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ABSTRACT

Within the class of natural motions near libration point regions quasi-periodic trajectories evolving
on invariant tori are studied. Those orbits prove beneficial for relative spacecraft configurations
with large distances among satellites. In this study properties of invariant tori are outlined, and
non-resonant and resonant tori around the Sun/Earth libration point L1 are computed. A numerical
approach to obtain the frequency base and to parametrize a torus in angular phase space is introduced.
Initial states for spacecraft formations on the torus’ surface are defined. The formation naturally
evolve along its surface such that the relative positions within a formation are unaltered and the
relative distances and the orientation are closely bounded. An in-plane coordinate frame together
with a modified torus motion is introduced and the inner and outer behaviour of the formation’s
geometry is investigated.

1. Introduction

New mission concepts using large spacecraft formations emphasise the study of multiple spacecraft
placed at large relative distances. Projects within the ESA Cosmic Vision are now in the study phase
with the aim to trigger new scientific discoveries, such as the detection of asteroids and planets.
They are expected to provide high performance for telescope or spectroscopy configurations. The
future of fundamental physics done in space lies in the exploitation of the properties of the libration
points. The Sun-Earth L1 libration point region provide a low-acceleration environment that is
ideal for spacecraft formations. The centre manifold existing within the vicinity of the libration
points provides a variety of natural periodic and quasi-periodic orbits that could prove beneficial for
formation flight. Quasi-periodic trajectories, in particular trajectories evolving on an invariant torus,
allow for natural formation whose geometry is bounded, and offer more possibilities with respect to
periodic orbits.

Much of the available research in formation flying near the libration points focus on the exploitation
of periodic orbits for trajectory and formation design. Kolemen and Olikara studied quasi-periodic
orbits around the libration points and proposed numerical procedures for their generation and
continuation [5, 7]. The algorithm uses a Fourier representation to describe an invariant curve
representing the intersection of an invariant torus with a Poincaré section. Schilder investigated
invariant objects, in particular two-dimensional tori and their trajectories [8]. They studied invariant
tori for a generic dynamical system, but it can be applied with some modifications to the dynamics
used in this study. Barden investigate formation flying near libration points in the circular restricted
three-body problem (CR3BP) with a focus on the determination of the natural behaviour at the
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centre manifold [1]. A ’string of pearls’ was proposed to demonstrate that quasi-periodic trajectories
evolving on an invariant torus are useful for formation flying. Hértier explores quasi-periodic
Lissajous trajectories near a given reference orbit in the vicinity the Sun-Earth libration point L2
for the placement of large formations of spacecraft [2, 3]. They derive natural regions where the
geometry of the formation is maintained. Further analyses considered natural and non-natural
arcs for formation applications [4]. Most of the formation flying missions have been considering
spacecraft at a relatively small distance from the reference orbit. However, observatory and
interferometry missions in space have been the motivation for the analysis of large formations, in
particular on quasi-periodic trajectories on invariant tori.

In this study, the primary goal is to characterize the natural motion of spacecraft on a two-
dimensional invariant torus and indicate properties of the motion that are beneficial for formation
flying missions. A two-dimensional invariant torus can be described as a set of orbits that start
on a surface and stay on that surface during the dynamical evolution. Within the class of natural
motions on two-dimensional tori the focus is set on quasi-halo orbits enabling relative spacecraft
configurations with large distances among satellites. With the aim of identifying these orbits, a
numerical approach was developed to parametrize invariant tori and determine their frequency
base. Formations on the surface of a torus are examined, and formation snapshots are introduced to
explain their shape and orientation in space. The variation of the formation’s geometry depends on
the selection of the initial states on the torus, and therefore on the distribution of the spacecraft on
the torus’ surface. The appropriate orientation of the cutting plane comes from the linear subspaces
of the Monodromy matrix. A sophisticated solution is derived from the parametrization of the torus.
Quasi-periodic orbits in the vicinity of Lagrange point L1 in the Sun-Earth system were studied in
detail. This analysis details and expands the understanding of the natural dynamics and points out
the advantages of the surface of a torus suitable for formation flight.

