problem, Halo Orbit, Formation Flying, Total Velocity Change,
Output Regulation.

1. Introduction

Recently formation flying along a halo orbit near a libration point of the circular-restricted three-
body problem (CR3BP) [1] has been studied [2]. As a basic dynamics, the linearized equations of
motion along a halo orbit is used, and a control strategy to maintain a satellite near the orbit, which
is based on the short-term relaive motion, is proposed. In this case the difficulty lies in the fact that
the coefficients of the linearized system depend on the halo orbit and are periodic functions which
are only numerically available. The paper [2] is motivated by earlier studies [3, 4] on formation
flying in the vicinity of a libration point of the CR3BP with application to spacecraft imaging
arrays. Reference orbits in [3, 4] are not natural orbits of the CR3BP but controlled orbits. In this
case control implementation is straightforward, but good control strategies need to be designed.

In this paper halo orbits near a collinear libration point are considered, and the maintenance prob-
lem by feedback is considered. For this purpose the equations of motion are expressed by the
rotating framework whose origin is the libration point. This makes the dynamics semilinear, and
the linear control theory can be employed. For the follower’s orbit periodic perturbations of the
halo orbit are used. To maintain such an orbit, the output regulation thoery for linear systems
[Saberi(2000)] is used. Stabilizing feedback controls are designed via the algebraic Riccati equa-
tions of the linear quadratic regulator (LQR). As a performance index, ΔV neccessary to maintain
a halo orbit or its perturbation for one period is calculated. The frequency of the periodic pertur-
bation is arbitrary, and hence the integer multiple of the frequency of the halo orbit are considered
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and L2 in each case is examined. The feedback gain depends on the weight parameters on state
and control. Thus varying one of the parameters, ΔV is computed as a function of the parameter.

As for numerical simulations, the Sun-Earth CR3BP is considered, and the Lagrangian point is
specified as L2. As a halo orbit, a periodic orbit with period close to the half of the sun-earth
system is considered. The linearized equations of motion at L2 possess periodic orbits for in-
plane and out-of-plane motion. Selecting one of these two frequencies for a periodic perturbation,
periodic reference orbit can be generated. The ΔV to maintain such orbit is also calculated.

2. Equations of motion in the CR3BP

Recall that the equations of motion of the circular restricted three-body problem (CR3BP) in the
nondimensional form are given by

X ′′ − 2Y ′ − X = −1 − ρ

r3
1

(X + ρ) − ρ

r3
2

(X − 1 + ρ) + ux,

Y ′′ + 2X ′ − Y = −1 − ρ

r3
1

Y − ρ

r3
2

Y + uy, (1)

Z ′′ = −1 − ρ

r3
2

Z − ρ

r3
2

Z + uz,

where {X, Y, Z} is the rotating frame whose origin is the barycenter of the system, the coordinates
of the satellite are normalized by the radius of the circular orbit and time by the rate of the orbit,
ρ = M2/(M1+M2), M1 and M2 are the masses of the two main bodies with M1 > M2, (ux, uy, uz)
is the control acceleration, and

r1 = [(X + ρ)2 + Y 2 + Z2]1/2,

r2 = [(X − 1 + ρ)2 + Y 2 + Z2]1/2.

Eq. (1) has stationary points known as Lagrangian points Li satisfying

X =
1 − ρ

r3
1

(X + ρ) +
ρ

r3
2

(X − 1 + ρ),

Y =
1 − ρ

r3
1

Y +
ρ

r3
2

Y, (2)

Z = 0,

and

L1 = (l1(ρ), 0, 0), L2 = (l2(ρ), 0, 0), L3 = (l3(ρ), 0, 0),

L4 = (1/2 − ρ,
√

3/2, 0), L5 = (1/2 − ρ,−
√

3/2, 0),

where li(ρ) are determined by the first equation of Eq. (2). To describe equations of motion near
a collinear equilibrium point Li, it is conveneient to use the coordinate system with center at Li.
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Replacing X , Y , Z by x + li, y, z, Eq. (1) can be written as

x′′ − 2y′ − x = li − 1 − ρ

r3
1

(x + li + ρ) − ρ

r3
2

(x + li − 1 + ρ) + ux,

y′′ + 2x′ − y = −1 − ρ

r3
1

y − ρ

r3
2

y + uy, (3)

z′′ = −1 − ρ

r3
1

z − ρ

r3
2

z + uz,

where

r1 = [(x + li + ρ)2 + y2 + z2]1/2,

r2 = [(x + li − 1 + ρ)2 + y2 + z2]1/2.