2. Dynamical Representation

The dynamical reference model used is the circular restricted three body problem (CR3BP). It
assumes that the Earth travels around the Sun in a circular orbit, whereas the spacecraft is modelled
as a massless particle moving under the gravitational forces of the Sun (primary body) and the Earth
(secondary body). In the CR3BP, the motion of the spacecraft is described in terms of rotating
coordinates relative to the barycentre of the system primaries. In this frame, the rotating x-axis is
directed from the primary to the secondary body. The non-linear equations of motion are written as

ẍ = 2ẏ+Ωx +ux

ÿ =−2ẋ+Ωy +uy

z̈ = Ωz +uz

(1)

Ω =
1
2
(x2 + y2)+

1−µ

r1
+

µ

r2
+

1
2

µ(1−µ) (2)

where r1 represents the distance from the spacecraft to the larger primary, and r2 to the larger
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primary. The non-dimensional time is the inverse of the mean motion of the primaries, t∗. The
characteristic length l∗ is the distance between the two primaries and the characteristic mass m∗ is
the total mass of the system, see Eq. 3.

l∗ = 1AU

t∗ =
(

l∗3

Gm∗

)−1/2

m∗ = mSun +mEarth/Moon

(3)

This study focus on the motion around the first Sun/Earth libration point assuming that the secondary
body is a single point mass combining the Earth/Moon two-body system. Five equilibrium points
named (L1−L5) exist in the CR3BP. The value for the mass ratio is µ = 3.0406e− 06. In the
vicinity of each equilibrium point subspaces can be identified via linearisation of the equations of
motion about the libration points. The subspaces are spanned by eigenvectors of the Monodromy
matrix, which is a state transition matrix (STM) for a periodic orbit, mapping the initial state vector
to the final state vector after one period. An independent basis B is established with

B = (es,eu,er1,er2,e5,e6)
T (4)

where span(er1,er2) is a periodic subspace, spanning the plane of the imaginary eigenvectors, es
correspond to the stable direction and eu to the unstable direction. The periodic subspaces build
the centre manifold, which is associated with families of periodic orbits, whereas many of these
periodic orbits also possess centre components that correspond to quasi-periodic motions.

3. Quasi-Periodic Objects

The equations of motion Eq. 1 in the CR3BP can be considered generically as an autonomous
ordinary differential equation, assuming that those equations possess a quasi-periodic orbit as a
solution that reside on an invariant tori about the corresponding periodic orbit. In other words the
closure of the quasi-periodic orbit is an invariant torus. It is often preferable to regard the torus
directly as an invariant object, independent of a particular trajectory on its surface, see Fig. 1 (right)
[6]. The propagation of multiple trajectories densely fill and describe the surface of the invariant
torus. Fig. 1 (right) represents the surface to illustrate the concept.

3.1. Quasi-Periodic Motion on Invariant Tori

The objective is to gain a better understanding of the motion of a spacecraft on a torus. This
knowledge of the natural flow is very useful for trajectory and formation design. Quasi-periodic
solutions of a non-linear system are described as the motion on a p-dimensional torus that is
associated with p different internal frequencies. All trajectories of this flow are quasi-periodic
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Figure 1. Periodic (left, blue) versus quasi-periodic (left, red) orbit. Invariant object (right), surface
densely filled by quasi-periodic trajectory.

functions of time and their properties strongly depend on arithmetical properties of the frequency
base. In case of a 2-dimensional torus (2-torus) the frequency base has two entries.

ω = {ω1,ω2} (5)

The parallel flow on an invariant torus with the frequency base ω is non-resonant, if the basic
frequencies are rationally independent (no non-trivial linear combination with integers is equal to
zero). In this case each trajectory densely covers the torus’ surface. In the other case, when the
frequencies are rationally dependent (integer k exist to solve the Eq. 6) the torus is called resonant.

k1ω1 + k2ω2 = 0 (6)

The motion is directly linked to the frequency base of the torus, and can be described by a particle
that is longitudinally moving about the torus structure with the frequency ω1, while rotating with
the frequency ω2. The motion is visually described in Fig. 2. The time needed for one rotation is

Figure 2. Visualization of the motion on a torus with a two-dimensional frequency base. The black
circle represents a cross section of the torus.
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Ti =
2π

ωi
(7)

The rotation number of a torus is defined as

ρ = 2π
ω1

ω2
(8)

which uniquely defines a torus with a given energy. The rotation number represents the average
movement in the ω2 direction when one revolution is done in ω1 direction.

3.2. Obtaining Quasi-Periodic Solutions

A convenient way to obtain quasi-periodic solutions is to use a numerical approach which is based
on a Poincaré section. For a description of this method, see [5]. The method uses a reduction of the
original system, where periodic orbits are represented by equilibrium points, while quasi-periodic
orbits are represented by closed curves. In other words this method reduces the calculation of
quasi-periodic orbits to a search for periodic orbits that return to a closed curve on a section plane.
Those curves are modelled by truncated Fourier coefficients in position and velocity space.

3.3. Families of Quasi-Periodic Invariant Tori

The four-dimensional centre manifold around L1 is occupied by quasi-periodic orbits of two different
families, the Lissajous family around vertical Lyapunov orbits, and the two-dimensional invariant
tori around halo orbits. In other words, periodic orbits in the libration point regions are surrounded
by a variety of quasi-periodic orbits. The focus in this paper is set on quasi-periodic orbits that have
an underlying halo orbit. The numerical methods outlined in the previous section allow to compute
individual trajectories and the corresponding invariant tori. One well-known type of periodic
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Figure 3. Northern halo family around L1 in synodic reference frame (left). Maximal size of tori
around halo orbits (right).
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trajectory is the set of halo orbit families that are symmetric across the xz rotating plane. These
orbits serve as periodic trajectories for the calculation of families of invariant tori. The northern
halo orbit family near the L1 Sun-Earth libration point appears in Fig. 3. The circle indicates the
position of the Earth, and the cross the libration point L1. By applying this method to a wide range
of periodic halo orbits of the Northern L1 family, the family of invariant tori are computed. Tab. 1
shows the orbital period, and size parameters for a small, medium and large halo orbit within the
family, those orbits are highlighted in red in Fig. 3.

Halo orbit orb # Tperiod [adim] Ax [adim] Az [adim]

small 1 3.058 0.00145 0.00144
medium 86 2.945 0.00288 0.00692
large 166 2.193 0.00306 0.00749

Torus A ω1 ω2 ρ

small 5.858e-07 2.120 1.554 8.574
medium 2.535e-06 2.126 1.559 8.568
large 9.243e-06 2.087 1.538 8.529

Table 1. Properties of three halo orbits within the L1 family (top). Frequencies and size of tori
shown in Fig. 4 (bottom).

The continuation parameter for the family is the area that is confined by the invariant curve. This
parameter indicates the maximal size of existing tori. Later, the maximal mean distance for
spacecraft formations placed on the torus can be derived. The size is plotted as a function of the
orbit number within the halo family in Fig. 3 (right). The area under the curve in Fig. 3 (right) show
possible geometries. The existence of tori strongly depends on the periodic orbit. For orbit number
120, the continuation procedure fails, due to a resonance.
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Figure 4. Trajectories in the synodic reference frame emanating around three different sized tori.
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The arithmetical properties of the frequency base defines if the torus is densely fill by the quasi-
periodic trajectory or if a resonance within the motion exists. The torus is not filled by the trajectory
and the Poincaré section plane is not described by a curve, but a few discrete points. Three invariant
tori from the family around the periodic orbit number 80 out of the halo orbits are shown in Fig.
4. The size, frequency base and cross section for all three tori are put together in the bottom part
of Tab. 1. The frequency ω1 and the fraction ω1