The linearized equations of (3) at the orign are given as follows

x′′ − 2y′ − (2σi + 1)x = ux,

y′′ + 2x̄′ + (σi − 1)y = uy, (4)

z′′ + σiz = uz,

where

σi = ρ/|li(ρ) − 1 + ρ|3 + (1 − ρ)/|li(ρ) + ρ|3 (5)

The state space form of (4) is given by

x′ = Ax + Bu, (6)

where x = [x y x′ y′ z z′]T , u = [ux uy uz]
T , and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0

2σi + 1 0 0 2 0 0
0 1 − σi −2 0 0 0
0 0 0 0 0 1
0 0 0 0 −σi 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The state space form of (3) is then semilinear and is given by

x′ = Ax + Bf (x) + Bu, (7)

where

f (x) =

⎡
⎢⎣

li − 2σix − 1−ρ
r3
1

(x + li + ρ) − ρ
r3
2
(x + li − 1 + ρ)

σiy − 1−ρ
r3
1

y − ρ
r3
2
y

σiz − 1−ρ
r3
1

z − ρ
r3
2
z

⎤
⎥⎦ .
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3. Formation flying near a collinear libration point

The semilinear form (7) is convenient for control purposes. To see this, let xf be a periodic orbit
of the leader near the Li point given by

x′
f = Axf + Bf (xf), xf (0) = xf0. (8)

To maintain this orbit, a atandard way is to linearize (7) along xf and apply the LQR theory for
periodic systems. The resulting equation has periodic coefficients depending on xf and a feedback
control is designed by the differential Riccati equation . However, the leader can maintain this
orbit by the feedback

u = −Fe + f (xf ) − f (x), (9)

where e = x − xf and F is an arbitrary feedback gain such that A − BF is stable. In fact

e′ = (A − BF )e. (10)

Now consider formation flying where the follower is required to track (xf +w1, yf +w2, zf +w3).
Here (xf , yf , zf) is the periodic trajectory of the leader given by (8) and (w1, w2, w3) is a periodic
(or quasiperiodic) trajectory generated by an exosystem

w′ = Sw, w(0) = w0 (11)

where

S =

⎡
⎢⎢⎣

0 s1 0 0
s2 0 0 0
0 0 0 1
0 0 −ω2

2 0

⎤
⎥⎥⎦ , s1s2 = −ω2

1, ω2 > 0. (12)

This problem can be solved if and only if the regulator equation associated with (6)

AΠ − ΠS + BΓ = 0,

CΠ + D = 0,
(13)

has a solution [Saberi(2000)], where

C =

⎡
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎤
⎦ , D = −

⎡
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ . (14)

In this case it is known [7] that the regulator equation (12) has a solution. In fact the solution is
given by

Π =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 s1 0 0
s2 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, Γ =

⎡
⎣

s1s2 − 2s2 − 2σ − 1 0 0
0 s1s2 + 2s1 − 1 + σ 0
0 0 −ω2

2 + σ

⎤
⎦ . (15)
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The feedback control

u = −Fx + (Γ + FΠ)w (16)

fulfills the output regulation for the linear system (6), i.e.,

z = Cx + Dw → 0 as τ → ∞. (17)

Now consider the same tracking problem for the semilinear system (7). Combining (7) and (8), the
dynamics for the error e is given by

e′ = Ae + B(f (x) − f (xf )) + Bu (18)

Define the output

z = Ce + Dw. (19)

The tracking problem above is equivalent to the output regulation problem (18) and (19).

Theorem 3..1. The output regulation problem (18) and (19) can be solved by the modified control

u = −Fe + f(xf) − f (x) + (Γ + FΠ)w. (20)

Proof. In fact

(e − Πw)′ = Ae + Bf (x) − Bf (xf ) + Bu − ΠSw

= (A − BF )e + B(Γ + FΠ)w − ΠSw

= (A − BF )(e − Πw) + (AΠ − ΠS + BΓ)w

= (A − BF )(e − Πw).

Hence (e − Πw) → 0. Now

z = Ce + Dw

= C(e − Πw) + (CΠ + D)w

= C(e − Πw) → 0,

which implies that the follower tracks (xf + w1, yf + w2, zf + w3) and stays in the vicinity of
(xf , yf , zf ).

Remark 3..1. The frequencies of S can be chosen as those of the linearized equations (4).

It is natural to use the periodic orbit xf as the reference orbit of the leader. However, reference
orbits can be generated by the linear system (6). Recall that the out-of-plane motion of (6) is
periodic, and the in-plane motion also has periodic solutions. Hence quasi-periodic orbits can be
generated. By adjusting one of the frequencies, periodic orbits can be generated. To keep the
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leader (and/or follower) in such an orbit, one can choose the trivial solution xf = 0 and apply to
(7) the control law

u = −Fx − f (x) + (Γ + FΠ)w. (21)

In this case the output regulation problem is defined by

x′ = Ax + Bf (x) + Bu,

z = Cx + Dw.
(22)

Corollary 3..1. The output regulation problem (22) can be solved by the control (21).