ω2
are plotted for the family of tori in Fig. 5. For

ω1
ω2

= 1.5 a resonant and near resonant are highlighted and the corresponding trajectories on the tori
are plotted in Fig. 6.
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Figure 5. Relation between ω1 and ω2 (left) and ω1 (right) plotted as a function of the continuation
parameter of the torus family A for several periodic orbits (numbered).
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Figure 6. Resonance trajectories on the surface of a torus. Near resonance (left), resonant (right).
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4. Parametrization of an Invariant Torus

Several tools are available to study the properties of fixed points or periodic orbits, such as Poincaré
maps. The study of quasi-periodic motions in particular on an invariant torus is difficult and no
numerical tools are available. One issue is to get a parametrization of the torus for further studies.
In order to find a parametrization for a torus, a point on the surface of the torus is described by two
angular coordinates. A transformation from Cartesian coordinates to torus coordinates (θ1,θ2,u) is
introduced. The aim of our approach is a numerical approximation of the parametrization of the
original system starting from an already calculated torus. Any quasi-periodic solution x(t) can be
written as

x(t) = u(ωt) (9)

where u is a torus function, whereas ω are the basic frequencies of a solution x(t) as introduced
in Eq. 5. This transformation maps the torus in an area [0,2π)2 in the parameter space. After the
transformation in torus coordinates an equation to determine u is required, which is a solution of
the invariance condition.

f (u,θ) =
m∑

i=1

Ωi
∂u
∂θi

+

p∑
i=m+1

ωi
∂u
∂θi

(10)

An approach to obtain the parametrization in torus coordinates is presented in the following, together
with tools derived from the parametrization.

4.1. Numerical Approach from a Trajectory to the Torus Function

A robust method to compute trajectories that ly on an invariant torus is already available, the
presented method investigates the trajectory and derives the torus parametrization. The system
frequencies are determined from trajectories by the means of Fourier spectral methods. Fig. 7 (left)
shows the results of the Fourier analysis, using a quasi-periodic trajectory evolving on a torus for
t = 30 (dimensionless time units). The two distinctive peaks in the spectrum correspond to the
system frequencies introduced in Eq. 5. The highest peak is longitudinal frequency ω1, whereas the
smaller peak at 1.51

s correspond to the rotational frequency ω2. The peaks above 31
s are the double

frequencies.

With the knowledge of the two torus frequencies the parametrization can be obtained. Assuming
a discretization of the two-dimensional domain of 30 elements in the direction of θ1 and θ2, this
leads to 302 discretization points where the function u is evaluated. The trajectory is scanned and u
is obtained at appropriate time steps, where t is

8



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

ω [1/s]

in
te

ns
ity

 []

0.990.995

−5
0

5
x 10

−3

−5

0

5

x 10
−3

x [adim]y [adim]

z 
[a

di
m

]

Figure 7. Spectrum from the Fourier analysis (left). Invariant circles along torus, obtained within
the the parametrization process (right).

t = i
2π

ω1
+ j ∗ tstep (11)

with

tstep =
2π

ω1
/30. (12)

The results are invariant curves representing cross sections of the torus, they are visualized in Fig. 7
(right). The cross defines the centre of the curves, whereas the the red markers highlight the zero
direction from where the angle θ1 is measured. An indication for wrong system frequencies is if
the points on the invariant curves are wide spread and no structure is visible. The value u for the
corresponding values of θ1 and θ2 are expressed by trigonometric polynomials

u(θ) =
a0√

2
+

nmax∑
n=1

(ancos(nθ)+bnsin(nθ)) (13)

4.2. Properties of the Parametrization

The parametrization of a torus is a tool to study the quasi-periodic motion from a dynamical system
perspective. The parametrization provides the entire set of trajectories on the torus. Orbits on the
neighbourhood of others can be easily computed. The parametrization reveals invariant curves at
equidistant time steps on the torus suitable for formations, see Fig. 7. The blue circles are invariant
curves, the zero directions for the angle θ2 are indicated by red markers. A torus mesh is easily
created from the parametrization enabling distance evaluations between points on the torus and the
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nearby space. The x-component of the torus function is plotted in angular phase space in Fig. 8
(left). A linear characteristic in angular phase space is the map of a quasi-periodic trajectories on
the torus. Formation distance and phasing consideration can be extracted from the pattern of the
characteristics in Fig. 8 (right).
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5. Relative Spacecraft Configurations on Invariant Tori

After gaining a fundamental understanding of the motion associated with invariant tori, aspects
of formation flying can be studied. The surface of a torus defines a natural region suitable for
spacecraft formations. In this analysis the behaviour of spacecraft placed on the surface is explored.
A quasi-periodic trajectory is shown in Fig. 9 (grey). The initial states for a spacecraft formation
are defined at the intersection of a cutting plane with the torus. The evolution of the formation is
indicated by red points at four moments in time.
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Figure 9. Quasi-periodic trajectory shown in the synodic reference frame (grey lines). Four
snapshots of the formation in time (red dots).

Initially, the set of position vectors describe a planar curve, The motion in the yz-plane as seen
from Earth is almost circular and bounded as time proceeds, see Fig. 9 (right). As the spacecraft
proceed in time, they move longitudinally along the underlying halo orbit, and describe latitudinally
a winding motion. These components are significant aspects of the natural motion and effect the
evolution of the curve in time. The curve’s shape contracts and expands, and the orientation of the
plane in space changes as the trajectories are propagated forward in time. Phasing conditions are
introduced and the evolution of the formation is studied in the following.

5.1. Introduction of an In-plane Coordinate Reference Frame

Connecting the spacecraft within the formation at arbitrary time will create a curve that represents
a snapshot of the formation. Those curves represent the orientation and shape of the formation
in time. In the left plots of Fig. 10 the shape and orientation of the formation is shown in the
rotating reference frame with an moving origin at the periodic centre orbit. The colour in the plots
correspond to the time, the time step between the formation snapshots is t = 0.05, dark blue equals
t = 0, and orange to t = 3.014. The difference between the upper and lower plots are the orientation
of the cutting plane, where the formations is initially placed. In Fig. 9 the blue points indicate this
defined zero direction for each snapshot. The evolution of the curve, and therefore of the formation,
in this reference frame over one orbital revolution can be characterized by in-plane and out-of-plane
behaviour. The out-of-plane parameters describe the orientation of the formation, whereas the shape
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Figure 10. Formation snapshots in the rotating reference frame with a local origin (left), and in the
in-plane reference frame (right).

is described by the in-plane parameters. A co-planar reference frame is introduced that lies within
the formation plane with its origin at the underlying periodic orbit. The x-direction is arbitrary
chosen and defines a zero angle direction. Fig. 10 (right) show the transformation of the formations
snapshots into the newly defined in-plane coordinate frame.

In this analysis the assumption holds that the formation snapshots in the in-plane coordinate frame
are planar. The orientation of the normal vector with respect to the rotating reference frame is
expressed in two angles, the declination and right ascension, see Fig. 11 (right). With these angles
the plane stability can be defined and the orientation and shifting rate of the formation plane is
given. A transformation matrix between the synodic and the coplanar reference frame is derived
from those angles. The shape of the formation snapshots, and therefore of the formation is evaluated
by the distance between the spacecraft.

The distance between three spacecraft within the formation are shown in Fig. 12 (right). The paths
are plotted for approximately t = 9 dimensionless time units, which is equivalent to three revolutions
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Figure 11. In- and out-of-plane parameter describing the formation snapshots. Distance to the
centre orbit (left), orientation of the formation plane defined by declination (blue, right) and right
ascension (red, right).

longitudinally along the torus.
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Figure 12. Trajectories of three spacecraft within the formation (left). Distance between the
spacecraft (right).