4. Simulation results

In this section the control laws (9), (20) and (21) are applied to the Sun-Earth CR3BP, and ΔV
necessary for the maintenance of a periodic orbit is calculated. The Lagrangian point is assumed to
be L2. In this case ρ = 3.0542× 10−6 and σ = 1.0104. The period and the radius of the Sun-Earth
system are T0 = 365.26 [d] and R0 = 1.4960 × 108 [km]. The initial condition of the reference
orbit xf is xf0 = [−1.6623 × 10−3 0.0000 0.0000 9.8104 × 10−3 1.0000 × 10−4 0.0000] with
period T = 3.1026. The trajectory is given by Fig. 1, which is unstable and within two periods it
diverges away. Thus the reference orbit is the periodic extension of the trajectory of the first period,
and to maintain this orbit feedback control (9) is necessary. The feedback control F is designed by
the Riccati equation

A′X + XA + Q − XBR−1B′X = 0 (23)

of the linear quadratic regulator and is given by F = R−1B′X , where Q = I and R = I . The
ΔV required to maintain this orbit for one period is ΔV1(= 2.6249 × 10−4) = 7.8232 [m/s].
As the follower’s orbit, it is assumed that w1 = a cos ωt, w2 = a sin ωt, w3 = b cos ωt, where
a = b = 1.0000 × 10−6, ω = kωf , k = 0.5, 1, 2, · · · , 20 and ωf = 2π/T . The ΔV required for
the maintenance of the reference orbit for one period T are shown in Fig. 2. The ΔV remains
constant for k = 0.5 − 4, and it is comparable to that of the halo orbit. Thus the fuel consumption
for the leader and the follower is approximately equal. Fig. 3 shows the controlled trajectory in the
X − Y -plane for k = 2, 4, 10, 20 and a = 0.0002. The case of different reference orbits are shown
in Fig. 4, where shifted halo orbits in Y - and Z-directions are considered. The ΔV required to
maintain these orbits for one period are shown in Table. 1 and 2. The case d = 10−6 corresponds
to the shift of ≈ 150 [km] in Y -direction, and the ΔV required for the maintenance for one period
is 9.0097 [m/s] which is comparable to that of the maintenance of the halo orbit. In the case of
the shift in the Z-direction, the ΔV required for the maintenance for one period is 7.8522 [m/s],
which is smaller. Furtheremore, the increase of the shift d does not affect the ΔV very much as
seen from Table2.

Finally assume that xf = 0, and consider the control law (21). The frequency of the in-plane
motion is ωin = 0.9901 and that of the out-of-plane is ωout = 0.9951. In this case it is assumed
that ω1 = ω2 = ωin and a = b = 1.0000 × 10−6. The ΔV required to maintain this small orbit for
one period is 1.1916 [m/s] and is 15% of the halo orbit maintenance. Hence such orbits are useful
for missions close to the Lagrangian point.
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Fig. 1. Uncontrolled trajectory for 2 periods.
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Fig. 2. ΔV vs. ω (a = b = 1.0 × 10−6).

Table 1. L1-norm for maintenance of shifted halo orbits in Y -direction.

d L1 L1(in) L1(out) L1[m/s] L1(in)[m/s] L1(out)[m/s]

0.000001 0.0003023 0.0003021 0.0000054 9.009665 9.005839 0.159879
0.000010 0.0008693 0.0008692 0.0000105 25.911608 25.907552 0.313093
0.000100 0.0081282 0.0081279 0.0000649 242.270162 242.259841 1.934422

5. Conclusions

The formation flying near a halo orbit in the Sun-Earth system is considered. The reference orbit is
a periodic perturbation of the halo orbit generated by an exosystem and the output regulation theory
is employed. The halo orbit is unstable and a small error in the initial condition results in a large
deviation from the orbit within a few periods. The ΔV required for the halo orbit maintenance is
calculated. The maintenance of the reference orbit with perturbation of order up to 10−3 requires
ΔV is comparable to that of the halo orbit maintenance. The case of reference orbits which are
shifted halo orbits in the along-track and cross-track directions is also considered, and the ΔV is
comparable to that of the halo orbit maintenance when the shift distance is of order 10−3 or less.
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Table 2. L1-norm for maintenance shifted halo orbits in Z-direction.

d L1 L1(in) L1(out) L1[m/s] L1(in)[m/s] L1(out)[m/s]

0.000001 0.0002634 0.0002624 0.0000053 7.852224 7.820001 0.158423
0.000010 0.0002730 0.0002625 0.0000271 8.135598 7.825000 0.806314
0.000100 0.0004179 0.0002642 0.0002569 12.454742 7.874737 7.657699
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Fig. 3. Controlled trajectory (a = 2.0 × 10−4).
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Fig. 4. Shifted halo orbits.
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