5.2. Phasing Multiple Spacecraft

The variation in the distance between the spacecraft and the orientation in space depends on the
phasing/initial placement of the spacecraft on the torus’ surface, as seen in Fig. 10. It is important
that the spacecraft keep their relative distance within the formation and that the orientation is
bounded. Depending on the initial set of state vectors, it is possible for the formation to evolve
along the surface of the torus such that the relative positions of each spacecraft in the formation are
unaltered and the relative distances are closely bounded.

13



A linear approximation for this phasing problem is derived from the the Monodromy matrix and their
periodic subspaces. Their eigenvalues and the associated eigenvectors indicate the linear stability of
the halo orbit and characterize the nearby motion. Specially, the two-dimensional subspace spanned
by the two complex eigenvectors define the plane for the initial states of the formation that stay
bounded in the linear system. An exact solution is based on the torus parametrization and their
invariant curves. The planar approximation of the invariant curves in Fig. 7 (right) coincide with the
subspaces described above. Phasing conditions are pointed out, and natural regions are identified
for formations on the torus where the variations of the distance and orientation between spacecraft
are minimal.

5.3. Modified Torus Motion

In the previous, a natural solution for multiple spacecraft moving in a relative configuration within
this dynamical system on a torus structure is presented. No manoeuvres are necessary and all
spacecraft proceed naturally and along their paths and their motion is constrained within limits. The
type of natural motion is an option for formation flying. However, some missions may requiring a
tight pre-specified formation forcing a specified configurations.

The knowledge of the natural motion on the torus, in particular the frequencies and the plane
orientation from the parametrization, is used to propose a modified torus motion in the in-plane
coordinate frame as following

x = r · sin(ω2t +φ0)

y = r · cos(ω2t +φ0)

z = 0
(14)

where ω2 is the rotating frequency introduced for the torus motion, describing the winding motion
component. The radius of the desired formation is defined by r, whereas the phasing φ varies
between the spacecraft in the formation. Formulation the equations of motion in the inertial
reference the following transformation is required

ri = R(t) · rip

vi = R(t) · vip +ω× ri

ai = R(t) ·aip +2ω× (R(t) · vip)+ω× (ω× ri)+
dω

dt
× ri

(15)

[ω]× =
dR
dt

RT =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (16)
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Figure 13. Vector components of e1 of the rotation matrix (left). Natural trajectory on torus versus
modified motion described by Eq. 15 (right).

where ω is the angular velocity vector, and R(t) the time-invariant rotation matrix. The derivatives
of the angular velocity vector, the rotational matrix are required to solve the equation. They are
obtained numerically in this study. Furthermore, an interpolation of the rotation matrix at t is
mandatory, and the Gram Schmidt procedure applied to assure orthogonality.

R(t) = [e1(t),e2(t),e3(t)] (17)

where e1 is the unit vector pointing in the zero direction from the torus parametrization, e2 the
normal vector to the formation plane, and e3 complements the system. The components e1 is shown
in Fig. 13 (left). The variations between the torus motion and the motion introduced in this section
depend on the set of parameters in Eq. 14 and Eq. 15, as seen in Fig. 13 (right). Forcing a specified
configuration it becomes necessary to insert manoeuvres to maintain the formation.

6. Summary and Concluding Remarks

In the present study, natural quasi-periodic trajectories near libration point regions evolving on
quasi-periodic invariant tori were studied. Quasi-periodic trajectories were computed using a
numerical method, starting around periodic halo orbits in the CR3BP. A numerical method to obtain
the torus frequency base is proposed. The parametrization in the two-dimensional angular phase
space of the torus’ surface is introduced which enables to further study the motion with tools known
from the dynamical system theory. By introducing a certain phasing of spacecraft on the torus,
trajectories that are particularly suitable for satellite formations emerge. The relative positions
of each spacecraft in the formation are unaltered and the relative distances and orientation are
closely bounded. An in-plane coordinate frame is introduced and the inner and outer behaviour is
investigated, with the aim to introduce an analytical model for the torus motion. Another field for
future work are the implementation of manoeuvres to find connecting orbits between different sized
tori.
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